Switch to: Citations

Add references

You must login to add references.
  1. Should the Non‐Classical Logician be Embarrassed?Lucas Rosenblatt - 2022 - Philosophy and Phenomenological Research 104 (2):388-407.
    Non‐classical logicians do not typically reject classically valid logical principles across the board. In fact, they sometimes suggest that their preferred logic recovers classical reasoning in most circumstances. This idea has come to be known in the literature as ‘classical recapture’. Recently, classical logicians have raised various doubts about it. The main problem is said to be that no rigorous explanation has been given of how is it exactly that classical logic can be recovered. The goal of the paper is (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Classical recapture and maximality.Lucas Rosenblatt - 2020 - Philosophical Studies 178 (6):1951-1970.
    The idea of classical recapture has played a prominent role for non-classical logicians. In the specific case of non-classical theories of truth, although we know that it is not possible to retain classical logic for every statement involving the truth predicate, it is clear that for many such statements this is in principle feasible, and even desirable. What is not entirely obvious or well-known is how far this idea can be pushed. Can the non-classical theorist retain classical logic for every (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A recovery operator for nontransitive approaches.Eduardo Alejandro Barrio, Federico Pailos & Damian Szmuc - 2020 - Review of Symbolic Logic 13 (1):80-104.
    In some recent articles, Cobreros, Egré, Ripley, & van Rooij have defended the idea that abandoning transitivity may lead to a solution to the trouble caused by semantic paradoxes. For that purpose, they develop the Strict-Tolerant approach, which leads them to entertain a nontransitive theory of truth, where the structural rule of Cut is not generally valid. However, that Cut fails in general in the target theory of truth does not mean that there are not certain safe instances of Cut (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • A paraconsistent route to semantic closure.Eduardo Alejandro Barrio, Federico Matias Pailos & Damian Enrique Szmuc - 2017 - Logic Journal of the IGPL 25 (4):387-407.
    In this paper, we present a non-trivial and expressively complete paraconsistent naïve theory of truth, as a step in the route towards semantic closure. We achieve this goal by expressing self-reference with a weak procedure, that uses equivalences between expressions of the language, as opposed to a strong procedure, that uses identities. Finally, we make some remarks regarding the sense in which the theory of truth discussed has a property closely related to functional completeness, and we present a sound and (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • What Is an Inconsistent Truth Table?Zach Weber, Guillermo Badia & Patrick Girard - 2016 - Australasian Journal of Philosophy 94 (3):533-548.
    ABSTRACTDo truth tables—the ordinary sort that we use in teaching and explaining basic propositional logic—require an assumption of consistency for their construction? In this essay we show that truth tables can be built in a consistency-independent paraconsistent setting, without any appeal to classical logic. This is evidence for a more general claim—that when we write down the orthodox semantic clauses for a logic, whatever logic we presuppose in the background will be the logic that appears in the foreground. Rather than (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • A Calculus for Antinomies.F. G. Asenjo - 1966 - Notre Dame Journal of Formal Logic 16 (1):103-105.
    Download  
     
    Export citation  
     
    Bookmark   109 citations  
  • Self-reference and the languages of arithmetic.Richard Heck - 2007 - Philosophia Mathematica 15 (1):1-29.
    I here investigate the sense in which diagonalization allows one to construct sentences that are self-referential. Truly self-referential sentences cannot be constructed in the standard language of arithmetic: There is a simple theory of truth that is intuitively inconsistent but is consistent with Peano arithmetic, as standardly formulated. True self-reference is possible only if we expand the language to include function-symbols for all primitive recursive functions. This language is therefore the natural setting for investigations of self-reference.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • The logic of paradox.Graham Priest - 1979 - Journal of Philosophical Logic 8 (1):219 - 241.
    Download  
     
    Export citation  
     
    Bookmark   473 citations  
  • Outline of a theory of truth.Saul Kripke - 1975 - Journal of Philosophy 72 (19):690-716.
    A formal theory of truth, alternative to tarski's 'orthodox' theory, based on truth-value gaps, is presented. the theory is proposed as a fairly plausible model for natural language and as one which allows rigorous definitions to be given for various intuitive concepts, such as those of 'grounded' and 'paradoxical' sentences.
    Download  
     
    Export citation  
     
    Bookmark   892 citations  
  • Validity, dialetheism and self-reference.Federico Matias Pailos - 2020 - Synthese 197 (2):773-792.
    It has been argued recently that dialetheist theories are unable to express the concept of naive validity. In this paper, we will show that LP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {LP}$$\end{document} can be non-trivially expanded with a naive validity predicate. The resulting theory, LPVal\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {LP}^{\mathbf {Val}}$$\end{document} reaches this goal by adopting a weak self-referential procedure. We show that LPVal\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • An Introduction to Non-Classical Logic: From If to Is.Graham Priest - 2008 - Bulletin of Symbolic Logic 14 (4):544-545.
    Download  
     
    Export citation  
     
    Bookmark   257 citations  
  • What If? The Exploration of an Idea.Graham Priest - 2017 - Australasian Journal of Logic 14 (1).
    A crucial question here is what, exactly, the conditional in the naive truth/set comprehension principles is. In 'Logic of Paradox', I outlined two options. One is to take it to be the material conditional of the extensional paraconsistent logic LP. Call this "Strategy 1". LP is a relatively weak logic, however. In particular, the material conditional does not detach. The other strategy is to take it to be some detachable conditional. Call this "Strategy 2". The aim of the present essay (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • On dialethism.Laura Goodship - 1996 - Australasian Journal of Philosophy 74 (1):153 – 161.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Maximal Non-trivial Sets of Instances of Your Least Favorite Logical Principle.Lucas Rosenblatt - 2020 - Journal of Philosophy 117 (1):30-54.
    The paper generalizes Van McGee's well-known result that there are many maximal consistent sets of instances of Tarski's schema to a number of non-classical theories of truth. It is shown that if a non-classical theory rejects some classically valid principle in order to avoid the truth-theoretic paradoxes, then there will be many maximal non-trivial sets of instances of that principle that the non-classical theorist could in principle endorse. On the basis of this it is argued that the idea of classical (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations