Switch to: Citations

Add references

You must login to add references.
  1. Frege on knowing the third realm.Tyler Burge - 1992 - Mind 101 (404):633-650.
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • (1 other version)The formulae-as-types notion of construction.William Alvin Howard - 1980 - In Haskell Curry, Hindley B., Seldin J. Roger & P. Jonathan (eds.), To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism. Academic Press.
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • Kurt Gödel. Essays for his centennial.Solomon Feferman, Charles Parsons & Stephen G. Simpson - 2011 - Bulletin of Symbolic Logic 17 (1):125-126.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Steps Toward a Constructive Nominalism.Nelson Goodman & W. V. Quine - 1947 - Journal of Symbolic Logic 13 (1):49-50.
    Download  
     
    Export citation  
     
    Bookmark   150 citations  
  • Truth and predication.Donald Davidson - 2005 - Cambridge: Edited by Donald Davidson.
    "Davidson begins by harking back to an early interest in the classics, and an even earlier engagement with the workings of grammar. In the pleasures of diagramming sentences in grade school, he locates his first glimpse into the mechanics of how we conduct the most important activities in our life - such as declaring love, asking directions, issuing orders, and telling stories. Davidson connects these essential questions with the most basic and yet hard to understand mysteries of language use - (...)
    Download  
     
    Export citation  
     
    Bookmark   86 citations  
  • (1 other version)Mathematics in Philosophy.Charles Parsons - 1987 - Revue Philosophique de la France Et de l'Etranger 177 (1):88-90.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • The provenance of pure reason: essays in the philosophy of mathematics and its history. [REVIEW]Jeremy Avigad - 2006 - Bulletin of Symbolic Logic 12 (4):608-610.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Über eine bisher noch nicht benützte erweiterung Des finiten standpunktes.Von Kurt Gödel - 1958 - Dialectica 12 (3‐4):280-287.
    ZusammenfassungP. Bernays hat darauf hingewiesen, dass man, um die Widerspruchs freiheit der klassischen Zahlentheorie zu beweisen, den Hilbertschen flniter Standpunkt dadurch erweitern muss, dass man neben den auf Symbole sich beziehenden kombinatorischen Begriffen gewisse abstrakte Begriffe zulässt, Die abstrakten Begriffe, die bisher für diesen Zweck verwendet wurden, sinc die der konstruktiven Ordinalzahltheorie und die der intuitionistischer. Logik. Es wird gezeigt, dass man statt deesen den Begriff einer berechenbaren Funktion endlichen einfachen Typs über den natürlichen Zahler benutzen kann, wobei keine anderen (...)
    Download  
     
    Export citation  
     
    Bookmark   162 citations  
  • (1 other version)Platonism and mathematical intuition in Kurt gödel's thought.Charles Parsons - 1995 - Bulletin of Symbolic Logic 1 (1):44-74.
    The best known and most widely discussed aspect of Kurt Gödel's philosophy of mathematics is undoubtedly his robust realism or platonism about mathematical objects and mathematical knowledge. This has scandalized many philosophers but probably has done so less in recent years than earlier. Bertrand Russell's report in his autobiography of one or more encounters with Gödel is well known:Gödel turned out to be an unadulterated Platonist, and apparently believed that an eternal “not” was laid up in heaven, where virtuous logicians (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • (1 other version)Steps toward a constructive nominalism.Nelson Goodman & Willard van Orman Quine - 1947 - Journal of Symbolic Logic 12 (4):105-122.
    Download  
     
    Export citation  
     
    Bookmark   166 citations  
  • (1 other version)Mathematics in Philosophy: Selected Essays.W. V. Quine - 1984 - Journal of Philosophy 81 (12):783-794.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes.Kurt Gödel - 1958 - Dialectica 12 (3):280.
    Download  
     
    Export citation  
     
    Bookmark   82 citations  
  • Against intuitionism: Constructive mathematics is part of classical mathematics.W. W. Tait - 1983 - Journal of Philosophical Logic 12 (2):173 - 195.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Truth and Predication.Donald Davidson - 2006 - Critica 38 (113):75-80.
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • (1 other version)Gödel's conceptual realism.Donald A. Martin - 2005 - Bulletin of Symbolic Logic 11 (2):207-224.
    Kurt Gödel is almost as famous—one might say “notorious”—for his extreme platonist views as he is famous for his mathematical theorems. Moreover his platonism is not a myth; it is well-documented in his writings. Here are two platonist declarations about set theory, the first from his paper about Bertrand Russell and the second from the revised version of his paper on the Continuum Hypotheses.Classes and concepts may, however, also be conceived as real objects, namely classes as “pluralities of things” or (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • On the interpretation of non-finitist proofs—Part I.G. Kreisel - 1951 - Journal of Symbolic Logic 16 (4):241-267.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Godel's interpretation of intuitionism.William Tait - 2006 - Philosophia Mathematica 14 (2):208-228.
    Gödel regarded the Dialectica interpretation as giving constructive content to intuitionism, which otherwise failed to meet reasonable conditions of constructivity. He founded his theory of primitive recursive functions, in which the interpretation is given, on the concept of computable function of finite type. I will (1) criticize this foundation, (2) propose a quite different one, and (3) note that essentially the latter foundation also underlies the Curry-Howard type theory, and hence Heyting's intuitionistic conception of logic. Thus the Dialectica interpretation (in (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Reply to Charles Parsons.W. V. O. Quine - 1986 - In Lewis Edwin Hahn & Paul Arthur Schilpp (eds.), The Philosophy of W.V. Quine. Chicago: Open Court. pp. 396-404.
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • On an Extension of Finitary Mathematics which has not yet been Used.Kurt Gödel - 1990 - In Solomon Feferman, John Dawson & Stephen Kleene (eds.), Kurt Gödel: Collected Works Vol. Ii. Oxford University Press. pp. 271--284.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • (1 other version)The formulæ-as-types notion of construction.W. A. Howard - 1995 - In Philippe De Groote (ed.), The Curry-Howard isomorphism. Louvain-la-Neuve: Academia.
    Download  
     
    Export citation  
     
    Bookmark   68 citations  
  • (1 other version)Gödel's reformulation of Gentzen's first consistency proof for arithmetic: The no-counterexample interpretation.W. W. Tait - 2005 - Bulletin of Symbolic Logic 11 (2):225-238.
    The last section of “Lecture at Zilsel’s” [9, §4] contains an interesting but quite condensed discussion of Gentzen’s first version of his consistency proof for P A [8], reformulating it as what has come to be called the no-counterexample interpretation. I will describe Gentzen’s result (in game-theoretic terms), fill in the details (with some corrections) of Godel's reformulation, and discuss the relation between the two proofs.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Finitism and intuitive knowledge.Charles Parsons - 1998 - In Matthias Schirn (ed.), The Philosophy of Mathematics Today: Papers From a Conference Held in Munich From June 28 to July 4,1993. Oxford, England: Clarendon Press. pp. 249--270.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Collected Works.von Reutern - 1968 - Philosophy and History 1 (2):156-158.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Kurt Godel. Collected Works. Volume IV: Selected Correspondence AG; Volume V: Selected Correspondence HZ.W. W. Tait - 2006 - Philosophia Mathematica 14 (1):76.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Gödel's Correspondence on Proof Theory and Constructive Mathematics †Charles Parsons read part of an early draft of this review and made important corrections and suggestions.William W. Tait - 2006 - Philosophia Mathematica 14 (1):76-111.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Platonism.Michael Dummett - 1967 - In ¸ Itedummett:Toe. pp. 202--214.
    Download  
     
    Export citation  
     
    Bookmark   10 citations