We are developing the Neurological Disease Ontology (ND) to provide a framework to enable representation of aspects of neurological diseases that are relevant to their treatment and study. ND is a representational tool that addresses the need for unambiguous annotation, storage, and retrieval of data associated with the treatment and study of neurological diseases. ND is being developed in compliance with the Open Biomedical Ontology Foundry principles and builds upon the paradigm established by the Ontology for General Medical Science (OGMS) (...) for the representation of entities in the domain of disease and medical practice. Initial applications of ND will include the annotation and analysis of large data sets and patient records for Alzheimer’s disease, multiple sclerosis, and stroke. (shrink)
Recent increases in the volume and diversity of life science data and information and an increasing emphasis on data sharing and interoperability have resulted in the creation of a large number of biological ontologies, including the Cell Ontology (CL), designed to provide a standardized representation of cell types for data annotation. Ontologies have been shown to have significant benefits for computational analyses of large data sets and for automated reasoning applications, leading to organized attempts to improve the structure and formal (...) rigor of ontologies to better support computation. Currently, the CL employs multiple is_a relations, defining cell types in terms of histological, functional, and lineage properties, and the majority of definitions are written with sufficient generality to hold across multiple species. This approach limits the CL's utility for computation and for cross-species data integration. Results: To enhance the CL's utility for computational analyses, we developed a method for the ontological representation of cells and applied this method to develop a dendritic cell ontology (DC-CL). DC-CL subtypes are delineated on the basis of surface protein expression, systematically including both species-general and species-specific types and optimizing DC-CL for the analysis of flow cytometry data. We avoid multiple uses of is_a by linking DC-CL terms to terms in other ontologies via additional, formally defined relations such as has_function. This approach brings benefits in the form of increased accuracy, support for reasoning, and interoperability with other ontology resources. Accordingly, we propose our method as a general strategy for the ontological representation of cells. DC-CL is available from http://www.obofoundry.org. (shrink)
We have begun work on two separate but related ontologies for the study of neurological diseases. The first, the Neurological Disease Ontology (ND), is intended to provide a set of controlled, logically connected classes to describe the range of neurological diseases and their associated signs and symptoms, assessments, diagnoses, and interventions that are encountered in the course of clinical practice. ND is built as an extension of the Ontology for General Medical Sciences — a high-level candidate OBO Foundry ontology that (...) provides a set of general classes that can be used to describe general aspects of medical science. ND is being built with classes utilizing both textual and axiomatized definitions that describe and formalize the relations between instances of other classes within the ontology itself as well as to external ontologies such as the Gene Ontology, Cell Ontology, Protein Ontology, and Chemical Entities of Biological Interest. In addition, references to similar or associated terms in external ontologies, vocabularies and terminologies are included when possible. Initial work on ND is focused on the areas of Alzheimer’s and other diseases associated with dementia, multiple sclerosis, and stroke and cerebrovascular disease. Extensions to additional groups of neurological diseases are planned. The second ontology, the Neuro-Psychological Testing Ontology (NPT), is intended to provide a set of classes for the annotation of neuropsychological testing data. The intention of this ontology is to allow for the integration of results from a variety of neuropsychological tests that assay similar measures of cognitive functioning. Neuro-psychological testing is an important component in developing the clinical picture used in the diagnosis of patients with a range of neurological diseases, such as Alzheimer’s disease and multiple sclerosis, and following stroke or traumatic brain injury. NPT is being developed as an extension to the Ontology for Biomedical Investigations. (shrink)
Monoclonal antibodies are essential biomedical research and clinical reagents that are produced by companies and research laboratories. The NIAID ImmPort (Immunology Database and Analysis Portal) resource provides a long-term, sustainable data warehouse for immunological data generated by NIAID, DAIT and DMID funded investigators for data archiving and re-use. A variety of immunological data is generated using techniques that rely upon monoclonal antibody reagents, including flow cytometry, immunofluorescence, and ELISA. In order to facilitate querying, integration, and reuse of data, standardized terminology (...) for describing monoclonal antibody reagents and their targets needs to be used for annotating data submitted to ImmPort. (shrink)
Vaccine research, as well as the development, testing, clinical trials, and commercial uses of vaccines involve complex processes with various biological data that include gene and protein expression, analysis of molecular and cellular interactions, study of tissue and whole body responses, and extensive epidemiological modeling. Although many data resources are available to meet different aspects of vaccine needs, it remains a challenge how we are to standardize vaccine annotation, integrate data about varied vaccine types and resources, and support advanced vaccine (...) data analysis and inference. To address these problems, the community-based Vaccine Ontology (VO) has been developed through collaboration with vaccine researchers and many national and international centers and programs, including the National Center for Biomedical Ontology (NCBO), the Infectious Disease Ontology (IDO) Initiative, and the Ontology for Biomedical Investigations (OBI). VO utilizes the Basic Formal Ontology (BFO) as the top ontology and the Relation Ontology (RO) for definition of term relationships. VO is represented in the Web Ontology Language (OWL) and edited using the Protégé-OWL. Currently VO contains more than 2000 terms and relationships. VO emphasizes on classification of vaccines and vaccine components, vaccine quality and phenotypes, and host immune response to vaccines. These reflect different aspects of vaccine composition and biology and can thus be used to model individual vaccines. More than 200 licensed vaccines and many vaccine candidates in research or clinical trials have been modeled in VO. VO is being used for vaccine literature mining through collaboration with the National Center for Integrative Biomedical Informatics (NCIBI). Multiple VO applications will be presented. (shrink)
The Protein Ontology (PRO; http://purl.obolibrary.org/obo/pr) formally defines and describes taxon-specific and taxon-neutral protein-related entities in three major areas: proteins related by evolution; proteins produced from a given gene; and protein-containing complexes. PRO thus serves as a tool for referencing protein entities at any level of specificity. To enhance this ability, and to facilitate the comparison of such entities described in different resources, we developed a standardized representation of proteoforms using UniProtKB as a sequence reference and PSI-MOD as a post-translational modification (...) reference. We illustrate its use in facilitating an alignment between PRO and Reactome protein entities. We also address issues of scalability, describing our first steps into the use of text mining to identify protein-related entities, the large-scale import of proteoform information from expert curated resources, and our ability to dynamically generate PRO terms. Web views for individual terms are now more informative about closely-related terms, including for example an interactive multiple sequence alignment. Finally, we describe recent improvement in semantic utility, with PRO now represented in OWL and as a SPARQL endpoint. These developments will further support the anticipated growth of PRO and facilitate discoverability of and allow aggregation of data relating to protein entities. (shrink)
The Protein Ontology (PRO) web resource provides an integrative framework for protein-centric exploration and enables specific and precise annotation of proteins and protein complexes based on PRO. Functionalities include: browsing, searching and retrieving, terms, displaying selected terms in OBO or OWL format, and supporting URIs. In addition, the PRO website offers multiple ways for the user to request, submit, or modify terms and/or annotation. We will demonstrate the use of these tools for protein research and annotation.
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.