Switch to: Citations

Add references

You must login to add references.
  1. An upper bound for reduction sequences in the typed λ-calculus.Helmut Schwichtenberg - 1991 - Archive for Mathematical Logic 30 (5-6):405-408.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Combinatory logic.Haskell Brooks Curry - 1958 - Amsterdam,: North-Holland Pub. Co..
    CHAPTER Addenda to Pure Combinatory Logic This chapter will treat various additions to, and modifications of, the subject matter of Chapters-7. ...
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • (1 other version)Basic proof theory.A. S. Troelstra - 2000 - New York: Cambridge University Press. Edited by Helmut Schwichtenberg.
    This introduction to the basic ideas of structural proof theory contains a thorough discussion and comparison of various types of formalization of first-order logic. Examples are given of several areas of application, namely: the metamathematics of pure first-order logic (intuitionistic as well as classical); the theory of logic programming; category theory; modal logic; linear logic; first-order arithmetic and second-order logic. In each case the aim is to illustrate the methods in relatively simple situations and then apply them elsewhere in much (...)
    Download  
     
    Export citation  
     
    Bookmark   159 citations  
  • Proofs and types.Jean-Yves Girard - 1989 - New York: Cambridge University Press.
    This text is an outgrowth of notes prepared by J. Y. Girard for a course at the University of Paris VII. It deals with the mathematical background of the application to computer science of aspects of logic (namely the correspondence between proposition & types). Combined with the conceptual perspectives of Girard's ideas, this sheds light on both the traditional logic material & its prospective applications to computer science. The book covers a very active & exciting research area, & it will (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • (1 other version)The lambda calculus: its syntax and semantics.Hendrik Pieter Barendregt - 1984 - New York, N.Y.: Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co..
    The revised edition contains a new chapter which provides an elegant description of the semantics. The various classes of lambda calculus models are described in a uniform manner. Some didactical improvements have been made to this edition. An example of a simple model is given and then the general theory (of categorical models) is developed. Indications are given of those parts of the book which can be used to form a coherent course.
    Download  
     
    Export citation  
     
    Bookmark   73 citations  
  • Combinatory Logic Vol. 1.Haskell Brooks Curry & Robert M. Feys - 1958 - Amsterdam, Netherlands: North-Holland Publishing Company.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes.Kurt Gödel - 1958 - Dialectica 12 (3):280.
    Download  
     
    Export citation  
     
    Bookmark   82 citations  
  • How to assign ordinal numbers to combinatory terms with polymorphic types.William R. Stirton - 2012 - Archive for Mathematical Logic 51 (5):475-501.
    The article investigates a system of polymorphically typed combinatory logic which is equivalent to Gödel’s T. A notion of (strong) reduction is defined over terms of this system and it is proved that the class of well-formed terms is closed under both bracket abstraction and reduction. The main new result is that the number of contractions needed to reduce a term to normal form is computed by an ε 0-recursive function. The ordinal assignments used to obtain this result are also (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Subrecursion: functions and hierarchies.H. E. Rose - 1984 - New York: Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Über eine bisher noch nicht benützte erweiterung Des finiten standpunktes.Von Kurt Gödel - 1958 - Dialectica 12 (3‐4):280-287.
    ZusammenfassungP. Bernays hat darauf hingewiesen, dass man, um die Widerspruchs freiheit der klassischen Zahlentheorie zu beweisen, den Hilbertschen flniter Standpunkt dadurch erweitern muss, dass man neben den auf Symbole sich beziehenden kombinatorischen Begriffen gewisse abstrakte Begriffe zulässt, Die abstrakten Begriffe, die bisher für diesen Zweck verwendet wurden, sinc die der konstruktiven Ordinalzahltheorie und die der intuitionistischer. Logik. Es wird gezeigt, dass man statt deesen den Begriff einer berechenbaren Funktion endlichen einfachen Typs über den natürlichen Zahler benutzen kann, wobei keine anderen (...)
    Download  
     
    Export citation  
     
    Bookmark   162 citations  
  • (1 other version)Exact Bounds for lengths of reductions in typed λ-calculus.Arnold Beckmann - 2001 - Journal of Symbolic Logic 66 (3):1277-1285.
    We determine the exact bounds for the length of an arbitrary reduction sequence of a term in the typed λ-calculus with β-, ξ- and η-conversion. There will be two essentially different classifications, one depending on the height and the degree of the term and the other depending on the length and the degree of the term.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Typability and type checking in System F are equivalent and undecidable.J. B. Wells - 1999 - Annals of Pure and Applied Logic 98 (1-3):111-156.
    Girard and Reynolds independently invented System F to handle problems in logic and computer programming language design, respectively. Viewing F in the Curry style, which associates types with untyped lambda terms, raises the questions of typability and type checking. Typability asks for a term whether there exists some type it can be given. Type checking asks, for a particular term and type, whether the term can be given that type. The decidability of these problems has been settled for restrictions and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A. S. Troelstra and H. Schwichtenberg. Basic proof theory. Second edition of jsl lxiii 1605. Cambridge tracts in theoretical computer science, no. 43. cambridge university press, cambridge, new York, etc., 2000, XII + 417 pp. [REVIEW]Roy Dyckhoff - 2001 - Bulletin of Symbolic Logic 7 (2):280-280.
    Download  
     
    Export citation  
     
    Bookmark   32 citations