Results for ' logical paradox'

954 found
Order:
  1. A Note on Logical Paradoxes and Aristotelian Square of Opposition.Beppe Brivec - manuscript
    According to Aristotle if a universal proposition (for example: “All men are white”) is true, its contrary proposition (“All men are not white”) must be false; and, according to Aristotle, if a universal proposition (for example: “All men are white”) is true, its contradictory proposition (“Not all men are white”) must be false. I agree with what Aristotle wrote about universal propositions, but there are universal propositions which have no contrary proposition and have no contradictory proposition. The proposition X “All (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Meinong, Defective Objects, and (Psycho-)Logical Paradox.William J. Rapaport - 1982 - Grazer Philosophische Studien 18 (1):17-39.
    Alexius Meinong developed a notion of defective objects in order to account for various logical and psychological paradoxes. The notion is of historical interest, since it presages recent work on the logical paradoxes by Herzberger and Kripke. But it fails to do the job it was designed for. However, a technique implicit in Meinong's investigation is more successful and can be adapted to resolve a similar paradox discovered by Romane Clark in a revised version of Meinong's Theory (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  3. The impacts of Logic, Paradoxes in one side and Theory of Computation in the other side.Didehvar Farzad - manuscript
    This is a presentation about the impacts of Logic and Theory of Computation. It starts by some explanations about Theory of Computation and its relations with the other subjects in science. Then we have some explanations about paradoxes and some historical points. In continuation, we present some of the most important paradoxes. Forthcoming, Five subjects around the relations between Logic and Theory of computation is introduced. Finally, we present a new approach to solve P vs NP problem via Paradoxes (Presentation (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. A logical challenge to correlationism: the Church–Fitch paradox in Husserl’s account of fulfilment, truth, and meaning.Gregor E. Bös - 2024 - Synthese 203 (6):1-25.
    Husserl’s theory of fulfilment conceives of empty acts, such as symbolic thought, and fulfilling acts, such as sensory perceptions, in a strict parallel. This parallelism is the basis for Husserl’s semantics, epistemology, and conception of truth. It also entails that any true proposition can be known in principle, which Church and Fitch have shown to explode into the claim that every proposition is _actually_ known. I assess this logical challenge and discuss a recent response by James Kinkaid. While Kinkaid’s (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Epistemic Paradox and the Logic of Acceptance.Michael J. Shaffer - 2013 - Journal of Experimental and Theoretical Artificial Intelligence 25:337-353.
    Paradoxes have played an important role both in philosophy and in mathematics and paradox resolution is an important topic in both fields. Paradox resolution is deeply important because if such resolution cannot be achieved, we are threatened with the charge of debilitating irrationality. This is supposed to be the case for the following reason. Paradoxes consist of jointly contradictory sets of statements that are individually plausible or believable. These facts about paradoxes then give rise to a deeply troubling (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  6. Higher-order free logic and the Prior-Kaplan paradox.Andrew Bacon, John Hawthorne & Gabriel Uzquiano - 2016 - Canadian Journal of Philosophy 46 (4-5):493-541.
    The principle of universal instantiation plays a pivotal role both in the derivation of intensional paradoxes such as Prior’s paradox and Kaplan’s paradox and the debate between necessitism and contingentism. We outline a distinctively free logical approach to the intensional paradoxes and note how the free logical outlook allows one to distinguish two different, though allied themes in higher-order necessitism. We examine the costs of this solution and compare it with the more familiar ramificationist approaches to (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  7. The problem of logical omniscience, the preface paradox, and doxastic commitments.Niels Skovgaard-Olsen - 2017 - Synthese 194 (3):917-939.
    The main goal of this paper is to investigate what explanatory resources Robert Brandom’s distinction between acknowledged and consequential commitments affords in relation to the problem of logical omniscience. With this distinction the importance of the doxastic perspective under consideration for the relationship between logic and norms of reasoning is emphasized, and it becomes possible to handle a number of problematic cases discussed in the literature without thereby incurring a commitment to revisionism about logic. One such case in particular (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  8. The logic of legitimacy: Bootstrapping paradoxes of constitutional democracy.Christopher Zurn - 2010 - Legal Theory 16 (3):191-227.
    Many have claimed that legitimate constitutional democracy is either conceptually or practically impossible, given infinite regress paradoxes deriving from the requirement of simultaneously democratic and constitutional origins for legitimate government. This paper first critically investigates prominent conceptual and practical bootstrapping objections advanced by Barnett and Michelman. It then argues that the real conceptual root of such bootstrapping objections is not any specific substantive account of legitimacy makers, such as consent or democratic endorsement, but a particular conception of the logic of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  9. Logic of paradoxes in classical set theories.Boris Čulina - 2013 - Synthese 190 (3):525-547.
    According to Cantor (Mathematische Annalen 21:545–586, 1883 ; Cantor’s letter to Dedekind, 1899 ) a set is any multitude which can be thought of as one (“jedes Viele, welches sich als Eines denken läßt”) without contradiction—a consistent multitude. Other multitudes are inconsistent or paradoxical. Set theoretical paradoxes have common root—lack of understanding why some multitudes are not sets. Why some multitudes of objects of thought cannot themselves be objects of thought? Moreover, it is a logical truth that such multitudes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Moore’s paradox and the logic of belief.Andrés Páez - 2020 - Manuscrito 43 (2):1-15.
    Moore’s Paradox is a test case for any formal theory of belief. In Knowledge and Belief, Hintikka developed a multimodal logic for statements that express sentences containing the epistemic notions of knowledge and belief. His account purports to offer an explanation of the paradox. In this paper I argue that Hintikka’s interpretation of one of the doxastic operators is philosophically problematic and leads to an unnecessarily strong logical system. I offer a weaker alternative that captures in a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. The Doctrinal Paradox, the Discursive Dilemma, and Logical Aggregation theory.Philippe Mongin - 2012 - Theory and Decision 73 (3):315-355.
    Judgment aggregation theory, or rather, as we conceive of it here, logical aggregation theory generalizes social choice theory by having the aggregation rule bear on judgments of all kinds instead of merely preference judgments. It derives from Kornhauser and Sager’s doctrinal paradox and List and Pettit’s discursive dilemma, two problems that we distinguish emphatically here. The current theory has developed from the discursive dilemma, rather than the doctrinal paradox, and the final objective of the paper is to (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  12. Truth and Paradox in Late XIVth Century Logic : Peter of Mantua’s Treatise on Insoluble Propositions.Riccardo Strobino - 2012 - Documenti E Studi Sulla Tradizione Filosofica Medievale 23:475-519.
    This paper offers an analysis of a hitherto neglected text on insoluble propositions dating from the late XiVth century and puts it into perspective within the context of the contemporary debate concerning semantic paradoxes. The author of the text is the italian logician Peter of Mantua (d. 1399/1400). The treatise is relevant both from a theoretical and from a historical standpoint. By appealing to a distinction between two senses in which propositions are said to be true, it offers an unusual (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  13. Semantic Paradoxes and Transparent Intensional Logic.Jiri Raclavsky - 2012 - The Logica Yearbook 2011 (College Publications):239-252.
    The paper describes the solution to semantic paradoxes pioneered by Pavel Tichý and further developed by the present author. Its main feature is an examination (and then refutation) of the hidden premise of paradoxes that the paradox-producing expression really means what it seems to mean. Semantic concepts are explicated as relative to language, thus also language is explicated. The so-called ‘explicit approach’ easily treats paradoxes in which language is explicitly referred to. The residual paradoxes are solved by the ‘implicit (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  14. Formalizing Self-Reference Paradox using Predicate Logic.P. Olcott - manuscript
    We begin with the hypothetical assumption that Tarski’s 1933 formula ∀ True(x) φ(x) has been defined such that ∀x Tarski:True(x) ↔ Boolean-True. On the basis of this logical premise we formalize the Truth Teller Paradox: "This sentence is true." showing syntactically how self-reference paradox is semantically ungrounded.
    Download  
     
    Export citation  
     
    Bookmark  
  15. Modern Paradoxes of Aristotle’s Logic.Jason Aleksander - 2004 - Epoché: A Journal for the History of Philosophy 9 (1):79-99.
    This paper intends to explain key differences between Aristotle’s understanding of the relationships between nous, epistêmê, and the art of syllogistic reasoning(both analytic and dialectical) and the corresponding modern conceptions of intuition, knowledge, and reason. By uncovering paradoxa that Aristotle’s understanding of syllogistic reasoning presents in relation to modern philosophical conceptions of logic and science, I highlight problems of a shift in modern philosophy—a shift that occurs most dramatically in the seventeenth century—toward a project of construction, a pervasive desire for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. A Two-Dimensional Logic for Two Paradoxes of Deontic Modality.Fusco Melissa & Kocurek Alexander - 2022 - Review of Symbolic Logic 15 (4):991-1022.
    In this paper, we axiomatize the deontic logic in Fusco 2015, which uses a Stalnaker-inspired account of diagonal acceptance and a two-dimensional account of disjunction to treat Ross’s Paradox and the Puzzle of Free Choice Permission. On this account, disjunction-involving validities are a priori rather than necessary. We show how to axiomatize two-dimensional disjunction so that the introduction/elimination rules for boolean disjunction can be viewed as one-dimensional projections of more general two-dimensional rules. These completeness results help make explicit the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Benardete’s paradox and the logic of counterfactuals.Michael Caie - 2018 - Analysis 78 (1):22-34.
    I consider a puzzling case presented by Jose Benardete, and by appeal to this case develop a paradox involving counterfactual conditionals. I then show that this paradox may be leveraged to argue for certain non-obvious claims concerning the logic of counterfactuals.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  18. Explaining the Paradoxes of Logic – The Nub of the Matter and its Pragmatics.Dieter Wandschneider - 1993 - In PRAGMATIK, Vol. IV. Hamburg:
    [[[ (Here only the chapters 3 – 8, see *** ) First I argue that the prohibition of linguistic self-reference as a solution to the antinomy problem contains a pragmatic contradiction and is thus not only too restrictive, but just inconsistent (chap.1). Furthermore, the possibilities of non-restrictive strategies for antinomy avoidance are discussed, whereby the explicit inclusion of the – pragmatically presuposed – consistency requirement proves to be the optimal strategy (chap.2). ]]] The central question here is that about the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. The paradoxes and Russell's theory of incomplete symbols.Kevin C. Klement - 2014 - Philosophical Studies 169 (2):183-207.
    Russell claims in his autobiography and elsewhere that he discovered his 1905 theory of descriptions while attempting to solve the logical and semantic paradoxes plaguing his work on the foundations of mathematics. In this paper, I hope to make the connection between his work on the paradoxes and the theory of descriptions and his theory of incomplete symbols generally clearer. In particular, I argue that the theory of descriptions arose from the realization that not only can a class not (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  20. Relevant first-order logic LP# and Curry’s paradox resolution.Jaykov Foukzon - 2015 - Pure and Applied Mathematics Journal Volume 4, Issue 1-1, January 2015 DOI: 10.11648/J.Pamj.S.2015040101.12.
    In 1942 Haskell B. Curry presented what is now called Curry's paradox which can be found in a logic independently of its stand on negation. In recent years there has been a revitalised interest in non-classical solutions to the semantic paradoxes. In this article the non-classical resolution of Curry’s Paradox and Shaw-Kwei' sparadox without rejection any contraction postulate is proposed. In additional relevant paraconsistent logic C ̌_n^#,1≤n<ω, in fact,provide an effective way of circumventing triviality of da Costa’s paraconsistent (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Benardete Paradoxes, Causal Finitism, and the Unsatisfiable Pair Diagnosis.Joseph C. Schmid & Alex Malpass - forthcoming - Mind.
    We examine two competing solutions to Benardete paradoxes: causal finitism, according to which nothing can have infinitely many causes, and the unsatisfiable pair diagnosis (UPD), according to which such paradoxes are logically impossible and no metaphysical thesis need be adopted to avoid them. We argue that the UPD enjoys notable theoretical advantages over causal finitism. Causal finitists, however, have levelled two main objections to the UPD. First, they urge that the UPD requires positing a ‘mysterious force’ that prevents paradoxes from (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  22. Paraconsistency: Logic and Applications.Francesco Berto, Edwin Mares, Koji Tanaka & Francesco Paoli (eds.) - 2013 - Dordrecht, Netherland: Springer.
    A logic is called 'paraconsistent' if it rejects the rule called 'ex contradictione quodlibet', according to which any conclusion follows from inconsistent premises. While logicians have proposed many technically developed paraconsistent logical systems and contemporary philosophers like Graham Priest have advanced the view that some contradictions can be true, and advocated a paraconsistent logic to deal with them, until recent times these systems have been little understood by philosophers. This book presents a comprehensive overview on paraconsistent logical systems (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  23. Two Reformulations of the Verificationist Thesis in Epistemic Temporal Logic that Avoid Fitch’s Paradox.Alexandru Dragomir - 2014 - Romanian Journal of Analytic Philosophy 8 (1):44-62.
    1) We will begin by offering a short introduction to Epistemic Logic and presenting Fitch’s paradox in an epistemic‑modal logic. (2) Then, we will proceed to presenting three Epistemic Temporal logical frameworks creat‑ ed by Hoshi (2009) : TPAL (Temporal Public Announcement Logic), TAPAL (Temporal Arbitrary Public Announcement Logic) and TPAL+P ! (Temporal Public Announcement Logic with Labeled Past Operators). We will show how Hoshi stated the Verificationist Thesis in the language of TAPAL and analyze his argument on (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  24. Formalizing the logical (self-reference) error of the Liar Paradox.P. Olcott - manuscript
    This paper decomposes the Liar Paradox into its semantic atoms using Meaning Postulates (1952) provided by Rudolf Carnap. Formalizing truth values of propositions as Boolean properties of these propositions is a key new insight. This new insight divides the translation of a declarative sentence into its equivalent mathematical proposition into three separate steps. When each of these steps are separately examined the logical error of the Liar Paradox is unequivocally shown.
    Download  
     
    Export citation  
     
    Bookmark  
  25. Why Zeno’s Paradoxes of Motion are Actually About Immobility.Bathfield Maël - 2018 - Foundations of Science 23 (4):649-679.
    Zeno’s paradoxes of motion, allegedly denying motion, have been conceived to reinforce the Parmenidean vision of an immutable world. The aim of this article is to demonstrate that these famous logical paradoxes should be seen instead as paradoxes of immobility. From this new point of view, motion is therefore no longer logically problematic, while immobility is. This is convenient since it is easy to conceive that immobility can actually conceal motion, and thus the proposition “immobility is mere illusion of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  26. Liar paradox mirroring our reasoning as Hegel's quasi-speculative sentence.Jae Jeong Lee - manuscript
    This paper explores the liar paradox and its implications for logic and philosophical reasoning. It analyzes the paradox using classical logic principles and paraphrases it as "affirmation of the falsity of the very affirmation." The study draws connections between the liar paradox and Hegel's speculative sentence and suggests it functions as a "quasi-speculative sentence." Additionally, it examines parallels with the logocentric predicament and the determinist's assertion, highlighting their paradoxical nature. Through these analyses, the paper aims to illuminate (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Semantic Paradox and Alethic Undecidability.Stephen Barker - 2014 - Analysis 74 (2):201-209.
    I use the principle of truth-maker maximalism to provide a new solution to the semantic paradoxes. According to the solution, AUS, its undecidable whether paradoxical sentences are grounded or ungrounded. From this it follows that their alethic status is undecidable. We cannot assert, in principle, whether paradoxical sentences are true, false, either true or false, neither true nor false, both true and false, and so on. AUS involves no ad hoc modification of logic, denial of the T-schema's validity, or obvious (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  28. Paradoxical Desires.Ethan Jerzak - 2019 - Proceedings of the Aristotelian Society 119 (3):335-355.
    I present a paradoxical combination of desires. I show why it's paradoxical, and consider ways of responding. The paradox saddles us with an unappealing trilemma: either we reject the possibility of the case by placing surprising restrictions on what we can desire, or we deny plausibly constitutive principles linking desires to the conditions under which they are satisfied, or we revise some bit of classical logic. I argue that denying the possibility of the case is unmotivated on any reasonable (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  29. Aboutness Paradox.Giorgio Sbardolini - 2021 - Journal of Philosophy 118 (10):549-571.
    The present work outlines a logical and philosophical conception of propositions in relation to a group of puzzles that arise by quantifying over them: the Russell-Myhill paradox, the Prior-Kaplan paradox, and Prior's Theorem. I begin by motivating an interpretation of Russell-Myhill as depending on aboutness, which constrains the notion of propositional identity. I discuss two formalizations of of the paradox, showing that it does not depend on the syntax of propositional variables. I then extend to propositions (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  30. A Paradox about Sets of Properties.Nathan Salmón - 2021 - Synthese 199 (5-6):12777-12793.
    A paradox about sets of properties is presented. The paradox, which invokes an impredicatively defined property, is formalized in a free third-order logic with lambda-abstraction, through a classically proof-theoretically valid deduction of a contradiction from a single premise to the effect that every property has a unit set. Something like a model is offered to establish that the premise is, although classically inconsistent, nevertheless consistent, so that the paradox discredits the logic employed. A resolution through the ramified (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  31. Solutions to the Knower Paradox in the Light of Haack’s Criteria.Mirjam de Vos, Rineke Verbrugge & Barteld Kooi - 2023 - Journal of Philosophical Logic 52 (4):1101-1132.
    The knower paradox states that the statement ‘We know that this statement is false’ leads to inconsistency. This article presents a fresh look at this paradox and some well-known solutions from the literature. Paul Égré discusses three possible solutions that modal provability logic provides for the paradox by surveying and comparing three different provability interpretations of modality, originally described by Skyrms, Anderson, and Solovay. In this article, some background is explained to clarify Égré’s solutions, all three of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  32. Disarming a Paradox of Validity.Hartry Field - 2017 - Notre Dame Journal of Formal Logic 58 (1):1-19.
    Any theory of truth must find a way around Curry’s paradox, and there are well-known ways to do so. This paper concerns an apparently analogous paradox, about validity rather than truth, which JC Beall and Julien Murzi call the v-Curry. They argue that there are reasons to want a common solution to it and the standard Curry paradox, and that this rules out the solutions to the latter offered by most “naive truth theorists.” To this end they (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  33. Why Protagoras Gets Paid Anyway: a Practical Solution of the Paradox of Court.Elena Lisanyuk - 2017 - ΣΧΟΛΗ 11 (1):63-79.
    The famous dispute between Protagoras and Euathlus concerning Protagoras’s tuition fee reportedly owed to him by Euathlus is solved on the basis of practical argumentation concerning actions. The dispute is widely viewed as a kind of a logical paradox, and I show that such treating arises due to the double confusion in the dispute narrative. The linguistic expressions used to refer to Protagoras’s, Euathlus’s and the jurors’ actions are confused with these actions themselves. The other confusion is the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Emptying a Paradox of Ground.Jack Woods - 2018 - Journal of Philosophical Logic 47 (4):631-648.
    Sometimes a fact can play a role in a grounding explanation, but the particular content of that fact make no difference to the explanation—any fact would do in its place. I call these facts vacuous grounds. I show that applying the distinction between-vacuous grounds allows us to give a principled solution to Kit Fine and Stephen Kramer’s paradox of ground. This paradox shows that on minimal assumptions about grounding and minimal assumptions about logic, we can show that grounding (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  35. The 1900 Turn in Bertrand Russell’s Logic, the Emergence of his Paradox, and the Way Out.Nikolay Milkov - 2016 - Siegener Beiträge Zur Geschichte Und Philosophie der Mathematik 7:29-50.
    Russell’s initial project in philosophy (1898) was to make mathematics rigorous reducing it to logic. Before August 1900, however, Russell’s logic was nothing but mereology. First, his acquaintance with Peano’s ideas in August 1900 led him to discard the part-whole logic and accept a kind of intensional predicate logic instead. Among other things, the predicate logic helped Russell embrace a technique of treating the paradox of infinite numbers with the help of a singular concept, which he called ‘denoting phrase’. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  36. Skolem’s “paradox” as logic of ground: The mutual foundation of both proper and improper interpretations.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (19):1-16.
    A principle, according to which any scientific theory can be mathematized, is investigated. That theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it should be accepted rather a metamathematical axiom about the relation of mathematics and reality. Its investigation needs philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Logical Form and the Development of Russell’s Logicism.Kevin C. Klement - 2022 - In F. Boccuni & A. Sereni (eds.), Origins and Varieties of Logicism. Routledge. pp. 147–166.
    Logicism is the view that mathematical truths are logical truths. But a logical truth is commonly thought to be one with a universally valid form. The form of “7 > 5” would appear to be the same as “4 > 6”. Yet one is a mathematical truth, and the other not a truth at all. To preserve logicism, we must maintain that the two either are different subforms of the same generic form, or that their forms are not (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Curry’s Paradox and ω -Inconsistency.Andrew Bacon - 2013 - Studia Logica 101 (1):1-9.
    In recent years there has been a revitalised interest in non-classical solutions to the semantic paradoxes. In this paper I show that a number of logics are susceptible to a strengthened version of Curry's paradox. This can be adapted to provide a proof theoretic analysis of the omega-inconsistency in Lukasiewicz's continuum valued logic, allowing us to better evaluate which logics are suitable for a naïve truth theory. On this basis I identify two natural subsystems of Lukasiewicz logic which individually, (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  39.  73
    The Surprise Deception Paradox.Benjamin Icard - manuscript
    This article tackles an epistemic puzzle formulated by R. Smullyan that we call the ‘Surprise Deception Paradox'. On the morning of April 1st 1925, his brother announced that he would deceive him during the day, but apparently nothing happened. Since R. Smullyan waited all day to be deceived by some action, he was actually deceived, but by the lack of an action, that is to say by omission. Afterwards, Smullyan felt immediately puzzled: because he expected to be deceived, he (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Fitch's Paradox and Level-Bridging Principles.Weng Kin San - 2020 - Journal of Philosophy 117 (1):5-29.
    Fitch’s Paradox shows that if every truth is knowable, then every truth is known. Standard diagnoses identify the factivity/negative infallibility of the knowledge operator and Moorean contradictions as the root source of the result. This paper generalises Fitch’s result to show that such diagnoses are mistaken. In place of factivity/negative infallibility, the weaker assumption of any ‘level-bridging principle’ suffices. A consequence is that the result holds for some logics in which the “Moorean contradiction” commonly thought to underlie the result (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  41.  88
    Which Paradox is Genuine in Accordance with the Proof-Theoretic Criterion for Paradoxicality?Seungrak Choi - 2023 - Korean Journal of Logic 3 (26):145-181.
    Neil Tennant was the first to propose a proof-theoretic criterion for paradoxicality, a framework in which a paradox, formalized through natural deduction, is derived from an unacceptable conclusion that employs a certain form of id est inferences and generates an infinite reduction sequence. Tennant hypothesized that any derivation in natural deduction that formalizes a genuine paradox would meet this criterion, and he argued that while the liar paradox is genuine, Russell's paradox is not. -/- The present (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. The Paradox of Duties to Oneself.Daniel Muñoz - 2020 - Australasian Journal of Philosophy 98 (4):691-702.
    Philosophers have long argued that duties to oneself are paradoxical, as they seem to entail an incoherent power to release oneself from obligations. I argue that self-release is possible, both as a matter of deontic logic and of metaethics.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  43. “Fuzzy time”, a Solution of Unexpected Hanging Paradox (a Fuzzy interpretation of Quantum Mechanics).Farzad Didehvar - manuscript
    Although Fuzzy logic and Fuzzy Mathematics is a widespread subject and there is a vast literature about it, yet the use of Fuzzy issues like Fuzzy sets and Fuzzy numbers was relatively rare in time concept. This could be seen in the Fuzzy time series. In addition, some attempts are done in fuzzing Turing Machines but seemingly there is no need to fuzzy time. Throughout this article, we try to change this picture and show why it is helpful to consider (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  44. Modal Paradox II: Essence and Coherence.Nathan Salmón - 2021 - Philosophical Studies 178 (10):3237-3250.
    Paradoxes of nested modality, like Chisholm’s paradox, rely on S4 or something stronger as the propositional logic of metaphysical modality. Sarah-Jane Leslie’s objection to the resolution of Chisholm’s paradox by means of rejection of S4 modal logic is investigated. A modal notion of essence congenial to Leslie’s objection is clarified. An argument is presented in support of Leslie’s crucial but unsupported assertion that, on pain of inconsistency, an object’s essence is the same in every possible world. A fallacy (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  45. Should Theories of Logical Validity Self-Apply?Marco Grossi - forthcoming - Erkenntnis.
    Some philosophers argue that a theory of logical validity should not interpret its own language, because a Russellian argument shows that self-applicability is inconsistent with the ability to capture all the interpretations of its own language. First, I set up a formal system to examine the Russellian argument. I then defend the need for self-applicability. I argue that self-applicability seems to be implied by generality, and that the Russellian argument rests on a test for meaning that is biased against (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Paradoxes and Failures of Cut.David Ripley - 2013 - Australasian Journal of Philosophy 91 (1):139 - 164.
    This paper presents and motivates a new philosophical and logical approach to truth and semantic paradox. It begins from an inferentialist, and particularly bilateralist, theory of meaning---one which takes meaning to be constituted by assertibility and deniability conditions---and shows how the usual multiple-conclusion sequent calculus for classical logic can be given an inferentialist motivation, leaving classical model theory as of only derivative importance. The paper then uses this theory of meaning to present and motivate a logical system---ST---that (...)
    Download  
     
    Export citation  
     
    Bookmark   162 citations  
  47. Intuitionism and the Modal Logic of Vagueness.Susanne Bobzien & Ian Rumfitt - 2020 - Journal of Philosophical Logic 49 (2):221-248.
    Intuitionistic logic provides an elegant solution to the Sorites Paradox. Its acceptance has been hampered by two factors. First, the lack of an accepted semantics for languages containing vague terms has led even philosophers sympathetic to intuitionism to complain that no explanation has been given of why intuitionistic logic is the correct logic for such languages. Second, switching from classical to intuitionistic logic, while it may help with the Sorites, does not appear to offer any advantages when dealing with (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  48. Pure Logic and Higher-order Metaphysics.Christopher Menzel - 2024 - In Peter Fritz & Nicholas K. Jones (eds.), Higher-Order Metaphysics. Oxford University Press.
    W. V. Quine famously defended two theses that have fallen rather dramatically out of fashion. The first is that intensions are “creatures of darkness” that ultimately have no place in respectable philosophical circles, owing primarily to their lack of rigorous identity conditions. However, although he was thoroughly familiar with Carnap’s foundational studies in what would become known as possible world semantics, it likely wouldn’t yet have been apparent to Quine that he was fighting a losing battle against intensions, due in (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  49. Exceptional Logic.Bruno Whittle - forthcoming - Review of Symbolic Logic:1-37.
    The aim of the paper is to argue that all—or almost all—logical rules have exceptions. In particular, it is argued that this is a moral that we should draw from the semantic paradoxes. The idea that we should respond to the paradoxes by revising logic in some way is familiar. But previous proposals advocate the replacement of classical logic with some alternative logic. That is, some alternative system of rules, where it is taken for granted that these hold without (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  50. (1 other version)Deontic Logic.Paul McNamara - 2006 - In Dov Gabbay & John Woods (eds.), The Handbook of the History of Logic, vol. 7: Logic and the Modalities in the Twentieth Century. Elsevier Press. pp. 197-288.
    Overview of fundamental work in deontic logic.
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
1 — 50 / 954