Switch to: Citations

Add references

You must login to add references.
  1. In search of ultimate- L the 19th midrasha mathematicae lectures.W. Hugh Woodin - 2017 - Bulletin of Symbolic Logic 23 (1):1-109.
    We give a fairly complete account which first shows that the solution to the inner model problem for one supercompact cardinal will yield an ultimate version ofLand then shows that the various current approaches to inner model theory must be fundamentally altered to provide that solution.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Certain very large cardinals are not created in small forcing extensions.Richard Laver - 2007 - Annals of Pure and Applied Logic 149 (1-3):1-6.
    The large cardinal axioms of the title assert, respectively, the existence of a nontrivial elementary embedding j:Vλ→Vλ, the existence of such a j which is moreover , and the existence of such a j which extends to an elementary j:Vλ+1→Vλ+1. It is known that these axioms are preserved in passing from a ground model to a small forcing extension. In this paper the reverse directions of these preservations are proved. Also the following is shown : if V is a model (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Generalizations of the Kunen inconsistency.Joel David Hamkins, Greg Kirmayer & Norman Lewis Perlmutter - 2012 - Annals of Pure and Applied Logic 163 (12):1872-1890.
    We present several generalizations of the well-known Kunen inconsistency that there is no nontrivial elementary embedding from the set-theoretic universe V to itself. For example, there is no elementary embedding from the universe V to a set-forcing extension V[G], or conversely from V[G] to V, or more generally from one set-forcing ground model of the universe to another, or between any two models that are eventually stationary correct, or from V to HOD, or conversely from HOD to V, or indeed (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Large cardinals need not be large in HOD.Yong Cheng, Sy-David Friedman & Joel David Hamkins - 2015 - Annals of Pure and Applied Logic 166 (11):1186-1198.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Strong compactness and other cardinal sins.Jussi Ketonen - 1972 - Annals of Mathematical Logic 5 (1):47.
    Download  
     
    Export citation  
     
    Bookmark   21 citations