Switch to: Citations

Add references

You must login to add references.
  1. The baire category theorem in weak subsystems of second-order arithmetic.Douglas K. Brown & Stephen G. Simpson - 1993 - Journal of Symbolic Logic 58 (2):557-578.
    Working within weak subsystems of second-order arithmetic Z2 we consider two versions of the Baire Category theorem which are not equivalent over the base system RCA0. We show that one version (B.C.T.I) is provable in RCA0 while the second version (B.C.T.II) requires a stronger system. We introduce two new subsystems of Z2, which we call RCA+ 0 and WKL+ 0, and show that RCA+ 0 suffices to prove B.C.T.II. Some model theory of WKL+ 0 and its importance in view of (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • (1 other version)Metamathematics of First-Order Arithmetic.Petr Hajék & Pavel Pudlák - 1994 - Studia Logica 53 (3):465-466.
    Download  
     
    Export citation  
     
    Bookmark   145 citations  
  • On the strength of Ramsey's theorem for pairs.Peter A. Cholak, Carl G. Jockusch & Theodore A. Slaman - 2001 - Journal of Symbolic Logic 66 (1):1-55.
    We study the proof-theoretic strength and effective content of the infinite form of Ramsey's theorem for pairs. Let RT n k denote Ramsey's theorem for k-colorings of n-element sets, and let RT $^n_{ denote (∀ k)RT n k . Our main result on computability is: For any n ≥ 2 and any computable (recursive) k-coloring of the n-element sets of natural numbers, there is an infinite homogeneous set X with X'' ≤ T 0 (n) . Let IΣ n and BΣ (...)
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • Combinatorial principles weaker than Ramsey's Theorem for pairs.Denis R. Hirschfeldt & Richard A. Shore - 2007 - Journal of Symbolic Logic 72 (1):171-206.
    We investigate the complexity of various combinatorial theorems about linear and partial orders, from the points of view of computability theory and reverse mathematics. We focus in particular on the principles ADS (Ascending or Descending Sequence), which states that every infinite linear order has either an infinite descending sequence or an infinite ascending sequence, and CAC (Chain-AntiChain), which states that every infinite partial order has either an infinite chain or an infinite antichain. It is well-known that Ramsey's Theorem for pairs (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • On the strength of Ramsey's theorem without Σ1 -induction.Keita Yokoyama - 2013 - Mathematical Logic Quarterly 59 (1-2):108-111.
    In this paper, we show that equation image is a equation image-conservative extension of BΣ1 + exp, thus it does not imply IΣ1.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Ordinal numbers and the Hilbert basis theorem.Stephen G. Simpson - 1988 - Journal of Symbolic Logic 53 (3):961-974.
    Download  
     
    Export citation  
     
    Bookmark   18 citations