Switch to: Citations

Add references

You must login to add references.
  1. Boolean extensions and measurable cardinals.K. Kunen - 1971 - Annals of Mathematical Logic 2 (4):359.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • How large is the first strongly compact cardinal? or a study on identity crises.Menachem Magidor - 1976 - Annals of Mathematical Logic 10 (1):33-57.
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • Forcing Magidor iteration over a core model below $${0^{\P}}$$ 0 ¶.Omer Ben-Neria - 2014 - Archive for Mathematical Logic 53 (3-4):367-384.
    We study the Magidor iteration of Prikry forcings, and the resulting normal measures on κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa}$$\end{document}, the first measurable cardinal in a generic extension. We show that when applying the iteration to a core model below 0¶\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${0^{\P}}$$\end{document}, then there exists a natural correspondence between the normal measures on κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa}$$\end{document} in the ground model, and those (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Sets constructible from sequences of ultrafilters.William J. Mitchell - 1974 - Journal of Symbolic Logic 39 (1):57-66.
    In [4], Kunen used iterated ultrapowers to show that ifUis a normalκ-complete nontrivial ultrafilter on a cardinalκthenL[U], the class of sets constructive fromU, has only the ultrafilterU∩L[U] and this ultrafilter depends only onκ. In this paper we extend Kunen's methods to arbitrary sequencesUof ultrafilters and obtain generalizations of these results. In particular we answer Problem 1 of Kunen and Paris [5] which asks whether the number of ultrafilters onκcan be intermediate between 1 and 22κ. If there is a normalκ-complete ultrafilterUonκsuch (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • The number of normal measures.Sy-David Friedman & Menachem Magidor - 2009 - Journal of Symbolic Logic 74 (3):1069-1080.
    There have been numerous results showing that a measurable cardinal κ can carry exactly α normal measures in a model of GCH, where a is a cardinal at most κ⁺⁺. Starting with just one measurable cardinal, we have [9] (for α = 1), [10] (for α = κ⁺⁺, the maximum possible) and [1] (for α = κ⁺, after collapsing κ⁺⁺) . In addition, under stronger large cardinal hypotheses, one can handle the remaining cases: [12] (starting with a measurable cardinal of (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations