Switch to: Citations

Add references

You must login to add references.
  1. Creating Scientific Concepts.Nancy J. Nersessian - 2008 - MIT Press.
    How do novel scientific concepts arise? In Creating Scientific Concepts, Nancy Nersessian seeks to answer this central but virtually unasked question in the problem of conceptual change. She argues that the popular image of novel concepts and profound insight bursting forth in a blinding flash of inspiration is mistaken. Instead, novel concepts are shown to arise out of the interplay of three factors: an attempt to solve specific problems; the use of conceptual, analytical, and material resources provided by the cognitive-social-cultural (...)
    Download  
     
    Export citation  
     
    Bookmark   169 citations  
  • What was Hodgkin and Huxley’s Achievement?Arnon Levy - 2013 - British Journal for the Philosophy of Science 65 (3):469-492.
    The Hodgkin–Huxley (HH) model of the action potential is a theoretical pillar of modern neurobiology. In a number of recent publications, Carl Craver ([2006], [2007], [2008]) has argued that the model is explanatorily deficient because it does not reveal enough about underlying molecular mechanisms. I offer an alternative picture of the HH model, according to which it deliberately abstracts from molecular specifics. By doing so, the model explains whole-cell behaviour as the product of a mass of underlying low-level events. The (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Discovering Complexity: Decomposition and Localization as Strategies in Scientific Research.William Bechtel & Robert C. Richardson - 2010 - Princeton.
    An analysis of two heuristic strategies for the development of mechanistic models, illustrated with historical examples from the life sciences. In Discovering Complexity, William Bechtel and Robert Richardson examine two heuristics that guided the development of mechanistic models in the life sciences: decomposition and localization. Drawing on historical cases from disciplines including cell biology, cognitive neuroscience, and genetics, they identify a number of "choice points" that life scientists confront in developing mechanistic explanations and show how different choices result in divergent (...)
    Download  
     
    Export citation  
     
    Bookmark   520 citations  
  • Scientific understanding: truth or dare?Henk W. de Regt - 2015 - Synthese 192 (12):3781-3797.
    It is often claimed—especially by scientific realists—that science provides understanding of the world only if its theories are (at least approximately) true descriptions of reality, in its observable as well as unobservable aspects. This paper critically examines this ‘realist thesis’ concerning understanding. A crucial problem for the realist thesis is that (as study of the history and practice of science reveals) understanding is frequently obtained via theories and models that appear to be highly unrealistic or even completely fictional. So we (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • (1 other version)Explaining the brain: mechanisms and the mosaic unity of neuroscience.Carl F. Craver - 2007 - New York : Oxford University Press,: Oxford University Press, Clarendon Press.
    Carl Craver investigates what we are doing when we sue neuroscience to explain what's going on in the brain.
    Download  
     
    Export citation  
     
    Bookmark   624 citations  
  • An agent-based conception of models and scientific representation.Ronald N. Giere - 2010 - Synthese 172 (2):269–281.
    I argue for an intentional conception of representation in science that requires bringing scientific agents and their intentions into the picture. So the formula is: Agents (1) intend; (2) to use model, M; (3) to represent a part of the world, W; (4) for some purpose, P. This conception legitimates using similarity as the basic relationship between models and the world. Moreover, since just about anything can be used to represent anything else, there can be no unified ontology of models. (...)
    Download  
     
    Export citation  
     
    Bookmark   133 citations  
  • When mechanistic models explain.Carl F. Craver - 2006 - Synthese 153 (3):355-376.
    Not all models are explanatory. Some models are data summaries. Some models sketch explanations but leave crucial details unspecified or hidden behind filler terms. Some models are used to conjecture a how-possibly explanation without regard to whether it is a how-actually explanation. I use the Hodgkin and Huxley model of the action potential to illustrate these ways that models can be useful without explaining. I then use the subsequent development of the explanation of the action potential to show what is (...)
    Download  
     
    Export citation  
     
    Bookmark   256 citations  
  • Thinking about mechanisms.Peter Machamer, Lindley Darden & Carl F. Craver - 2000 - Philosophy of Science 67 (1):1-25.
    The concept of mechanism is analyzed in terms of entities and activities, organized such that they are productive of regular changes. Examples show how mechanisms work in neurobiology and molecular biology. Thinking in terms of mechanisms provides a new framework for addressing many traditional philosophical issues: causality, laws, explanation, reduction, and scientific change.
    Download  
     
    Export citation  
     
    Bookmark   1351 citations  
  • Understanding Scientific Understanding.Henk W. de Regt - 2017 - New York: Oup Usa.
    Understanding is a central aim of science and highly important in present-day society. But what precisely is scientific understanding and how can it be achieved? This book answers these questions, through philosophical analysis and historical case studies, and presents a philosophical theory of scientific understanding that highlights its contextual nature.
    Download  
     
    Export citation  
     
    Bookmark   92 citations  
  • The New Mechanical Philosophy.Stuart Glennan - 2017 - Oxford: Oxford University Press.
    This volume argues for a new image of science that understands both natural and social phenomena to be the product of mechanisms, casting the work of science as an effort to understand those mechanisms. Glennan offers an account of the nature of mechanisms and of the models used to represent them in physical, life, and social sciences.
    Download  
     
    Export citation  
     
    Bookmark   124 citations  
  • Using computational models to discover and understand mechanisms.William Bechtel - 2016 - Studies in History and Philosophy of Science Part A 56:113-121.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • ‘Models of’ and ‘Models for’: On the Relation between Mechanistic Models and Experimental Strategies in Molecular Biology.Emanuele Ratti - 2020 - British Journal for the Philosophy of Science 71 (2):773-797.
    Molecular biologists exploit information conveyed by mechanistic models for experimental purposes. In this article, I make sense of this aspect of biological practice by developing Keller’s idea of the distinction between ‘models of’ and ‘models for’. ‘Models of (phenomena)’ should be understood as models representing phenomena and are valuable if they explain phenomena. ‘Models for (manipulating phenomena)’ are new types of material manipulations and are important not because of their explanatory force, but because of the interventionist strategies they afford. This (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations