Switch to: Citations

Add references

You must login to add references.
  1. Meta’s Oversight Board: A Review and Critical Assessment.David Wong & Luciano Floridi - 2023 - Minds and Machines 33 (2):261-284.
    Since the announcement and establishment of the Oversight Board (OB) by the technology company Meta as an independent institution reviewing Facebook and Instagram’s content moderation decisions, the OB has been subjected to scholarly scrutiny ranging from praise to criticism. However, there is currently no overarching framework for understanding the OB’s various strengths and weaknesses. Consequently, this article analyses, organises, and supplements academic literature, news articles, and Meta and OB documents to understand the OB’s strengths and weaknesses and how it can (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Conformity Assessments and Post-market Monitoring: A Guide to the Role of Auditing in the Proposed European AI Regulation.Jakob Mökander, Maria Axente, Federico Casolari & Luciano Floridi - 2022 - Minds and Machines 32 (2):241-268.
    The proposed European Artificial Intelligence Act (AIA) is the first attempt to elaborate a general legal framework for AI carried out by any major global economy. As such, the AIA is likely to become a point of reference in the larger discourse on how AI systems can (and should) be regulated. In this article, we describe and discuss the two primary enforcement mechanisms proposed in the AIA: the _conformity assessments_ that providers of high-risk AI systems are expected to conduct, and (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • How the machine ‘thinks’: Understanding opacity in machine learning algorithms.Jenna Burrell - 2016 - Big Data and Society 3 (1):205395171562251.
    This article considers the issue of opacity as a problem for socially consequential mechanisms of classification and ranking, such as spam filters, credit card fraud detection, search engines, news trends, market segmentation and advertising, insurance or loan qualification, and credit scoring. These mechanisms of classification all frequently rely on computational algorithms, and in many cases on machine learning algorithms to do this work. In this article, I draw a distinction between three forms of opacity: opacity as intentional corporate or state (...)
    Download  
     
    Export citation  
     
    Bookmark   208 citations  
  • Explaining Explanations in AI.Brent Mittelstadt - forthcoming - FAT* 2019 Proceedings 1.
    Recent work on interpretability in machine learning and AI has focused on the building of simplified models that approximate the true criteria used to make decisions. These models are a useful pedagogical device for teaching trained professionals how to predict what decisions will be made by the complex system, and most importantly how the system might break. However, when considering any such model it’s important to remember Box’s maxim that "All models are wrong but some are useful." We focus on (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Algorithmic Accountability and Public Reason.Reuben Binns - 2018 - Philosophy and Technology 31 (4):543-556.
    The ever-increasing application of algorithms to decision-making in a range of social contexts has prompted demands for algorithmic accountability. Accountable decision-makers must provide their decision-subjects with justifications for their automated system’s outputs, but what kinds of broader principles should we expect such justifications to appeal to? Drawing from political philosophy, I present an account of algorithmic accountability in terms of the democratic ideal of ‘public reason’. I argue that situating demands for algorithmic accountability within this justificatory framework enables us to (...)
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Complacency and Bias in Human Use of Automation: An Attentional Integration.Raja Parasuraman & Dietrich H. Manzey - 2010 - Human Factors: The Journal of the Human Factors and Ergonomics Society 52 (3):381-410.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Democracy and Distrust: A Theory of Judicial Review.John Hart Ely - 1982 - Law and Philosophy 1 (3):481-487.
    Download  
     
    Export citation  
     
    Bookmark   63 citations