Switch to: Citations

Add references

You must login to add references.
  1. Sizing up the genomic footprint of endosymbiosis.Marek Elias & John M. Archibald - 2009 - Bioessays 31 (12):1273-1279.
    A flurry of recent publications have challenged consensus views on the tempo and mode of plastid (chloroplast) evolution in eukaryotes and, more generally, the impact of endosymbiosis in the evolution of the nuclear genome. Endosymbiont‐to‐nucleus gene transfer is an essential component of the transition from endosymbiont to organelle, but the sheer diversity of algal‐derived genes in photosynthetic organisms such as diatoms, as well as the existence of genes of putative plastid ancestry in the nuclear genomes of plastid‐lacking eukaryotes such as (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Integrating DNA barcode data and taxonomic practice: Determination, discovery, and description.Paul Z. Goldstein & Rob DeSalle - 2011 - Bioessays 33 (2):135-147.
    DNA barcodes, like traditional sources of taxonomic information, are potentially powerful heuristics in the identification of described species but require mindful analytical interpretation. The role of DNA barcoding in generating hypotheses of new taxa in need of formal taxonomic treatment is discussed, and it is emphasized that the recursive process of character evaluation is both necessary and best served by understanding the empirical mechanics of the discovery process. These undertakings carry enormous ramifications not only for the translation of DNA sequence (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • How discordant morphological and molecular evolution among microorganisms can revise our notions of biodiversity on Earth.Daniel J. G. Lahr, Haywood Dail Laughinghouse, Angela M. Oliverio, Feng Gao & Laura A. Katz - 2014 - Bioessays 36 (10):950-959.
    Microscopy has revealed tremendous diversity of bacterial and eukaryotic forms. Recent molecular analyses show discordance in estimates of biodiversity between morphological and molecular analyses. Moreover, phylogenetic analyses of the diversity of microbial forms reveal evidence of convergence at scales as deep as interdomain: morphologies shared between bacteria and eukaryotes. Here, we highlight examples of such discordance, focusing on exemplary lineages such as testate amoebae, ciliates, and cyanobacteria. These have long histories of morphological study, enabling deeper analyses on both the molecular (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Good things in small packages: The tiny genomes of chlorarachniophyte endosymbionts.Paul R. Gilson & Geoffrey I. McFadden - 1997 - Bioessays 19 (2):167-173.
    Chlorarachniophytes are amoeboflagellate, marine protists that have acquired photosynthetic capacity by engulfing and retaining a green alga. These green algal endosymbionts are severely reduced, retaining only the chloroplast, nucleus, cytoplasm and plasma membrane. The vestigial nucleus of the endosymbiont, called the nucleomorph, contains only three small linear chromosomes and has a haploid genome size of just 380 kb ‐ the smallest eukaryotic genome known. Initial characterisation of nucleomorph DNA has revealed that all chromosomes are capped with inverted repeats comprising a (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations