Switch to: Citations

References in:

Natural Deduction for Quantum Logic

Logica Universalis 16 (3):469-497 (2022)

Add references

You must login to add references.
  1. Normal Proofs, Cut Free Derivations and Structural Rules.Greg Restall - 2014 - Studia Logica 102 (6):1143-1166.
    Different natural deduction proof systems for intuitionistic and classical logic —and related logical systems—differ in fundamental properties while sharing significant family resemblances. These differences become quite stark when it comes to the structural rules of contraction and weakening. In this paper, I show how Gentzen and Jaśkowski’s natural deduction systems differ in fine structure. I also motivate directed proof nets as another natural deduction system which shares some of the design features of Genzen and Jaśkowski’s systems, but which differs again (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The conditional in quantum logic.Gary M. Hardegree - 1974 - Synthese 29 (1-4):63 - 80.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • A double deduction system for quantum logic based on natural deduction.Yannis Delmas-Rigoutsos - 1997 - Journal of Philosophical Logic 26 (1):57-67.
    The author presents a deduction system for Quantum Logic. This system is a combination of a natural deduction system and rules based on the relation of compatibility. This relation is the logical correspondant of the commutativity of observables in Quantum Mechanics or perpendicularity in Hilbert spaces. Contrary to the system proposed by Gibbins and Cutland, the natural deduction part of the system is pure: no algebraic artefact is added. The rules of the system are the rules of Classical Natural Deduction (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The deduction theorem for quantum logic—some negative results.Jacek Malinowski - 1990 - Journal of Symbolic Logic 55 (2):615-625.
    We prove that no logic (i.e. consequence operation) determined by any class of orthomodular lattices admits the deduction theorem (Theorem 2.7). We extend those results to some broader class of logics determined by ortholattices (Corollary 2.6).
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Basic logic: Reflection, symmetry, visibility.Giovanni Sambin, Giulia Battilotti & Claudia Faggian - 2000 - Journal of Symbolic Logic 65 (3):979-1013.
    We introduce a sequent calculus B for a new logic, named basic logic. The aim of basic logic is to find a structure in the space of logics. Classical, intuitionistic, quantum and non-modal linear logics, are all obtained as extensions in a uniform way and in a single framework. We isolate three properties, which characterize B positively: reflection, symmetry and visibility. A logical constant obeys to the principle of reflection if it is characterized semantically by an equation binding it with (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Implication connectives in orthomodular lattices.L. Herman, E. L. Marsden & R. Piziak - 1975 - Notre Dame Journal of Formal Logic 16 (3):305-328.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Sequential method in quantum logic.Hirokazu Nishimura - 1980 - Journal of Symbolic Logic 45 (2):339-352.
    Download  
     
    Export citation  
     
    Bookmark   10 citations