Switch to: Citations

Add references

You must login to add references.
  1. The OBO Foundry: Coordinated evolution of ontologies to support biomedical data integration.Barry Smith, Michael Ashburner, Cornelius Rosse, Jonathan Bard, William Bug, Werner Ceusters, Louis J. Goldberg, Karen Eilbeck, Amelia Ireland, Christopher J. Mungall, Neocles Leontis, Philippe Rocca-Serra, Alan Ruttenberg, Susanna-Assunta Sansone, Richard H. Scheuermann, Nigam Shah, Patricia L. Whetzel & Suzanna Lewis - 2007 - Nature Biotechnology 25 (11):1251-1255.
    The value of any kind of data is greatly enhanced when it exists in a form that allows it to be integrated with other data. One approach to integration is through the annotation of multiple bodies of data using common controlled vocabularies or ‘ontologies’. Unfortunately, the very success of this approach has led to a proliferation of ontologies which itself creates obstacles to integration. The Open Biomedical Ontologies (OBO) consortium has set in train a strategy to overcome this problem. Existing (...)
    Download  
     
    Export citation  
     
    Bookmark   136 citations  
  • The RNA Ontology (RNAO): an ontology for integrating RNA sequence and structure data.Robert Hoehndorf, Colin Batchelor, Thomas Bittner, Michel Dumontier, Karen Eilbeck, Rob Knight, Chris J. Mungall, Jane S. Richardson, Jesse Stombaugh & Eric Westhof - 2011 - Applied ontology 6 (1):53-89.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Protein Ontology: A structured representation of protein forms and complexes.Darren Natale, Cecilia N. Arighi, Winona C. Barker, Judith A. Blake, Carol J. Bult, Michael Caudy, Harold J. Drabkin, Peter D’Eustachio, Alexei V. Evsikov, Hongzhan Huang, Jules Nchoutmboube, Natalia V. Roberts, Barry Smith, Jian Zhang & Cathy H. Wu - 2011 - Nucleic Acids Research 39 (1):D539-D545.
    The Protein Ontology (PRO) provides a formal, logically-based classification of specific protein classes including structured representations of protein isoforms, variants and modified forms. Initially focused on proteins found in human, mouse and Escherichia coli, PRO now includes representations of protein complexes. The PRO Consortium works in concert with the developers of other biomedical ontologies and protein knowledge bases to provide the ability to formally organize and integrate representations of precise protein forms so as to enhance accessibility to results of protein (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • A semantic approach for knowledge capture of microRNA-target gene interactions.Jingshan Huang, Fernando Gutierrez, Dejing Dou, Judith A. Blake, Karen Eilbeck, Darren A. Natale, Barry Smith, Yu Lin, Xiaowei Wang & Zixing Liu - 2015 - In IEEE International Conference on Bioinformatics and Biomedicine (IEEE BIBM 2015),. pp. 975-982.
    Research has indicated that microRNAs (miRNAs), a special class of non-coding RNAs (ncRNAs), can perform important roles in different biological and pathological processes. miRNAs’ functions are realized by regulating their respective target genes (targets). It is thus critical to identify and analyze miRNA-target interactions for a better understanding and delineation of miRNAs’ functions. However, conventional knowledge discovery and acquisition methods have many limitations. Fortunately, semantic technologies that are based on domain ontologies can render great assistance in this regard. In our (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Relations in Biomedical Ontologies.Barry Smith, Werner Ceusters, Bert Klagges, Jacob Köhler, Anand Kuma, Jane Lomax, Chris Mungall, , Fabian Neuhaus, Alan Rector & Cornelius Rosse - 2005 - Genome Biology 6 (5):R46.
    To enhance the treatment of relations in biomedical ontologies we advance a methodology for providing consistent and unambiguous formal definitions of the relational expressions used in such ontologies in a way designed to assist developers and users in avoiding errors in coding and annotation. The resulting Relation Ontology can promote interoperability of ontologies and support new types of automated reasoning about the spatial and temporal dimensions of biological and medical phenomena.
    Download  
     
    Export citation  
     
    Bookmark   92 citations