Philosophers of language have drawn on metamathematical results in varied ways. Extensionalist philosophers have been particularly impressed with two, not unrelated, facts: the existence, due to Frege/Tarski, of a certain sort of semantics, and the seeming absence of intensional contexts from mathematical discourse. The philosophical import of these facts is at best murky. Extensionalists will emphasize the success and clarity of the model theoretic semantics; others will emphasize the relative poverty of the mathematical idiom; still others will question the aptness (...) of the standard extensional semantics for mathematics. In this paper I investigate some implications of the Gödel Second Incompleteness Theorem for these positions. I argue that the realm of mathematics, proof theory in particular, has been a breeding ground for intensionality and that satisfactory intensional semantic theories are implicit in certain rigorous technical accounts. (shrink)
The determinism-free will debate is perhaps as old as philosophy itself and has been engaged in from a great variety of points of view including those of scientific, theological, and logical character. This chapter focuses on two arguments from logic. First, there is an argument in support of determinism that dates back to Aristotle, if not farther. It rests on acceptance of the Law of Excluded Middle, according to which every proposition is either true or false, no matter whether the (...) proposition is about the past, present or future. In particular, the argument goes, whatever one does or does not do in the future is determined in the present by the truth or falsity of the corresponding proposition. The second argument coming from logic is much more modern and appeals to Gödel's incompleteness theorems to make the case against determinism and in favour of free will, insofar as that applies to the mathematical potentialities of human beings. The claim more precisely is that as a consequence of the incompleteness theorems, those potentialities cannot be exactly circumscribed by the output of any computing machine even allowing unlimited time and space for its work. The chapter concludes with some new considerations that may be in favour of a partial mechanist account of the mathematical mind. (shrink)
A resolution to the Russell Paradox is presented that is similar to Russell's “theory of types” method but is instead based on the definition of why a thing exists as described in previous work by this author. In that work, it was proposed that a thing exists if it is a grouping tying "stuff" together into a new unit whole. In tying stuff together, this grouping defines what is contained within the new existent entity. A corollary is that a thing, (...) such as a set, does not exist until after the stuff is tied together, or said another way, until what is contained within is completely defined. A second corollary is that after a grouping defining what is contained within is present and the thing exists, if one then alters what is tied together (e.g., alters what is contained within), the first existent entity is destroyed and a different existent entity is created. A third corollary is that a thing exists only where and when its grouping exists. Based on this, the Russell Paradox's set R of all sets that aren't members of themselves does not even exist until after the list of the elements it contains (e.g. the list of all sets that aren't members of themselves) is defined. Once this list of elements is completely defined, R then springs into existence. Therefore, because it doesn't exist until after its list of elements is defined, R obviously can't be in this list of elements and, thus, cannot be a member of itself; so, the paradox is resolved. This same type of reasoning is then applied to Godel's first Incompleteness Theorem. Briefly, while writing a Godel Sentence, one makes reference to a future, not yet completed and not yet existent sentence, G, that claims its unprovability. However, only once the sentence is finished does it become a new unit whole and existent entity called sentence G. If one then goes back in and replaces the reference to the future sentence with the future sentence itself, a totally different sentence, G1, is created. This new sentence G1 does not assert its unprovability. An objection might be that all the possibly infinite number of possible G-type sentences or their corresponding Godel numbers already exist somehow, so one doesn't have to worry about references to future sentences and springing into existence. But, if so, where do they exist? If they exist in a Platonic realm, where is this realm? If they exist pre-formed in the mind, this would seem to require a possibly infinite-sized brain to hold all these sentences. This is not the case. What does exist in the mind is the system for creating G-type sentences and their corresponding numbers. This mental system for making a G-type sentence is not the same as the G-type sentence itself just as an assembly line is not the same as a finished car. In conclusion, a new resolution of the Russell Paradox and some issues with proofs of Godel's First Incompleteness Theorem are described. (shrink)
Textbook on Gödel’s incompleteness theorems and computability theory, based on the Open Logic Project. Covers recursive function theory, arithmetization of syntax, the first and second incompleteness theorem, models of arithmetic, second-order logic, and the lambda calculus.
In this article, a possible generalization of the Löb’s theorem is considered. Main result is: let κ be an inaccessible cardinal, then ¬Con( ZFC +∃κ) .
Recent attention to "self-consistent" (Rosser-style) systems raises anew the question of the proper interpretation of the Gödel Second Incompleteness Theorem and its effect on Hilbert's Program. The traditional rendering and consequence is defended with new arguments justifying the intensional correctness of the derivability conditions.
In this contribution an attempt is made to analyze an important mathematical discovery, the theorem of Gödel, and to explore the possible impact on the consistency of metaphysical systems. It is shown that mathematics is a pointer to a reality that is not exclusively subjected to physical laws. As the Gödel theorem deals with pure mathematics, the philosopher as such can not decide on the rightness of this theorem. What he, instead can do, is evaluating the general (...) acceptance of this mathematical finding and reflect on the consistency between consequences of the mathematical theorem with consequences of his metaphysical view. The findings of three mathematicians are involved in the argumentation: first Gödel himself, then the further elaboration by Turing and finally the consequences for the human mind as worked out by Penrose. As a result one is encouraged to distinguish two different types of intellectual activity in mathematics, which both can be carried out by humans. The astonishing thing is not the distinction between a formalized, logic approach on the one side and intuition, mathematical insight and meaning on the other. Philosophically challenging, however, is the claim that principally only one of these intellectual activities can be carried out by objects exclusively bound to the laws of physical reality. (shrink)
In §8 of Remarks on the Foundations of Mathematics (RFM), Appendix 3 Wittgenstein imagines what conclusions would have to be drawn if the Gödel formula P or ¬P would be derivable in PM. In this case, he says, one has to conclude that the interpretation of P as “P is unprovable” must be given up. This “notorious paragraph” has heated up a debate on whether the point Wittgenstein has to make is one of “great philosophical interest” revealing “remarkable insight” in (...) Gödel’s proof, as Floyd and Putnam suggest (Floyd (2000), Floyd (2001)), or whether this remark reveals Wittgenstein’s misunderstanding of Gödel’s proof as Rodych and Steiner argued for recently (Rodych (1999, 2002, 2003), Steiner (2001)). In the following the arguments of both interpretations will be sketched and some deficiencies will be identified. Afterwards a detailed reconstruction of Wittgenstein’s argument will be offered. It will be seen that Wittgenstein’s argumentation is meant to be a rejection of Gödel’s proof but that it cannot satisfy this pretension. (shrink)
Can the so-ca\led first incompleteness theorem refer to itself? Many or maybe even all the paradoxes in mathematics are connected with some kind of self-reference. Gбdel built his proof on the ground of self-reference: а statement which claims its unprovabllity. So, he demonstrated that undecidaЬle propositions exist in any enough rich axiomatics (i.e. such one which contains Peano arithmetic in some sense). What about the decidabllity of the very first incompleteness theorem? We can display that it fulfills its (...) conditions. That's why it can Ье applied to itself, proving that it is an undecidaЬle statement. It seems to Ье а too strange kind of proposition: its validity implies its undecidabllity. If the validity of а statement implies its untruth, then it is either untruth (reductio ad absurdum) or an antinomy (if also its negation implies its validity). А theory that contains а contradiction implies any statement. Appearing of а proposition, whose validity implies its undecidabllity, is due to the statement that claims its unprovability. Obviously, it is а proposition of self-referential type. Ву Gбdel's words, it is correlative with Richard's or liar paradox, or even with any other semantic or mathematical one. What is the cost, if а proposition of that special kind is used in а proof? ln our opinion, the price is analogous to «applying» of а contradictory in а theory: any statement turns out to Ье undecidaЬ!e. Ifthe first incompleteness theorem is an undecidaЬ!e theorem, then it is impossiЬle to prove that the very completeness of Peano arithmetic is also an tmdecidaЬle statement (the second incompleteness theorem). Hilbert's program for ап arithmetical self-foundation of matheшatics is partly rehabllitated: only partly, because it is not decidaЬ!e and true, but undecidaЬle; that's wby both it and its negation шау Ье accepted as true, however not siшultaneously true. The first incompleteness theoreш gains the statute of axiom of а very special, semi-philosophical kind: it divides mathematics as whole into two parts: either Godel шathematics or Нilbert matheшatics. Нilbert's program of self-foundation ofmatheшatic is valid only as to the latter. (shrink)
Evolutionary Debunking Arguments are defined as arguments that appeal to the evolutionary genealogy of our beliefs to undermine their justification. Recently, Helen De Cruz and her co-authors supported the view that EDAs are self-defeating: if EDAs claim that human arguments are not justified, because the evolutionary origin of the beliefs which figure in such arguments undermines those beliefs, and EDAs themselves are human arguments, then EDAs are not justified, and we should not accept their conclusions about the fact that human (...) arguments are unjustified. De Cruz's objection to EDAs is similar to the objection raised by Reuben Hersh against the claim that, since by Gödel's second incompleteness theorem the purpose of mathematical logic to give a secure foundation for mathematics cannot be achieved, mathematics cannot be said to be absolutely certain. The response given by Carlo Cellucci to Hersh's objection shows that the claim that by Gödel's results mathematics cannot be said to be absolutely certain is not self-defeating, and can be adopted to show that EDAs are not self-defeating as well in a twofold sense: an argument analogous to Cellucci's one may be developed to face De Cruz's objection, and such argument may be further refined incorporating Cellucci's response itself in it, to make it stronger. This paper aims at showing that the accusation of being self-defeating moved against EDAs is inadequate by elaborating an argument which can be considered an EDA and which can also be shown not to be self-defeating. (shrink)
A Husserlian phenomenological approach to logic treats concepts in terms of their experiential meaning rather than in terms of reference, sets of individuals, and sentences. The present article applies such an approach in turn to the reasoning operative in various paradoxes: the simple Liar, the complex Liar paradoxes, the Grelling-type paradoxes, and Gödel’s Theorem. It finds that in each case a meaningless statement, one generated by circular definition, is treated as if were meaningful, and consequently as either true or (...) false, although in fact it is neither. The situation is further complicated by the fact that the sentence used to express the meaningless statement is ambiguous, and may also be used to express a meaningful statement. The paradoxes result from a failure to distinguish between the two meanings the sentence may have. (shrink)
This chapter describes Kurt Gödel's paper on the incompleteness theorems. Gödel's incompleteness results are two of the most fundamental and important contributions to logic and the foundations of mathematics. It had been assumed that first-order number theory is complete in the sense that any sentence in the language of number theory would be either provable from the axioms or refutable. Gödel's first incompleteness theorem showed that this assumption was false: it states that there are sentences of number theory that (...) are neither provable nor refutable. The first theorem is general in the sense that it applies to any axiomatic theory, which is ω-consistent, has an effective proof procedure, and is strong enough to represent basic arithmetic. Their importance lies in their generality: although proved specifically for extensions of system, the method Gödel used is applicable in a wide variety of circumstances. Gödel's results had a profound influence on the further development of the foundations of mathematics. It pointed the way to a reconceptualization of the view of axiomatic foundations. (shrink)
Those incompleteness theorems mean the relation of (Peano) arithmetic and (ZFC) set theory, or philosophically, the relation of arithmetical finiteness and actual infinity. The same is managed in the framework of set theory by the axiom of choice (respectively, by the equivalent well-ordering "theorem'). One may discuss that incompleteness form the viewpoint of set theory by the axiom of choice rather than the usual viewpoint meant in the proof of theorems. The logical corollaries from that "nonstandard" viewpoint the relation (...) of set theory and arithmetic are demonstrated. (shrink)
An interpretation of Wittgenstein’s much criticized remarks on Gödel’s First Incompleteness Theorem is provided in the light of paraconsistent arithmetic: in taking Gödel’s proof as a paradoxical derivation, Wittgenstein was drawing the consequences of his deliberate rejection of the standard distinction between theory and metatheory. The reasoning behind the proof of the truth of the Gödel sentence is then performed within the formal system itself, which turns out to be inconsistent. It is shown that the features of paraconsistent arithmetics (...) match with some intuitions underlying Wittgenstein’s philosophy of mathematics, such as its strict finitism and the insistence on the decidability of any mathematical question. (shrink)
One of the most fundamental questions in the philosophy of mathematics concerns the relation between truth and formal proof. The position according to which the two concepts are the same is called deflationism, and the opposing viewpoint substantialism. In an important result of mathematical logic, Kurt Gödel proved in his first incompleteness theorem that all consistent formal systems containing arithmetic include sentences that can neither be proved nor disproved within that system. However, such undecidable Gödel sentences can be established (...) to be true once we expand the formal system with Alfred Tarski s semantical theory of truth, as shown by Stewart Shapiro and Jeffrey Ketland in their semantical arguments for the substantiality of truth. According to them, in Gödel sentences we have an explicit case of true but unprovable sentences, and hence deflationism is refuted. -/- Against that, Neil Tennant has shown that instead of Tarskian truth we can expand the formal system with a soundness principle, according to which all provable sentences are assertable, and the assertability of Gödel sentences follows. This way, the relevant question is not whether we can establish the truth of Gödel sentences, but whether Tarskian truth is a more plausible expansion than a soundness principle. In this work I will argue that this problem is best approached once we think of mathematics as the full human phenomenon, and not just consisting of formal systems. When pre-formal mathematical thinking is included in our account, we see that Tarskian truth is in fact not an expansion at all. I claim that what proof is to formal mathematics, truth is to pre-formal thinking, and the Tarskian account of semantical truth mirrors this relation accurately. -/- However, the introduction of pre-formal mathematics is vulnerable to the deflationist counterargument that while existing in practice, pre-formal thinking could still be philosophically superfluous if it does not refer to anything objective. Against this, I argue that all truly deflationist philosophical theories lead to arbitrariness of mathematics. In all other philosophical accounts of mathematics there is room for a reference of the pre-formal mathematics, and the expansion of Tarkian truth can be made naturally. Hence, if we reject the arbitrariness of mathematics, I argue in this work, we must accept the substantiality of truth. Related subjects such as neo-Fregeanism will also be covered, and shown not to change the need for Tarskian truth. -/- The only remaining route for the deflationist is to change the underlying logic so that our formal languages can include their own truth predicates, which Tarski showed to be impossible for classical first-order languages. With such logics we would have no need to expand the formal systems, and the above argument would fail. From the alternative approaches, in this work I focus mostly on the Independence Friendly (IF) logic of Jaakko Hintikka and Gabriel Sandu. Hintikka has claimed that an IF language can include its own adequate truth predicate. I argue that while this is indeed the case, we cannot recognize the truth predicate as such within the same IF language, and the need for Tarskian truth remains. In addition to IF logic, also second-order logic and Saul Kripke s approach using Kleenean logic will be shown to fail in a similar fashion. (shrink)
Introduction to mathematical logic, part 2.Textbook for students in mathematical logic and foundations of mathematics. Platonism, Intuition, Formalism. Axiomatic set theory. Around the Continuum Problem. Axiom of Determinacy. Large Cardinal Axioms. Ackermann's Set Theory. First order arithmetic. Hilbert's 10th problem. Incompleteness theorems. Consequences. Connected results: double incompleteness theorem, unsolvability of reasoning, theorem on the size of proofs, diophantine incompleteness, Loeb's theorem, consistent universal statements are provable, Berry's paradox, incompleteness and Chaitin's theorem. Around Ramsey's theorem.
On a few occasions F.A. Hayek made reference to the famous Gödel theorems in mathematical logic in the context of expounding his cognitive and social theory. The exact meaning of the supposed relationship between Gödel's theorems and the essential proposition of Hayek's theory of mind remains subject to interpretation, however. The author of this article argues that the relationship between Hayek's thesis that the human brain can never fully explain itself and the essential insight provided by Gödel's theorems in mathematical (...) logic has the character of an analogy, or a metaphor. Furthermore the anti-mechanistic interpretation of Hayek's theory of mind is revealed as highly questionable. Implications for the Socialist Calculation Debate are highlighted. It is in particular concluded that Hayek's arguments for methodological dualism, when compared with those of Ludwig von Mises, actually amount to a strengthening of the case for methodological dualism. (shrink)
Representation theorems are often taken to provide the foundations for decision theory. First, they are taken to characterize degrees of belief and utilities. Second, they are taken to justify two fundamental rules of rationality: that we should have probabilistic degrees of belief and that we should act as expected utility maximizers. We argue that representation theorems cannot serve either of these foundational purposes, and that recent attempts to defend the foundational importance of representation theorems are unsuccessful. As a result, (...) we should reject these claims, and lay the foundations of decision theory on firmer ground. (shrink)
On the heels of Franzén's fine technical exposition of Gödel's incompleteness theorems and related topics (Franzén 2004) comes this survey of the incompleteness theorems aimed at a general audience. Gödel's Theorem: An Incomplete Guide to its Use and Abuse is an extended and self-contained exposition of the incompleteness theorems and a discussion of what informal consequences can, and in particular cannot, be drawn from them.
In his recent article Christopher Gauker (2001) has presented a thoughtprovoking argument against deﬂationist theories of truth. More exactly, he attacks what he calls ‘T-schema deﬂationism’, that is, the claim that a theory of truth can simply take the form of certain instances of the T-schema.
Although Kurt Gödel does not figure prominently in the history of computabilty theory, he exerted a significant influence on some of the founders of the field, both through his published work and through personal interaction. In particular, Gödel’s 1931 paper on incompleteness and the methods developed therein were important for the early development of recursive function theory and the lambda calculus at the hands of Church, Kleene, and Rosser. Church and his students studied Gödel 1931, and Gödel taught a seminar (...) at Princeton in 1934. Seen in the historical context, Gödel was an important catalyst for the emergence of computability theory in the mid 1930s. (shrink)
In response to recent work on the aggregation of individual judgments on logically connected propositions into collective judgments, it is often asked whether judgment aggregation is a special case of Arrowian preference aggregation. We argue for the converse claim. After proving two impossibility theorems on judgment aggregation (using "systematicity" and "independence" conditions, respectively), we construct an embedding of preference aggregation into judgment aggregation and prove Arrow’s theorem (stated for strict preferences) as a corollary of our second result. Although (...) we thereby provide a new proof of Arrow’s theorem, our main aim is to identify the analogue of Arrow’s theorem in judgment aggregation, to clarify the relation between judgment and preference aggregation, and to illustrate the generality of the judgment aggregation model. JEL Classi…cation: D70, D71.. (shrink)
Peano arithmetic cannot serve as the ground of mathematics for it is inconsistent to infinity, and infinity is necessary for its foundation. Though Peano arithmetic cannot be complemented by any axiom of infinity, there exists at least one (logical) axiomatics consistent to infinity. That is nothing else than a new reading at issue and comparative interpretation of Gödel’s papers (1930; 1931) meant here. Peano arithmetic admits anyway generalizations consistent to infinity and thus to some addable axiom(s) of infinity. The most (...) utilized example of those generalizations is the complex Hilbert space. Any generalization of Peano arithmetic consistent to infinity, e.g. the complex Hilbert space, can serve as a foundation for mathematics to found itself and by itself. (shrink)
Lipsey and Lancaster's "general theory of second best" is widely thought to have significant implications for applied theorizing about the institutions and policies that most effectively implement abstract normative principles. It is also widely thought to have little significance for theorizing about which abstract normative principles we ought to implement. Contrary to this conventional wisdom, I show how the second-best theorem can be extended to myriad domains beyond applied normative theorizing, and in particular to more abstract theorizing (...) about the normative principles we should aim to implement. I start by separating the mathematical model used to prove the second-best theorem from its familiar economic interpretation. I then develop an alternative normative-theoretic interpretation of the model, which yields a novel second best theorem for idealistic normative theory. My method for developing this interpretation provides a template for developing additional interpretations that can extend the reach of the second-best theorem beyond normative theoretical domains. I also show how, within any domain, the implications of the second-best theorem are more specific than is typically thought. I conclude with some brief remarks on the value of mathematical models for conceptual exploration. (shrink)
Hilbert’s program was an ambitious and wide-ranging project in the philosophy and foundations of mathematics. In order to “dispose of the foundational questions in mathematics once and for all,” Hilbert proposed a two-pronged approach in 1921: first, classical mathematics should be formalized in axiomatic systems; second, using only restricted, “finitary” means, one should give proofs of the consistency of these axiomatic systems. Although Gödel’s incompleteness theorems show that the program as originally conceived cannot be carried out, it had many (...) partial successes, and generated important advances in logical theory and metatheory, both at the time and since. The article discusses the historical background and development of Hilbert’s program, its philosophical underpinnings and consequences, and its subsequent development and influences since the 1930s. (shrink)
In his "Ontological proof", Kurt Gödel introduces the notion of a second-order value property, the positive property P. The second axiom of the proof states that for any property φ: If φ is positive, its negation is not positive, and vice versa. I put forward that this concept of positiveness leads into a paradox when we apply it to the following self-reflexive sentences: (A) The truth value of A is not positive; (B) The truth value of B is (...) positive. Given axiom 2, sentences A and B paradoxically cannot be both true or both false, and it is also impossible that one of the sentences is true whereas the other is false. (shrink)
The book is devoted to the contemporary stage of quantum mechanics – quantum information, and especially to its philosophical interpretation and comprehension: the first one of a series monographs about the philosophy of quantum information. The second will consider Be l l ’ s inequalities, their modified variants and similar to them relations. The beginning of quantum information was in the thirties of the last century. Its speed development has started over the last two decades. The main phenomenon is (...) entanglement. The subareas are quantum computer, quantum communication (and teleportation), and quantum cryptography. The book offers the following main conceptions, theses and hypotheses: – dualistic Phythagoreanism as a new kind among the interpretations of quantum mechanics and information: arithmetical, logical, and metamathematical one; – Gödel ’ s first incompleteness theorem is an undecidable proposition, and consequently the second one,too. – a partial rehabilitation of Hilbert ’ s program for the self-foundation of mathematics; – the dual-foundation of mathematics; – Skolemian relativity between: Cantor ’s kinds of infinity, finiteness and infinity, discreteness and continuity, completeness and incompleteness, etc.; – information is a physical quantity representing the non-reducibility of a system to its parts, particularly nonaddtivity; – there exist pure relations «by itself», which cannot be reduced to predications; – energy conservation can and should be generalized; – Einstein’ s «general covariance» or «principle of relativity» can and should be generalized to cover discrete morphisms where the notion of velocity does not make sense. (shrink)
In this paper Lucas suggests that many of his critics have not read carefully neither his exposition nor Penrose’s one, so they seek to refute arguments they never proposed. Therefore he offers a brief history of the Gödelian argument put forward by Gödel, Penrose and Lucas itself: Gödel argued indeed that either mathematics is incompletable – that is axioms can never be comprised in a finite rule and so human mind surpasses the power of any finite machine – or there (...) exist absolutely unsolvable diophantine problems, and he suggest that the second disjunct is untenable; on the other side, Penrose proposed an argument similar to Lucas’ one but making use of Turing’s theorem. Finally Lucas exposes again his argument and considers some of the most important objections to it. (shrink)
“Slingshot Arguments” are a family of arguments underlying the Fregean view that if sentences have reference at all, their references are their truth-values. Usually seen as a kind of collapsing argument, the slingshot consists in proving that, once you suppose that there are some items that are references of sentences (as facts or situations, for example), these items collapse into just two items: The True and The False. This dissertation treats of the slingshot dubbed “Gödel’s slingshot”. Gödel argued that there (...) is a deep connection between these arguments and definite descriptions. More precisely, according to Gödel, if one adopts Russell’s interpretation of definite descriptions (which clashes with Frege’s view that definite descriptions are singular terms), it is possible to evade the slingshot. We challenge Gödel’s view in two manners, first by presenting a slingshot even with a Russellian interpretation of definite descriptions and second by presenting a slingshot even when we change from singular terms to plural terms in the light of new developments of the so-called Plural Logic. The text is divided in three chapters, in the first, we present the discussion between Russell and Frege regarding definite descriptions, in the second, we present Gödel’s position and reconstructions of Gödel’s argument and in the third we prove our slingshot argument for Plural Logic. In light of these results we conclude that we can maintain the validity of slingshot arguments even within a Russellian interpretation of definite descriptions or in the context of Plural Logic. (shrink)
REVIEW OF: Automated Development of Fundamental Mathematical Theories by Art Quaife. (1992: Kluwer Academic Publishers) 271pp. Using the theorem prover OTTER Art Quaife has proved four hundred theorems of von Neumann-Bernays-Gödel set theory; twelve hundred theorems and definitions of elementary number theory; dozens of Euclidean geometry theorems; and Gödel's incompleteness theorems. It is an impressive achievement. To gauge its significance and to see what prospects it offers this review looks closely at the book and the proofs it presents.
It has been known for a few years that no more than Pi-1-1 comprehension is needed for the proof of "Frege's Theorem". One can at least imagine a view that would regard Pi-1-1 comprehension axioms as logical truths but deny that status to any that are more complex—a view that would, in particular, deny that full second-order logic deserves the name. Such a view would serve the purposes of neo-logicists. It is, in fact, no part of my view (...) that, say, Delta-3-1 comprehension axioms are not logical truths. What I am going to suggest, however, is that there is a special case to be made on behalf of Pi-1-1 comprehension. Making the case involves investigating extensions of first-order logic that do not rely upon the presence of second-order quantifiers. A formal system for so-called "ancestral logic" is developed, and it is then extended to yield what I call "Arché logic". (shrink)
In this article we proved so-called strong reflection principles corresponding to formal theories Th which has omega-models or nonstandard model with standard part. An posible generalization of Lob’s theorem is considered.Main results are: (i) ConZFC Mst ZFC, (ii) ConZF V L, (iii) ConNF Mst NF, (iv) ConZFC2, (v) let k be inaccessible cardinal then ConZFC .
In the 1951 Gibbs lecture, Gödel asserted his famous dichotomy, where the notion of informal proof is at work. G. Priest developed an argument, grounded on the notion of naïve proof, to the effect that Gödel’s first incompleteness theorem suggests the presence of dialetheias. In this paper, we adopt a plausible ideal notion of naïve proof, in agreement with Gödel’s conception, superseding the criticisms against the usual notion of naïve proof used by real working mathematicians. We explore the connection (...) between Gödel’s theorem and naïve proof so understood, both from a classical and a dialetheic perspective. (shrink)
It is commonly thought that such topics as Impossibility, Incompleteness, Paraconsistency, Undecidability, Randomness, Computability, Paradox, Uncertainty and the Limits of Reason are disparate scientific physical or mathematical issues having little or nothing in common. I suggest that they are largely standard philosophical problems (i.e., language games) which were resolved by Wittgenstein over 80 years ago. -/- Wittgenstein also demonstrated the fatal error in regarding mathematics or language or our behavior in general as a unitary coherent logical ‘system,’ rather than as (...) a motley of pieces assembled by the random processes of natural selection. “Gödel shows us an unclarity in the concept of ‘mathematics’, which is indicated by the fact that mathematics is taken to be a system” and we can say (contra nearly everyone) that is all that Gödel and Chaitin show. Wittgenstein commented many times that ‘truth’ in math means axioms or the theorems derived from axioms, and ‘false’ means that one made a mistake in using the definitions, and this is utterly different from empirical matters where one applies a test. Wittgenstein often noted that to be acceptable as mathematics in the usual sense, it must be useable in other proofs and it must have real world applications, but neither is the case with Godel’s Incompleteness. Since it cannot be proved in a consistent system (here Peano Arithmetic but a much wider arena for Chaitin), it cannot be used in proofs and, unlike all the ‘rest’ of PA it cannot be used in the real world either. As Rodych notes “…Wittgenstein holds that a formal calculus is only a mathematical calculus (i.e., a mathematical language-game) if it has an extra- systemic application in a system of contingent propositions (e.g., in ordinary counting and measuring or in physics) …” Another way to say this is that one needs a warrant to apply our normal use of words like ‘proof’, ‘proposition’, ‘true’, ‘incomplete’, ‘number’, and ‘mathematics’ to a result in the tangle of games created with ‘numbers’ and ‘plus’ and ‘minus’ signs etc., and with -/- ‘Incompleteness’ this warrant is lacking. Rodych sums it up admirably. “On Wittgenstein’s account, there is no such thing as an incomplete mathematical calculus because ‘in mathematics, everything is algorithm [and syntax] and nothing is meaning [semantics]…” -/- I make some brief remarks which note the similarities of these ‘mathematical’ issues to economics, physics, game theory, and decision theory. -/- Those wishing further comments on philosophy and science from a Wittgensteinian two systems of thought viewpoint may consult my other writings -- Talking Monkeys--Philosophy, Psychology, Science, Religion and Politics on a Doomed Planet--Articles and Reviews 2006-2019 3rd ed (2019), The Logical Structure of Philosophy, Psychology, Mind and Language in Ludwig Wittgenstein and John Searle 2nd ed (2019), Suicide by Democracy 4th ed (2019), The Logical Structure of Human Behavior (2019), The Logical Structure of Consciousness (2019, Understanding the Connections between Science, Philosophy, Psychology, Religion, Politics, and Economics and Suicidal Utopian Delusions in the 21st Century 5th ed (2019), Remarks on Impossibility, Incompleteness, Paraconsistency, Undecidability, Randomness, Computability, Paradox, Uncertainty and the Limits of Reason in Chaitin, Wittgenstein, Hofstadter, Wolpert, Doria, da Costa, Godel, Searle, Rodych, Berto, Floyd, Moyal-Sharrock and Yanofsky (2019), and The Logical Structure of Philosophy, Psychology, Sociology, Anthropology, Religion, Politics, Economics, Literature and History (2019). (shrink)
In this article, it is argued that, given an initial uncertainty in the state of a system, the information possessed about the system, by any given observer, tend to decrease exponentially until there is none left. By linking the subjective, i.e. observer dependent, concepts of information and entropy, the statement of information decrease represent an alternative formulation of the second law of thermodynamics. With this reformulation, the connection between the foundations of statistical mechanics and classical mechanics is clarified. In (...) conclusion, it is argued that concepts such as probability, ergodicity, entropy, as well as the arrow of time, arise naturally as a consequence of the Gibbs-Liouville theorem in combination with the fact that any given observer of a system do not possess infinite knowledge about the initial conditions of the system. (shrink)
My aim in this paper is to explain what Condorcet’s jury theorem is, and to examine its central assumptions, its significance to the epistemic theory of democracy and its connection with Rousseau’s theory of general will. In the first part of the paper I will analyze an epistemic theory of democracy and explain how its connection with Condorcet’s jury theorem is twofold: the theorem is at the same time a contributing historical source, and the model used by (...) the authors to this day. In the second part I will specify the purposes of the theorem itself, and examine its underlying assumptions. Third part will be about an interpretation of Rousseau’s theory, which is given by Grofman and Feld relying on Condorcet’s jury theorem, and about criticisms of such interpretation. In the fourth, and last, part I will focus on one particular assumption of Condorcet’s theorem, which proves to be especially problematic if we would like to apply the theorem under real-life conditions; namely, the assumption that voters choose between two options only. (shrink)
Both Tarski and Gödel “prove” that provability can diverge from Truth. When we boil their claim down to its simplest possible essence it is really claiming that valid inference from true premises might not always derive a true consequence. This is obviously impossible.
Gödel's incompleteness theorems establish the stunning result that mathematics cannot be fully formalized and, further, that any formal system containing a modicum of number or set theory cannot establish its own consistency. Wilfried Sieg and Clinton Field, in their paper Automated Search for Gödel's Proofs, presented automated proofs of Gödel's theorems at an abstract axiomatic level; they used an appropriate expansion of the strategic considerations that guide the search of the automated theorem prover AProS. The representability conditions that allow (...) the syntactic notions of the metalanguage to be represented inside the object language were taken as axioms in the automated proofs. The concrete task I am taking on in this project is to extend the search by formally verifying these conditions. Using a formal metatheory defined in the language of binary trees, the syntactic objects of the metatheory lend themselves naturally to a direct encoding in Zermelo's theory of sets. The metatheoretic notions can then be inductively defined and shown to be representable in the object-theory using appropriate inductive arguments. Formal verification of the representability conditions is the first step towards an automated proof thereof which, in turn, brings the automated verification of Gödel's theorems one step closer to completion. (shrink)
A metaphysical system engendered by a third order quantified modal logic S5 plus impredicative comprehension principles is used to isolate a third order predicate D, and by being able to impredicatively take a second order predicate G to hold of an individual just if the individual necessarily has all second order properties which are D we in Section 2 derive the thesis (40) that all properties are D or some individual is G. In Section 3 theorems 1 to (...) 3 suggest a sufficient kinship to Gödelian ontological arguments so as to think of thesis (40) in terms of divine property and Godly being; divine replaces positive with Gödel and others. Thesis (40), the sacred thesis, supports the ontological argument that God exists because some property is not divine. In Section 4 a fixed point analysis is used as diagnosis so that atheists may settle for the minimal fixed point. Theorem 3 shows it consistent to postulate theistic fixed points, and a monotheistic result follows if one assumes theism and that it is divine to be identical with a deity. Theorem 4 (the Monotheorem) states that if Gg and it is divine to be identical with g, then necessarily all objects which are G are identical with g. The impredicative origin of D suggests weakened Gaunilo-like objections that offer related theses for other second order properties and their associated diverse presumptive individual bearers. Nevertheless, in the last section we finesse these Gaunilo-like objections by adopting what we call an apathiatheistic opinion which suggest that the best concepts `God’ allow thorough indifference as to whether God exists or not. (shrink)
In "Godel es Way" diskutieren drei namhafte Wissenschaftler Themen wie Unentschlossenheit, Unvollständigkeit, Zufälligkeit, Berechenbarkeit und Parakonsistenz. Ich gehe diese Fragen aus Wittgensteiner Sicht an, dass es zwei grundlegende Fragen gibt, die völlig unterschiedliche Lösungen haben. Es gibt die wissenschaftlichen oder empirischen Fragen, die Fakten über die Welt sind, die beobachtungs- und philosophische Fragen untersuchen müssen, wie Sprache verständlich verwendet werden kann (die bestimmte Fragen in Mathematik und Logik beinhalten), die entschieden werden müssen, indem man sich anschaut,wie wir Wörter in (...) bestimmten Kontexten tatsächlich verwenden. Wenn wir klar werden, welches Sprachspiel wir spielen, werden diese Themen als gewöhnliche wissenschaftliche und mathematische Fragen angesehen, wie alle anderen auch. Wittgensteins Einsichten wurden selten übertroffen und sind heute so treffend wie vor 80 Jahren, als er die Blauen und Braunen Bücher diktierte. Trotz seiner Versäumnisse – wirklich eine Reihe von Notizen statt eines fertigen Buches – ist dies eine einzigartige Quelle für die Arbeit dieser drei berühmten Gelehrten, die seit über einem halben Jahrhundert an den blutenden Rändern von Physik, Mathematik und Philosophie arbeiten. Da Costa und Doria werden von Wolpert zitiert (siehe unten oder meine Artikel über Wolpert und meine Rezension von Yanofskys 'The Outer Limits of Reason'), da sie auf universelle Berechnung schrieben,, und unter seinen vielen Errungenschaften ist Da Costa ein Pionier in Parakonsistenz. Wer aus der modernen zweisystems-Sichteinen umfassenden, aktuellen Rahmen für menschliches Verhalten wünscht, kann mein Buch "The Logical Structure of Philosophy, Psychology, Mindand Language in Ludwig Wittgenstein and John Searle' 2nd ed (2019) konsultieren. Diejenigen,die sich für mehr meiner Schriften interessieren, können 'Talking Monkeys--Philosophie, Psychologie, Wissenschaft, Religion und Politik auf einem verdammten Planeten --Artikel und Rezensionen 2006-2019 3rd ed (2019) und Suicidal Utopian Delusions in the 21st Century 4th ed (2019) und andere sehen. (shrink)
We extend the framework of Inductive Logic to Second Order languages and introduce Wilmers' Principle, a rational principle for probability functions on Second Order languages. We derive a representation theorem for functions satisfying this principle and investigate its relationship to the first order principles of Regularity and Super Regularity.
We note that a plural version of logicism about arithmetic is suggested by the standard reading of Hume's Principle in terms of `the number of Fs/Gs'. We lay out the resources needed to prove a version of Frege's principle in plural, rather than second-order, logic. We sketch a proof of the theorem and comment philosophically on the result, which sits well with a metaphysics of natural numbers as plural properties.
We argue that, under the usual assumptions for sufficiently strong arithmetical theories that are subject to Gödel’s First Incompleteness Theorem, one cannot, without impropriety, talk about *the* Gödel sentence of the theory. The reason is that, without violating the requirements of Gödel’s theorem, there could be a true sentence and a false one each of which is provably equivalent to its own unprovability in the theory if the theory is unsound.
I have read many recent discussions of the limits of computation and the universe as computer, hoping to find some comments on the amazing work of polymath physicist and decision theorist David Wolpert but have not found a single citation and so I present this very brief summary. Wolpert proved some stunning impossibility or incompleteness theorems (1992 to 2008-see arxiv.org) on the limits to inference (computation) that are so general they are independent of the device doing the computation, and even (...) independent of the laws of physics, so they apply across computers, physics, and human behavior. They make use of Cantor's diagonalization, the liar paradox and worldlines to provide what may be the ultimate theorem in Turing Machine Theory, and seemingly provide insights into impossibility, incompleteness, the limits of computation,and the universe as computer, in all possible universes and all beings or mechanisms, generating, among other things,a non- quantum mechanical uncertainty principle and a proof of monotheism. There are obvious connections to the classic work of Chaitin, Solomonoff, Komolgarov and Wittgenstein and to the notion that no program (and thus no device) can generate a sequence (or device) with greater complexity than it possesses. One might say this body of work implies atheism since there cannot be any entity more complex than the physical universe and from the Wittgensteinian viewpoint, ‘more complex’ is meaningless (has no conditions of satisfaction, i.e., truth-maker or test). Even a ‘God’ (i.e., a ‘device’ with limitless time/space and energy) cannot determine whether a given ‘number’ is ‘random’ nor can find a certain way to show that a given ‘formula’, ‘theorem’ or ‘sentence’ or ‘device’ (all these being complex language games) is part of a particular ‘system’. -/- Those wishing a comprehensive up to date framework for human behavior from the modern two systems view may consult my article The Logical Structure of Philosophy, Psychology, Mind and Language as Revealed in Wittgenstein and Searle 59p(2016). For all my articles on Wittgenstein and Searle see my e-book ‘The Logical Structure of Philosophy, Psychology, Mind and Language in Wittgenstein and Searle 367p (2016). Those interested in all my writings in their most recent versions may consult my e-book Philosophy, Human Nature and the Collapse of Civilization - Articles and Reviews 2006-2016’ 662p (2016). -/- All of my papers and books have now been published in revised versions both in ebooks and in printed books. -/- Talking Monkeys: Philosophy, Psychology, Science, Religion and Politics on a Doomed Planet - Articles and Reviews 2006-2017 (2017) https://www.amazon.com/dp/B071HVC7YP. -/- The Logical Structure of Philosophy, Psychology, Mind and Language in Ludwig Wittgenstein and John Searle--Articles and Reviews 2006-2016 (2017) https://www.amazon.com/dp/B071P1RP1B. -/- Suicidal Utopian Delusions in the 21st century: Philosophy, Human Nature and the Collapse of Civilization - Articles and Reviews 2006-2017 (2017) https://www.amazon.com/dp/B0711R5LGX . (shrink)
The aim of this essay is twofold. First, it outlines the concept of ontological frame. Secondly, two models are distinguished on this structure. The first one is connected to Kant’s concept of possible object and the second one relates to Leibniz’s. Leibniz maintains that the source of possibility is the mere logical consistency of the notions involved, so that possibility coincides with analytical possibility. Kant, instead, argues that consistency is only a necessary component of possibility. According to Kant, something (...) is possible if there is a cause capable of bringing it into existence; to this end consistency alone is not sufficient. Thus, while the Leibnizian notion of consistency is at the root of the concept of analytical possibility, the Kantian notion of possibility is the source of real possibility. This difference plays an important role in the discussion of Gödel’s ontological proof, which can be formally interpreted on the ontological frame of the pure perfections. While this proof, under some emendation condition, is conclusive in the context of Leibniz’s ontological model, it is not so within the Kantian one. This issue will be the subject of the second part of the present essay. (shrink)
J’ai lu de nombreuses discussions récentes sur les limites du calcul et de l’univers en tant qu’ordinateur, dans l’espoir de trouver quelques commentaires sur le travail étonnant du physicien polymathe et théoricien de la décision David Wolpert, mais n’ont pas trouvé une seule citation et je présente donc ce résumé très bref. Wolpert s’est avéré quelques théoricaux d’impossibilité ou d’incomplétude renversants (1992 à 2008-voir arxiv dot org) sur les limites de l’inférence (computation) qui sont si généraux qu’ils sont indépendants de (...) l’appareil faisant le calcul, et même indépendamment des lois de la physique, ainsi ils s’appliquent à travers les ordinateurs, la physique, et le comportement humain. Ils utilisent la diagonalisation de Cantor, le paradoxe menteur et les worldlines (lignes du monde) pour fournir ce qui peut être le théorème ultime dans Turing Machine Theory, et apparemment fournir des aperçus de l’impossibilité, l’incomplétude, les limites du calcul, et l’univers comme ordinateur, dans tous les univers possibles et tous les êtres ou mécanismes possibles, générant, entre autres, un principe d’incertitude mécanique non quantique et une preuve de monothéisme. Il existe des connexions évidentes à l’œuvre classique de Chaitin, Solomonoff, Komolgarov et Wittgenstein et à l’idée qu’aucun programme (et donc aucun dispositif) ne peut générer une séquence (ou un dispositif) avec une plus grande complexité qu’il ne possède. On pourrait dire que cet ensemble de travaux implique l’athéisme puisqu’il ne peut y avoir d’entité plus complexe que l’univers physique et du point de vue wittgensteinien, « plus complexe » n’a aucun sens (n’a pas de conditions de satisfaction, c’est-à-dire véridique ou test). Même un « Dieu » (c’est-à-dire un « dispositif » avec un temps/ espace et une énergie illimité) ne peut pas déterminer si un « nombre » donné est « aléatoire», ni trouver un certain moyen de montrer qu’une « formule » donnée, un « théorème » ou une « phrase » ou un « dispositif » (tous ces jeux de langage complexes) fait partie d’un « système » particulier. Ceux qui souhaitent un cadre complet à jour pour le comportement humain de la vue moderne de deux systemes peuvent consulter mon livre 'The Logical Structure of Philosophy, Psychology, Mind and Language in Ludwig Wittgenstein and John Searle' 2nd ed (2019). Ceux qui s’intéressent à plus de mes écrits peuvent voir 'Talking Monkeys --Philosophie, Psychologie, Science, Religion et Politique sur une planète condamnée --Articles et revues 2006-2019 2ème ed (2019) et Suicidal Utopian Delusions in the 21st Century 4th ed (2019) et autres. (shrink)
The following essay reconsiders the ontological and logical issues around Frege’s Basic Law (V). If focuses less on Russell’s Paradox, as most treatments of Frege’s Grundgesetze der Arithmetik (GGA)1 do, but rather on the relation between Frege’s Basic Law (V) and Cantor’s Theorem (CT). So for the most part the inconsistency of Naïve Comprehension (in the context of standard Second Order Logic) will not concern us, but rather the ontological issues central to the conflict between (BLV) and (CT). (...) These ontological issues are interesting in their own right. And if and only if in case ontological considerations make a strong case for something like (BLV) we have to trouble us with inconsistency and paraconsistency. These ontological issues also lead to a renewed methodological reflection what to assume or recognize as an axiom. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.