Switch to: Citations

Add references

You must login to add references.
  1. Ternary Operations as Primitive Notions for Constructive Plane Geometry.Victor Pambuccian - 1989 - Mathematical Logic Quarterly 35 (6):531-535.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Realizing Brouwer's sequences.Richard E. Vesley - 1996 - Annals of Pure and Applied Logic 81 (1-3):25-74.
    When Kleene extended his recursive realizability interpretation from intuitionistic arithmetic to analysis, he was forced to use more than recursive functions to interpret sequences and conditional constructions. In fact, he used what classically appears to be the full continuum. We describe here a generalization to higher type of Kleene's realizability, one case of which, -realizability, uses general recursive functions throughout, both to realize theorems and to interpret choice sequences. -realizability validates a version of the bar theorem and the usual continuity (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Über eine bisher noch nicht benützte erweiterung Des finiten standpunktes.Von Kurt Gödel - 1958 - Dialectica 12 (3‐4):280-287.
    ZusammenfassungP. Bernays hat darauf hingewiesen, dass man, um die Widerspruchs freiheit der klassischen Zahlentheorie zu beweisen, den Hilbertschen flniter Standpunkt dadurch erweitern muss, dass man neben den auf Symbole sich beziehenden kombinatorischen Begriffen gewisse abstrakte Begriffe zulässt, Die abstrakten Begriffe, die bisher für diesen Zweck verwendet wurden, sinc die der konstruktiven Ordinalzahltheorie und die der intuitionistischer. Logik. Es wird gezeigt, dass man statt deesen den Begriff einer berechenbaren Funktion endlichen einfachen Typs über den natürlichen Zahler benutzen kann, wobei keine anderen (...)
    Download  
     
    Export citation  
     
    Bookmark   162 citations  
  • Ternary Operations as Primitive Notions for Constructive Plane Geometry V.Victor Pambuccian - 1994 - Mathematical Logic Quarterly 40 (4):455-477.
    In this paper we provide a quantifier-free, constructive axiomatization of metric-Euclidean and of rectangular planes . The languages in which the axiom systems are expressed contain three individual constants and two ternary operations. We also provide an axiom system in algorithmic logic for finite Euclidean planes, and for several minimal metric-Euclidean planes. The axiom systems proposed will be used in a sequel to this paper to provide ‘the simplest possible’ axiom systems for several fragments of plane Euclidean geometry.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Review: Alfred Tarski, What is Elementary Geometry? [REVIEW]John van Heijenoort - 1962 - Journal of Symbolic Logic 27 (1):93-93.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Tarski and geometry.L. W. Szczerba - 1986 - Journal of Symbolic Logic 51 (4):907-912.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The axioms of constructive geometry.Jan von Plato - 1995 - Annals of Pure and Applied Logic 76 (2):169-200.
    Elementary geometry can be axiomatized constructively by taking as primitive the concepts of the apartness of a point from a line and the convergence of two lines, instead of incidence and parallelism as in the classical axiomatizations. I first give the axioms of a general plane geometry of apartness and convergence. Constructive projective geometry is obtained by adding the principle that any two distinct lines converge, and affine geometry by adding a parallel line construction, etc. Constructive axiomatization allows solutions to (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Ternary Operations as Primitive Notions for Constructive Plane Geometry IV.Victor Pambuccian - 1994 - Mathematical Logic Quarterly 40 (1):76-86.
    In this paper we provide a quantifier-free constructive axiomatization for Euclidean planes in a first-order language with only ternary operation symbols and three constant symbols . We also determine the algorithmic theories of some ‘naturally occurring’ plane geometries.
    Download  
     
    Export citation  
     
    Bookmark   2 citations