Switch to: Citations

Add references

You must login to add references.
  1. Growing Commas. A Study of Sequentiality and Concatenation.Albert Visser - 2009 - Notre Dame Journal of Formal Logic 50 (1):61-85.
    In his paper "Undecidability without arithmetization," Andrzej Grzegorczyk introduces a theory of concatenation $\mathsf{TC}$. We show that pairing is not definable in $\mathsf{TC}$. We determine a reasonable extension of $\mathsf{TC}$ that is sequential, that is, has a good sequence coding.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Der wahrheitsbegriff in den formalisierten sprachen.Alfred Tarski - 1935 - Studia Philosophica 1:261--405.
    Download  
     
    Export citation  
     
    Bookmark   343 citations  
  • String theory.John Corcoran, William Frank & Michael Maloney - 1974 - Journal of Symbolic Logic 39 (4):625-637.
    For each positive n , two alternative axiomatizations of the theory of strings over n alphabetic characters are presented. One class of axiomatizations derives from Tarski's system of the Wahrheitsbegriff and uses the n characters and concatenation as primitives. The other class involves using n character-prefixing operators as primitives and derives from Hermes' Semiotik. All underlying logics are second order. It is shown that, for each n, the two theories are definitionally equivalent [or synonymous in the sense of deBouvere]. It (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • (1 other version)Metamathematics of First-Order Arithmetic.P. Hájek & P. Pudlák - 2000 - Studia Logica 64 (3):429-430.
    Download  
     
    Export citation  
     
    Bookmark   87 citations  
  • On Interpretability in the Theory of Concatenation.Vítězslav Švejdar - 2009 - Notre Dame Journal of Formal Logic 50 (1):87-95.
    We prove that a variant of Robinson arithmetic $\mathsf{Q}$ with nontotal operations is interpretable in the theory of concatenation $\mathsf{TC}$ introduced by A. Grzegorczyk. Since $\mathsf{Q}$ is known to be interpretable in that nontotal variant, our result gives a positive answer to the problem whether $\mathsf{Q}$ is interpretable in $\mathsf{TC}$. An immediate consequence is essential undecidability of $\mathsf{TC}$.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Undecidability without Arithmetization.Andrzej Grzegorczyk - 2005 - Studia Logica 79 (2):163-230.
    In the present paper the well-known Gödels – Churchs argument concerning the undecidability of logic (of the first order functional calculus) is exhibited in a way which seems to be philosophically interestingfi The natural numbers are not used. (Neither Chinese Theorem nor other specifically mathematical tricks are applied.) Only elementary logic and very simple set-theoretical constructions are put into the proof. Instead of the arithmetization I use the theory of concatenation (formalized by Alfred Tarski). This theory proves to be an (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Weak theories of concatenation and minimal essentially undecidable theories: An encounter of WTC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf{WTC}}$$\end{document} and S2S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf{S2S}}$$\end{document}.Kojiro Higuchi & Yoshihiro Horihata - 2014 - Archive for Mathematical Logic 53 (7-8):835-853.
    We consider weak theories of concatenation, that is, theories for strings or texts. We prove that the theory of concatenation WTC-ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf{WTC}^{-\varepsilon}}$$\end{document}, which is a weak subtheory of Grzegorczyk’s theory TC-ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf{TC}^{-\varepsilon}}$$\end{document}, is a minimal essentially undecidable theory, that is, the theory WTC-ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf{WTC}^{-\varepsilon}}$$\end{document} is essentially undecidable and if one omits an axiom scheme from WTC-ε\documentclass[12pt]{minimal} \usepackage{amsmath} (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Hermes Hans. Semiotik. Eine Theorie der Zeichengestalten als Grundlage für Untersuchungen von formalisierten Sprachen. Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften, new series, no. 5. S. Hirzel, Leipzig 1938, 22 pp. [REVIEW]W. V. Quine - 1939 - Journal of Symbolic Logic 4 (2):87-88.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Concatenation as a basis for arithmetic.W. V. Quine - 1946 - Journal of Symbolic Logic 11 (4):105-114.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • (1 other version)Concatenation as a Basis for Arithmetic.W. V. Quine - 1946 - Journal of Symbolic Logic 13 (4):219-220.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • A Variant of a Recursively Unsolvable Problem.Emil L. Post - 1947 - Journal of Symbolic Logic 12 (2):55-56.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Problem of Solvability of Equations in a Free Semigroup.G. S. Makanin - 1986 - Journal of Symbolic Logic 51 (4):1070-1071.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Weak Theories of Concatenation and Arithmetic.Yoshihiro Horihata - 2012 - Notre Dame Journal of Formal Logic 53 (2):203-222.
    We define a new theory of concatenation WTC which is much weaker than Grzegorczyk's well-known theory TC. We prove that WTC is mutually interpretable with the weak theory of arithmetic R. The latter is, in a technical sense, much weaker than Robinson's arithmetic Q, but still essentially undecidable. Hence, as a corollary, WTC is also essentially undecidable.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Semiotik. Eine Theorie der Zeichengestalten als Grundlage für Untersuchungen von Formalisierten Sprachen.W. V. Quine - 1939 - Journal of Symbolic Logic 4 (2):87-88.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Metamathematics of First-Order Arithmetic.Petr Hajék & Pavel Pudlák - 1994 - Studia Logica 53 (3):465-466.
    Download  
     
    Export citation  
     
    Bookmark   145 citations  
  • .W. V. Quine - 1966
    Download  
     
    Export citation  
     
    Bookmark   85 citations  
  • A Friendly Introduction to Mathematical Logic.Christopher C. Leary & Lars Kristiansen - 2015 - Lulu.com.
    At the intersection of mathematics, computer science, and philosophy, mathematical logic examines the power and limitations of formal mathematical thinking. In this expansion of Leary's user-friendly 1st edition, readers with no previous study in the field are introduced to the basics of model theory, proof theory, and computability theory. The text is designed to be used either in an upper division undergraduate classroom, or for self study. Updating the 1st Edition's treatment of languages, structures, and deductions, leading to rigorous proofs (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations