Good chefs know the importance of maintaining sharp knives in the kitchen. What’s their secret? A well-worn Taoist allegory offers some advice. The king asks about his butcher’s impressive knifework. “Ordinary butchers,” he replied “hack their way through the animal. Thus their knife always needs sharpening. My father taught me the Taoist way. I merely lay the knife by the natural openings and let it find its own way through. Thus it never needs sharpening” (Kahn 1995, vii; see also Watson (...) 2003, 46). Plato famously employed this image as an analogy for the reality of his Forms (Phaedrus, 265e). Just like an animal, the world comes pre-divided for us. Ideally, our best theories will be those which “carve nature at its joints”. While Plato employed the “carving” metaphor to convey his views about the reality of his celebrated Forms, its most common contemporary use involves the success of science -- particularly, its success in identifying distinct kinds of things. Scientists often report discovering new kinds of things -- a new species of mammal or novel kind of fundamental particle, for example -- or uncovering more information about already familiar kinds. Moreover, we often notice considerable overlap in different approaches to classification. As Ernst Mayr put it: No naturalist would question the reality of the species he may find in his garden, whether it is a catbird, chickadee, robin, or starling. And the same is true for trees or flowering plants. Species at a given locality are almost invariably separated from each other by a distinct gap. Nothing convinced me so fully of the reality of species as the observation . . . that the Stone Age natives in the mountains of New Guinea recognize as species exactly the same entities of nature as a western scientist. (Mayr 1987, 146) Such agreement is certainly suggestive. It suggests that taxonomies are discoveries rather than mere inventions. Couple this with their utility in scientific inference and explanation and we have compelling reason for accepting the objective, independent reality of many different natural kinds of things.. (shrink)
This chapter examines Bertrand Russell’s various confrontations with Bergson’s work. Russell’s meetings with Bergson during 1911 would be followed in 1912 by the publication of Russell’s earliest polemical pieces. His 1912 review of Bergson’s Laughter ridicules the effort to develop a philosophical account of humour on the basis of some formula. In his 1912 “The Philosophy of Bergson”, Russell develops a series of objections against Bergson’s accounts of number, space, and duration. Bergson’s position is defended against Russell’s onslaught by H. (...) W. Carr (1913) and Karin Costelloe-Stephen (1914), though Russell only replies to the former. By contrast to Bergson’s silence in the face of Russell’s criticisms, Russell would continue responding to Bergson’s views in multiple works during the 1910s and 1920s. As this chapter shows, Russell not only develops further objections against specific theses upheld by Bergson, but also comments upon the political implications of Bergson’s philosophy, as well as its positioning within the history of French philosophy. (shrink)
The distinguishability between pairs of quantum states, as measured by quantum fidelity, is formulated on phase space. The fidelity is physically interpreted as the probability that the pair are mistaken for each other upon an measurement. The mathematical representation is based on the concept of symplectic capacity in symplectic topology. The fidelity is the absolute square of the complex-valued overlap between the symplectic capacities of the pair of states. The symplectic capacity for a given state, onto any conjugate plane of (...) degrees of freedom, is postulated to be bounded from below by the Gromov width h/2. This generalize the Gibbs-Liouville theorem in classical mechanics, which state that the volume of a region of phase space is invariant under the Hamiltonian flow of the system, by constraining the shape of the flow. It is shown that for closed Hamiltonian systems, the Schroedinger equation is the mathematical representation for the conservation of fidelity. (shrink)
In diesem Aufsatz untersuche sich, ob sich der Hobbes’sche Naturzustand als Gefangenendilemma beschreiben lässt und welche Konsequenzen dies gegebenenfalls hat. Ich argumentiere für die Thesen, dass erstens eine solche Beschreibung eine angemessene Charakterisierung des Hobbes’schen Naturzustandes ist , dass das Gefangenendilemma zweitens kein Problem für die Hobbes’sche Argumentation aufwirft und dass drittens Hobbes sein Argumentationsziel verfehlte, wenn er den Naturzustand anders beschriebe, d.h. so, als seien die Applikationsbedingungen des Gefangenendilemmas nicht erfüllt. Das Gefangenendilemma, in dem sich die Naturzustandsbewohner befinden, ist (...) daher notwendige Voraussetzung für die Vernünftigkeit eines Staates, in dem der Souverän mit einer Hobbes’schen Machtfülle ausgestattet ist. (shrink)
The Louvre Museum is the largest of the world's art museums by its exhibition surface. These represent the Western art of the Middle Ages in 1848, those of the ancient civilizations that preceded and influenced it (Oriental, Egyptian, Greek, Etruscan and Roman), and the arts of early Christians and Islam. At the origin of the Louvre existed a castle, built by King Philip Augustus in 1190, and occupying the southwest quarter of the current Cour Carrée. In 1594, Henri IV decided (...) to unite the palace of the Louvre with the palace of the Tuileries built by Catherine de Medicis. The Cour Carrée was built by the architects Lemercier and then Le Vau, under the reign of Louis XIII and Louis XIV. The Department of Paintings currently has about 7,500 paintings (of which 3,400 are exposed), covering a period that goes from the Middle Ages to 1848 (date of the beginning of the Second Republic). By including the deposits, the collection is, with 12,660 works, the largest collection of ancient paintings in the world. With rare exceptions, the works after 1848 were transferred to the Musée d'Orsay when it was created in 1986. CONTENTS: Louvre Museum - Variety of exhibited works - The Royal Palace - The collections - - Eastern antiquities - - Arts of Islam - - Egyptian Antiquities - - Greek, Etruscan and Roman Antiquities - - Paintings - - - French school - - - Northern Schools (Flanders, Netherlands, Germany) - - - Italian School - - - Other schools Painting - Definitions - Painting genres - - The landscape - - Still life Paintings - FRANCOIS BOUCHER - - Vulcan presenting arms to Venus for Aeneas - RAPHAEL - - Portrait of Baldassare Castiglione - RUBENS - - Helena Fourment with children - LOUIS DAVID - - Madame Récamier - REMBRANDT - - Portrait of Heindrickje Stoffels - VELAZQUEZ - - Portrait of the Infanta Margarita - SIMONE MEMMI - - Jesus Christ walking on Calvary - JAN STEEN - - The Bad Company - HANS HOLBEIN - - Erasmus - CORREGGIO - - Mystic Marriage of Saint Catherine - LANCRET - - Conversation - JAN VAN DER MEER (VERMEER) - - The Lacemaker - VAN DYCK - - Charles I at the Hunt - FRANÇOIS CLOUET - - Elisabeth of Austria (1554-1592), Wife of Charles IX and Queen of France (1570 - 1574) - DELACROIX - - The Barque of Dante - EL GRECO - - Saint Louis, King of France, and a page - REMBRANDT - - Pilgrims at Emmaus (The Supper at Emmaus) - GERARD DAVID - - Marriage at Cana - RAPHAEL - - Portrait of Dona Isabel de Requesens, Vice-Queen of Naples - RUBENS - - La Kermesse (The Village Fête, or Noce de village) - FRANS HALS - - The Gypsy Girl - DECAMPS - - The Sonneurs - HOLBEIN THE YOUNGER - - Anne of Cleves - P. PRUD’HON - - Psyche transported to Heaven - PHILIPPE DE CHAMPAIGNE - - Portrait of Richelieu - LANCRET - - The Autumn - L. DAVID - - Madame Seriziat - COROT - - Recollection of Mortefontaine - LEONARDO DA VINCI - - La belle ferronnière - CORREGGIO - - Venus and Cupid with a Satyr - WATTEAU - - Pilgrimage to Cythera (The Embarkation for Cythera) - NICOLAS POUSSIN - - The Inspiration of the Poet - PRUD’HON - - The Empress Josephine (1763-1814) - FRAGONARD - - The Bathers - H. RIGAUD - - Louis XIV (1638–1715) - TERBURG - - The Concert - LEOPOLD ROBERT - - The Pilgrimage to the Madonna of the Arch - LARGILLIERE - - Family Portrait - MANTEGNA - - Parnassus - MEMLING - - The Virgin and Child between St James and St Dominic - FRAGONARD - - The Music Lesson - JEAN VAN EYCK - - The Virgin of chancellor Rolin - PAOLO VERONESE - - Susannah and the Elders - FRANÇOIS BOUCHER - - Diana leaving her bath - GÉRICAULT - - The Raft of the Medusa - MURILLO - - Assumption of the Virgin - CLAUDE GELLEE (LORRAIN) - - Ulysses returning Chryseis to her father (Marine, setting sun) - INGRES - - Madame Riviere - E. MURILLO - - The Young Beggar - GREUZE - - The Broken Pitcher - PIETER DE HOOCH - - Card players in an opulent interior - POUSSIN - - Et in Arcadia ego - QUENTIN MATSYS - - The moneylender and his wife - ANDREA SOLARIO - - Madonna with the Green Cushion - TITIEN - - Woman with a Mirror - DAVID TENIERS (the Younger) - - The Works of Mercy - LEONARDO DA VINCI - - Mona Lisa (La Gioconda) - Armand Dayot . (shrink)
El kitsch no es solo una categoría que ha definido una de las posibles gramáticas estéticas de la modernidad, sino también una dimensión antropológica que ha tenido diferentes configuraciones en el curso de los procesos históricos. El ensayo ofrece una mirada histórico-crítica sobre las transformaciones que condujeron desde el kitsch de principios del siglo XX hasta el neokitsch contemporáneo: desde la génesis del kitsch hasta su afirmación como una de las manifestaciones más tangibles de la cultura de masas. Integrándose con (...) la estética posmoderna, el kitsch se transforma en neokitsch, una estética que utiliza el kitsch como su propia sintaxis en el complejo escenario de la estética contemporánea. /// -/- Kitsch is not just a category that has defined one of the possible aesthetic grammars of modernity, but also an anthropological dimension that has had different configurations in the course of historical processes. The essay offers a historical-critical look at the transformations that led from the early twentieth century kitsch to the contemporary neokitsch: from the genesis of kitsch to its affirmation as one of the most tangible manifestations of mass culture. Integrating with postmodern aesthetics, kitsch turns into neokitsch, an aesthetic that deliberately uses kitsch as its own syntax in the complex scenario of contemporary aesthetics. (shrink)
With the outbreak of the First World War in 1914, there emerged two controversies related to the responsibility of philosophical ideas for the rise of German militarism. The first, mainly journalistic, controversy concerned the influence that Nietzsche’s ideas may have had on what British propagandists portrayed as the ruthlessly amoral German foreign policy. This soon gave way to a second controversy, waged primarily among academics, concerning the purportedly vicious political outcomes of German Idealism, from Kant through to Fichte, Schelling, and (...) Hegel. During the autumn of 1914, and at the cusp between the two controversies, Moritz Schlick was to deliver a lecture series on Nietzsche’s life and work at the University of Rostock. Responding to both debates, Schlick penned an introduction in which he sought to defend philosophy against all those who would embroil it in warfare. Schlick offers a series of arguments defending Nietzsche against his accusers. He also argues that, though their contributions to the History of Philosophy often amounted to no more than ‘beautiful nonsense’, the German Idealists’ philosophical views cannot be held responsible for the rise of German nationalism. Finally, Schlick mounts a general defense of the search for truth, both in philosophy and in Wissenschaft, as a type of activity which presupposes peace. Though Schlick’s metaphilosophical views change, as this paper shows, he remains constant both in his favourable appraisal of Nietzsche, as well as his separation between politics on the one hand, and both philosophy and Wissenschaft on the other hand. (shrink)
GAMETOGÊNESE -/- Emanuel Isaque Cordeiro da Silva Instituto Agronômico de Pernambuco Departamento de Zootecnia – UFRPE Embrapa Semiárido -/- • _____OBJETIVO -/- Os estudantes bem informados, estão a buscando conhecimento a todo momento. O estudante de Veterinária e Zootecnia, sabe que a Reprodução é uma área de primordial importância para sua carreira. Logo, o conhecimento da mesma torna-se indispensável. No primeiro trabalho da série fisiologia reprodutiva dos animais domésticos, foi abordado de forma clara, didática e objetiva os mecanismos de diferenciação (...) sexual dos embriões em desenvolvimento, quais os genes envolvidos nesse processo e tudo mais. Nesse segundo trabalho, a abordagem será teórica, mas também clara, sobre a formação primordial dos gametas femininos e masculinos, através da ovogênese nas fêmeas e a espermatogênese nos machos. Esse trabalho visa levar a importância do processo de formação dos gametas e a produção hormonal das gônadas, bem como o entendimento sobre as interações com o eixo hipotálamo-hipofisário. -/- •____INTRODUÇÃO -/- A reprodução sexual é um processo mediante a qual dois organismos da mesma espécie unem seu material genético para dar lugar a um organismo fixo com combinação única de genes; para isso, cada organismo produz células que contém a metade do material genético característico da espécie. Essas células haploides (1n) são denominadas gametas; ao combinar-se um gameta masculino com um feminino produz-se uma célula diploide (2n) (zigoto ou ovo) a partir da qual se forma o embrião. A grande maioria das espécies com reprodução sexual são anisogâmicas, o que significa que produzem dois tipos de gametas diferentes: os gametas masculinos são microscópios, móveis e produzem-se em grande quantidade, enquanto que os femininos são grandes, imóveis e produzem-se em menor quantidade. O tipo de gameta que um indivíduo produz é o que define seu sexo; sobre os animais o macho é o indivíduo que produz grandes quantidades de espermatozoides e a fêmea produz uma menor quantidade de óvulos, enquanto que nas plantas as gônadas masculinas são as produtoras pólen e as femininas produzem oosferas. Os gametas são diferentes do resto das células do organismo, as quais se chamam células somáticas; essas últimas são diploides porque contém dois pares de cromossomos, um par herdado do pai do indivíduo e o outro da mãe. As células somáticas, ademais, se dividem por mitose, ao qual os cromossomos se duplicam antes de cada divisão celular e cada uma das células filhas recebe um complemento diploide idêntico dos cromossomos, logo todas as células somáticas de um indivíduo possuem o mesmo material genético, embora cada tipo celular expresse diferentes combinações de genes. Em contraponto, os gametas são células haploides porque possuem somente um par de cromossomos e a metade do material genético característico da espécie. Cada um dos cromossomos em um gameta é resultado da recombinação dos genes contidos nos cromossomos paterno e materno do indivíduo que originam o gameta, e cada um destes possuem uma combinação única de genes. Os gametas se formam a partir das células germinais, que são células que em sua origem são diploides e elas de “comprometem” a manter-se como uma linha celular especial que em determinado momento sofrerá o processo de meiose para dar origem aos gametas haploides, sejam óvulos ou espermatozoides segundo o sexo do animal. Como descrito no trabalho sobre a diferenciação sexual, as células germinativas primordiais originam-se no epiblasto do embrião, e migram desde o saco vitelino até colonizar as cristas gonodais, onde, por sua vez, proliferam-se e se organizam junto com as células somáticas da gônada primitiva para formar o testículo ou o ovário. As células germinais masculinas e femininas tem a mesma origem embrionária. As gônadas indiferenciadas em um embrião possuem três tipos celulares: as células que dão origem aos gametas (ovogonia ou espermatogonia), as precursoras de células que nutrem os gametas em desenvolvimento (células da granulosa no ovário; células de Sertoli no testículo) e as precursoras de células que secretam hormônios sexuais (células da teca no ovário; células de Leydig no testículo). As células germinais são as únicas estruturas do organismo que têm a capacidade de dividir-se por meiose sofrendo uma redução no número de seus cromossomos, sendo responsável pela transmissão da carga genética aos descendentes. Em contraste, as células somáticas somente se dividem por mitose. A formação dos gametas compreende fases sequenciais de mitose, meiose e pós-meiose. Esses processos são altamente organizados e necessitam de um preciso e bem coordenado programa de expressão genética. Uma das características importantes da gametogênese é a redução cromossômica, que através da meiose, reduz pela metade o número de cromossomos e produz células distintas entre si, devido a trocas de material genético entre os pares de cromossomos provenientes do pai e da mãe, o que ocorre no processo de “crossing over” durante a primeira fase da meiose. A gametogênese é o processo mediante o qual as células germinais de cada sexo se multiplicam, dividem e diferenciam até formar os gametas. No caso da formação dos gametas masculinos o processo recebe o nome específico de espermatogênese, e para os gametas femininos é denominado como ovogênese. Embora os dois processos alcancem o objetivo comum de produção das células haploides, por onde compartilham algumas características, existem diferenças marcadas entre eles devido a necessidade de produzir um número muito distinto de gametas, de tamanho diferente, e com características de motilidade também distintas. -/- •___ESPERMATOGÊNESE -/- A espermatogênese é o processo mediante o qual se produz os gametas masculinos denominados espermatozoides. Durante a vida fetal as células germinais e as células somáticas do testículo em formação organizam-se em túbulos seminíferos que se derivam dos cordões sexuais primários e conformam a maior parte da medula do testículo. Na etapa fetal cada tubo seminífero é delimitado por uma membrana basal, recoberta na parte interior pelas células precursoras das células de Sertoli (um tipo de células somáticas). No exterior do túbulo localizam-se as células precursoras das células de Leydig ou intersticiais (figura 1), que também são células somáticas. Entre a membrana basal e as células de Sertoli encontram-se algumas células germinais denominadas espermatogonias de reserva A0 (denominadas gonócitos) que serão o único tipo de células germinais presentes no testículo enquanto o animal não alcançar a puberdade. As células de Sertoli estabelecem na região basal uniões oclusoras entre si, formando parte da barreira hemato-testicular. As espermatogonias A0 localizam-se por dentro da membrana basal do túbulo seminífero, embora fora da barreira hemato-testicular. Figura 1: fase neonatal. Nota-se a grande infiltração de tecido intersticial em quase 50% da seção originando que os túbulos sejam pequenos e redondos em sua maioria. O citoplasma e núcleo das células pré-Leydig são notadas claramente por essa ser uma espécie suína onde o tecido intersticial está claramente diferenciado. Hematoxilina-eosina (X 220.5). Fonte: Embrapa. -/- O número de células de Sertoli no testículo depende da influência do hormônio folículo estimulante (FSH) presente durante a vida fetal e as primeiras etapas de vida pós-natal. A população de células de Sertoli ao chegar a puberdade se manterá fixa durante o resto da vida do animal; existe uma relação positiva entre o tamanho e a população de células de Sertoli e a capacidade de produção de espermatozoides do testículo. As células de Sertoli são as únicas células somáticas que estão no epitélio seminífero, e sua função é a nutrição, sustentação e controle endócrino das células germinais. As células de Sertoli participam ativamente no processo de liberação dos espermatozoides para a luz do túbulo. Nesse momento, as células de Sertoli realizam a fagocitose de parte do citoplasma do espermatozoide dos chamados corpos residuais. As células de Sertoli também fagocitam as células germinais que se degeneram no curso normal da espermatogênese. Essas células ainda sintetizam grande quantidade de proteínas, como por exemplo as proteínas ABP (androgen hinding protein), que transportam andrógenos para todo o aparelho reprodutivo, transferrinas, que transportam ferro para a respiração celular das células germinais e também às inibinas, que regulam a liberação de FSH pela hipófise, através de um sistema de retroalimentação (feedback) negativa (figura 2). Figura 2: epitélio seminífero, células de Sertoli (flecha) (400 X). Fonte: Embrapa. -/- Antes da puberdade dos túbulos seminíferos observam-se ao corte como estruturas de diâmetro pequeno, sem luz, e conformados unicamente pelas células de Sertoli e espermatogonias de reserva e rodeados por abundante tecido intersticial, ao que estão presentes as células precursoras das células de Leydig. Ainda antes da puberdade, a diferenciação celular manifesta-se primeiro pela presença de espermatócitos primários, os quais se degeneram em geral na fase de paquíteno, por falta de estimulação hormonal. A partir de que o animal chega a puberdade inicia-se o processo de espermatogênese, que se manterá durante toda a vida do animal, exceto em espécies de animais silvestres muito estacionais, ao qual pode se suspender durante a época não reprodutiva para voltar e ser retomada na época ou estação reprodutiva. Depois da puberdade, os túbulos seminíferos possuem um diâmetro muito maior; em seu interior observa-se um grande número de células germinais de todos os tipos, diferentes estádios de divisão, e em seu lúmen contém líquido e espermatozoides. Ainda sobre o alcancei da puberdade, as espermatogonias começam a dividir-se aceleradamente por mitose, enquanto que no espaço intersticial as células mesenquimais também começam a se diferenciar e a dar origem as células de Leydig (figura 3). A partir dessa etapa as células de Leydig (totalmente diferenciadas) são também evidentes no exterior do túbulo, junto com as células mioides ou peritubulares que o rodeiam o que ao contrair-se são responsáveis por controlar o avanço dos fluidos e as células presentes no lúmen do túbulo. As células mioides estão situadas ao redor do túbulo, e é creditado a elas a promoção da contração e da integridade estrutural do túbulo. Esse tipo celular apenas se diferencia na puberdade pela ação dos andrógenos (figura 4). As interações entre as células de Sertoli e as mioides parecem ter um papel importante na manutenção das funções do testículo. Durante o processo de espermatogênese, as espermatogonias de reserva dividem-se periodicamente e enquanto algumas células fixas permanecem como espermatogonias de reserva, outras proliferam e sofrem uma seção de divisões mitóticas durante as quais se vão diferenciando até formarem espermatócitos primários (espermatocitogênese ou fase de mitose), logo sofrem divisões especiais mediante as quais reduzem seu número de cromossomos (fase de meiose), e ao final trocam de forma para converter-se em espermatozoides (espermatocitogênese) (figura 5). Cada uma dessas etapas da espermato- gênese será descrito detalhadamente adiante, antes é necessário a explicação de algumas características das células de Sertoli e de Leydig que ajudarão a entender seu papel durante a espermatogênese. Figura 3: células de Leydig no espaço intersticial do testículo bovino adulto PAS (400 X). Fonte: Embrapa. -/- Figura 4: o estabelecimento da puberdade pela presença de espermatozoides no túbulo. Hematoxilina-eosina (400 X). Fonte: Embrapa. Figura 5: fases mitóticas das espermatogonias (A0 e B) para formação de um espermatócito primário e as duas fases de meiose que se sucedem antes da espermatogênese. Fonte: ZARCO, 2018. -/- Ao início da espermatocitogênese as uniões oclusoras entre as células de Sertoli se abrem por etapas (como as comportas de um submarino) para permitir a passagem das espermatogonias em direção ao centro do túbulo seminífero sem que se estabeleça uma continuidade entre o exterior e o interior da barreira hemato-testicular. Uma vez ultrapassada essa barreira, as sucessivas gerações de espermatogonias, espermatócitos, espermátides e espermatozoides irão se localizar em direção ao interior do túbulo seminífero, em estreita associação com as células de Sertoli. Em consequência, as células de Sertoli dividem o túbulo seminífero em dois compartimentos; o compartimento basal (debaixo das uniões oclusoras das células de Sertoli), ao qual residem as espermatogonias de reserva, e o compartimento adluminal (em direção ao centro do túbulo), cujos espaços entre as células de Sertoli desenvolvem o resto do processo de espermatogênese (meiose e espermatocitogênese). Esse feito é importante porque durante a vida fetal as únicas células germinais existentes eram as espermatogonias de reserva, pelo que os antígenos expressados por gerações mais avançadas (espermatogonias intermediárias, secundárias, espermátides e espermatozoides) não são reconhecidos como próprios do corpo pelo sistema imunológico. Logo, o anterior implica que deve existir uma barreira entre eles e o sangue para evitar um ataque imunológico. Em todas as etapas da espermatogênese, as células de Sertoli atuam como células de suporte para as células germinais, que sempre permanecem recoberta pela membrana das células de Sertoli. Também atuam como células nutricionais já que proporcionam o meio em que as células germinais se desenvolvem e maturam, assim como as substâncias que regulam e sincronizam as sucessivas divisões e transformações das células germinais. As células de Sertoli produzem hormônios, como estrógenos e inibina que atuam sobre a hipófise para regular a secreção das gonadotropinas que controlam a espermatogênese. As células de Leydig que residem no exterior do túbulo seminífero também são importantes para a espermatogênese: produzem a testosterona que estimula e mantém a espermatogênese, bem como serve como substrato sobre o qual atua como aromatizador das células de Sertoli para transformá-las em estrógenos. Como supracitado, para seu estudo podemos dividir a espermatogênese em três fase: espermatocitogênese, meiose e espermiogênese (figura 6). Agora, serão descritas cada uma dessas etapas. Em algumas espécies, incluindo no homem, os macrófagos representam o segundo tipo celular intersticial mais numeroso no testículo, depois das células de Leydig. Os macrófagos e vários subtipos de linfócitos são identificados nós testículos de ovinos e ratos. Eles estão intimamente associados com as células de Leydig e atuam juntamente na regulação da esteroidogênese. Figura 6: fluxograma da espermatogênese. -/- Espermatocitogênese -/- A espermatocitogênese, também chamada de etapa proliferativa ou de mitose, consiste numa série de divisões mitóticas sofridas pelas células descendentes de uma espermatogonia de reserva. Uma vez que a célula se divide, abandona o estado de reserva e começa um processo de diferenciação. As espermatogonias de reserva (denominadas espermatogonias A0 na rata ou As nos humanos) são células que existem desde a vida fetal e que permanecem mitoticamente inativas durante a infância. Uma vez que alcançam a puberdade começam a dividir-se em intervalos regulares, e as células filhas podem permanecer como espermatogonias de reserva ou abandonar a reserva e ingressar na dita espermatocitogênese. Uma vez abandonada a reserva, as células filhas que vão se formando em cada divisão permanecem unidas por pontes citoplasmáticas, constituindo um clone que se divide sincronicamente. As células que se formam depois de cada divisão continuam sendo espermatogonias, porém cada geração é ligeiramente diferente da anterior. Na rata, por exemplo, as espermatogonias tipo A0 ao dividir-se originam espermatogonias do tipo A1, que em sucessivas divisões formam espermatogonias dos tipos A2, A3 e A4, as quais, por sua vez, sofrem outra mitose para formar espermatogonias intermediárias e uma mais para formar espermatogonias do tipo B. Essas últimas se diferenciam (sem se dividir) em espermatócitos primários, processo em que termina a fase de espermatocitogênese, que literalmente significa processo de geração de espermatócitos. As espermatogonias tipo A0 são a fonte para a contínua produção de gametas. A metade delas se dividem e formam células iguais (as chamadas células tronco) e a outra metade forma as espermatogonias A1, que sofre novas divisões mitóticas e formam os tipos 2, 3 e 4. O tipo A4 sofre mitose para formar a intermediária (A In), que por mitose, forma a tipo B (figura 6). Esses tipos de espermatogonias podem ser identificadas em evoluções histológicas de acordo com sua organização topográfica na membrana basal dos túbulos seminíferos ou mediante seu conteúdo de heterocromatina. Outra maneira de diferenciação se baseia em marcadores moleculares específicos que distinguem as espermatogonias tronco (A0) das demais, com os fins de isolamento, desenvolvimento in vitro e transplante. As tipo B passam por mitose para formarem os espermatócitos primários; estes iniciam a primeira etapa da meiose formando os espermatócitos secundários; na segunda etapa da divisão meiótica, cada espermatócito secundário se divide e formam as chamadas espermátides. Quando o testículo alcança seu desenvolvimento total, a meiose completa-se e as espermátides originadas se convertem em espermatozoides. Um dos maiores sinais característicos desse fenômeno é o alargamento das espermátides e sua migração em direção ao lúmen do túbulo seminífero (figuras 4, 7 e 8). Figura 7: espermatogonias marcadas por imuno-histoquímica, anticorpo monoclonal TGFa (400 x). Figura 8: fases de divisões meióticas (M), espermatócitos em paquíteno (PA) e espermatócitos secundários (ES). -/- Figura 9: estádio posterior a liberação dos espermatozoides na luz do túbulo. Hematoxilina-eosina (400 x). Mediante as seis divisões mitóticas que ocorrem durante a espermatocitogênese se forma potencialmente um clone de 64 espermatócitos primários a partir de cada espermatogonia A que ingressa sobre o processo. Não obstante, algumas células sofrem apoptose em cada uma das etapas do processo, ao qual o número real formado é menor. Em outras espécies produzem-se um transcurso similar de divisões mitóticas sucessivas durante a espermatocitogênese, embora a nomenclatura utilizada possa ser distinta, por exemplo nos bovinos as duas últimas divisões mitóticas dão origem as espermatogonias de tipo B1 e B2. -/- Meiose -/- Uma vez que as espermatogonias B se diferenciam em espermatócitos primários, esses iniciam a etapa de meiose, com uma nova divisão; desta vez a divisão é do tipo meiótica. Ao completar-se a primeira divisão meiótica (meiose I) se obtém os espermató-citos secundários, que ao sofrer a segunda divisão meiótica (meiose II) dão origem as espermátides. Vale salientar que a meiose é o processo mediante o qual reduz-se a metade do número de cromossomos, pelo que as espermátides que se obtém são células haploides (1n). Os espermatócitos secundários que se formam depois da primeira divisão meiótica contém a metade do número normal de cromossomos, porém a mesma quantidade de DNA já que cada cromossomo é duplo. As espermátides formadas na conclusão da segunda divisão meiótica (figura 7), por sua vez, contém a metade dos cromossomos, e esse já não são duplos, já que se trata de células 1n. Também deve-se enfatizar que durante a meiose é relevante o entrecruzamento dos cromossomos homólogos, pelo que cada espermátide possui uma combinação única e diferente de genes paternos e maternos. Outro ponto que deve ser levado em consideração é que cada espermátide somente possui um cromossomo sexual; a metade das espermátides contém o cromossomo X herdado da mãe do macho que está levando a cabo a espermatogênese e a outra metade contém o cromossomo Y herdado de seu pai. Para cada espermatócito primário que entra no processo de meiose obtém-se cerca de quatro espermátides, pelo qual ao ser completada a meiose potencialmente se poderiam formar até 256 espermátides por cada espermatogonia que abandona a reserva e ingressa na espermatocitogênese. -/- Espermiogênese -/- Durante a espermiogênese, também chamada de fase de diferenciação, as esper-mátides sofrem, sem se dividir, uma metamorfose que as transforma em espermatozoides, os quais finalmente são liberados das células de Sertoli em direção ao lúmen do túbulo seminífero. A espermiogênese é um processo complicado e longo já que a espermátide deve sofrer complexas trocas nucleares, citoplasmáticas e morfológicas que resultam na forma-ção dos espermatozoides. Algumas dessas mudanças incluem a condensação do material nuclear para formação de um núcleo plano e denso, a eliminação do citoplasma para a constituição de uma célula pequena, a formação de uma estrutura especializada denomi-nada acrossomo ou tampa cefálica, e a formação do pescoço e da cauda (flagelo) do esper-matozoide, do que depende a sua motilidade. Durante a maior parte da espermiogênese, as espermátides se mantém com uma estreita associação com as células de Sertoli; logo, chega-se a observar, então, flagelos que se projetam em direção a luz do túbulo que pare-cem sair das células de Sertoli, sendo na realidade os flagelos dos espermatozoides que ainda não tinham sido liberados pelo lúmen. Ao liberar os espermatozoides em direção a luz do túbulo, as células de Sertoli realizam a fagocitose de parte do citoplasma dos espermatozoides (corpos residuais). Também fagocitam os restos de todas as células germinais que sofrem apoptose ou degeneram-se durante a espermatogênese. Credita-se que ao realizar essas funções as células de Sertoli podem fazer uma monitoração eficiente da espermatogênese, o que lhes permitiria emitir sinais para colaborar na regulação desse processo em nível gonodal e a nível sistêmico através da secreção de hormônios como a inibina e o estradiol. Além da inibina e activina, as células de Sertoli sintetizam outras proteínas, como a ABP (proteína ligadora de andrógenos) que serve como uma molécula de transporte de andrógenos dentro dos túbulos seminíferos, ductos deferentes e epidídimo, ou a transfer-rina, que transporta o ferro necessário para a respiração celular. -/- Resultados da espermatogênese -/- O resultado da espermatogênese não significa apenas uma simples multiplicação das células germinais (até 256 espermatozoides a partir de cada espermatogonia A1), senão que através dela são produzidos gametas haploides pequenos, móveis e com grande diversidade genética entre eles, ao mesmo tempo que se mantêm uma reversa de células mãe (espermatogonias A0) a partir das quais se poderiam originar novos ciclos de esper-matogênese durante o resto da vida do animal. -/- Controle hormonal da espermatogênese -/- Como mencionado, o FSH reproduz um importante papel para o estabelecimento das células de Sertoli durante a vida fetal e início da vida pós-natal. O começo da esper-matogênese também é estimulado pelo FSH, que atua sobre as células de Sertoli para estimular sua função e a ativação de sinais dessas células em direção as células germinais, incluindo-as a abandonar a reserva e ingressar na espermatogênese. O FSH, assim mesmo, estimula a mitose durante o resto da espermatogênese e aumenta a eficiência do processo, já que reduz a apoptose e a degeneração de espermatogonias intermediárias e do tipo B. O FSH também estimula as células de Sertoli para produzirem inibina e ABP. Uma vez iniciada a espermatogênese somente requerem níveis baixos de FSH para se mantê-la. As células de Sertoli também devem ser estimuladas pela testosterona para funcio-nar de maneira adequada; se requer também do LH hipofisário: hormônio que estimula as células de Leydig para produzir testosterona. Por sua vez, a secreção de LH e FSH é regulada pelo GnRH hipotalâmico: esse neurohormônio também faz parte do mecanismo de regulação da espermatogênese. A espermatogênese também é modulada em nível local mediante a produção de determinados fatores e interações entre as células. Dentro dos fatores locais podemos mencionar o fator de crescimento parecido com a insulina 1 (IGF-1), o fator de crescimen-to transformante beta (TGF- β), activina, ocitocina e diversas citocinas. Entre as intera-ções celulares existem tanto uniões de comunicação entre as células de Sertoli e as células germinais, como pontes citoplasmáticas entre todas as células germinais que formam o clone de células descendentes de uma espermatogonia A1. Uma vez que as células de Sertoli iniciam sua função na puberdade é possível manter experimentalmente a espermatogênese somente com testosterona, sem ser requeri-dos nenhum outro hormônio. A quantidade de espermatozoides produzidos, no entanto, é maior quando há presença do FSH. Abaixo do estímulo do FSH as células de Sertoli produzem estradiol e inibina, hormônios que geram uma retroalimentação sobre o eixo hipotálamo-hipofisário para a regulação da secreção de gonadotropinas. Em particular, a inibina reduz a secreção de FSH, pelo qual é factível que sirva como um sinal que evite uma excessiva estimulação as células de Sertoli. -/- Ciclo do epitélio seminífero -/- Em cada espécie as espermatogonias de reserva iniciam um novo processo de divi-sões celulares em intervalos fixos: a casa 14 dias no touro; 12 dias no garanhão e a cada 9 dias no cachaço (reprodutor suíno). A nova geração de células que começam a proliferar sobre a base do tubo deslocam-se em direção ao centro do túbulo a geração anterior, que por sua vez deslocam-se as gerações anteriores. Devido as mudanças que vão sofrendo cada geração celular se ajustam a tempos característicos de cada etapa, já que rodas as células em uma determinada seção do túbulo estão sincronizadas entre si pelas células de Sertoli; em cada espécie somente é possível encontrar um certo número de combinações celulares: 14 diferentes combinações no caso da rata, 8 no touro e 6 no ser humano. A sucessão de possíveis combinações até regressar a primeira combinação se conhece como o ciclo do epitélio seminífero. Na maioria das espécies os espermatozoides que são libera-dos em direção a luz do túbulo provém das células que entraram no processo de esperma-togênese quatro gerações antes que a geração que está ingressando nesse momento, pelo que a espermatogênese no touro dura ao redor de 60 dias e um pouco menos em outras espécies domésticas. Significa que os efeitos negativos das alterações na espermatogêne-se podem estar presentes até dois meses depois de que se produziram essas alterações. Como supracitado, geralmente se observa a mesma combinação celular em toda a área de uma determinada secção transversal do túbulo seminífero. No entanto, se fizermos uma série de secções, observa-se que ao longo do túbulo há uma sucessão ordenada de combinações (a primeira em uma determinada secção; a segunda combinação na seguinte secção, e assim sucessivamente em secções subsequentes até regressar a primeira combi-nação. Teremos, então, que ao início da divisão das espermatogonias A1 se produz de forma sincronizada em uma secção do túbulo, e vai-se transmitindo como uma onda peristáltica as secções adjacentes. Esse processo é denominado como onda do epitélio seminífero e graças à esse túbulo seminífero sempre tem secções em todas as etapas da espermatogênese, com o que se alcança uma produção constante de espermatozoides. -/- Alterações da espermatogênese -/- Nas espécies estacionais a espermatogênese, como já mencionado, pode reduzir-se ou inclusive suspender sua atividade fisiológica durante a época não reprodutiva dessas espécimes, porém esse processo fisiológico não pode ser considerado como uma altera-ção. No entanto, a espermatogênese só pode ser alterada pelas enfermidades ou por fatores externos. A principal causa de alterações na espermatogênese é o aumento da temperatura testicular. Por isso, os testículos são localizados na saco escrotal e são “caídos” para fora do corpo como pode-se observar nos bovinos, caprinos, ovinos, caninos e no próprio homem. A temperatura testicular deve estar cerca de 2 a 6 °C abaixo da temperatura corporal normal. As células germinais masculinas são sensíveis ao calor, pelo qual na maioria dos mamíferos os testículos se encontram fora da cavidade abdominal e existe um sofisticado sistema de termorregulação para mantê-los a uma temperatura menor que a corporal. Se a temperatura corporal for elevada ou se os testículos permanecerem na cavidade abdominal, ou ainda se os sistemas termorreguladores do testículo sejam afetados por fatores inflamatórios como edema ou falta de mobilidade testicular dentro do escroto, a temperatura do tecido testicular aumentará e a espermatogênese sofrerá alterações proporcionais ao excesso de temperatura e a duração da elevação. A espermatogênese também pode ser afetada pela exposição a hormônios ou a outras substâncias. É possível que a causa mais comum (sobretudo no homem) seja o uso de esteroides anabólicos, que elevam a concentração de andrógenos na circulação, provo-cando um feedback negativo sobre a secreção de gonadotropinas. Ao deixar de estimular-se o testículo pelas gonadotropinas, este deixará de produzir testosterona, e as concentra-ções de andrógeno exógeno nunca alcançará as altíssimas concentrações de testosterona que normalmente estão presentes a nível do tecido testicular por ser o local onde se produz o hormônio. Também se supõe que diversas substâncias com propriedades estrogênicas derivadas de processos industriais (indústria dos plásticos, hidrocarbonetos etc.) e presentes no ambiente (fatores xenobióticos) podem ser responsáveis pelas alterações na espermatogênese em diversas espécies, entre as quais se inclui o ser humano. -/- • OVOGÊNESE E FOLICULOGÊNESE -/- A ovogênese é o processo seguido pelas células germinais da fêmea para a forma-ção dos óvulos, que são células haploides. Durante a vida fetal as células germinais proliferam-se no ovário por mitose, formando um grande número de ovogonias, algumas das quais se diferenciam em ovócitos primários que iniciam sua primeira divisão meiótica para deter-se na prófase da divisão. Somente alguns desses ovócitos primários retornarão e concluirão a primeira divisão meiótica em algum momento da vida adulta do animal, dando origem a um ovócito secundário e a um corpo polar. O ovócito secundário inicia a sua segunda divisão meiótica, a qual volta a ficar suspensa até receber um estímulo apropriado, já que somente os ovócitos secundários que são ovulados e penetrados por um espermatozoide retornam e concluem a segunda divisão meiótica, dando origem a um óvulo (figura 10). O processo de ovogênese é realizado dentro dos folículos ovarianos, que também tem que sofrer um longo transcurso de desenvolvimento e diferenciação denominado foliculogênese pelo que a ovogênese como tal realiza-se dentro do marco desse último processo. Por essa razão, na seguinte seção descreverei tanto a ovogênese como a folicu-logênese, e a relação que existe entre ambos. Figura 10: representação da ovogênese. Na etapa de proliferação, as células germinais se diferen-ciam por mitose. A meiose I se caracteriza por uma prófase prolongada, ocorrendo a duplicação do DNA. Nas duas divisões, que ocorrem antes da ovulação e depois da fertilização, a quantidade de DNA é reduzida a 1n, com o fim de que a fusão dos pronúcles (singamia) pós-fertilização, seja gerado um zigoto com um número de cromossomos de 2n (diploide). -/- Geração de ovócitos primários e folículos primordiais Tanto a ovogênese como a foliculogênese iniciam-se durante a vida fetal, quando as células germinais primordiais provenientes do saco vitelino colonizam a gônada primitiva e, junto com as células somáticas z organizam-se para a formação dos cordões sexuais secundários, que se desenvolvem principalmente no córtex do ovário. Nesse período, as células germinais que colonizaram o ovário sofrem até 30 divisões mitóticas, proliferando-se até formar milhares ou milhões de ovogonias, que inicialmente formam “ninhos” constituídos cada um deles por um clone de várias ovogonias que descendem da mesma célula precursora e que se mantêm unidas por pontes citoplasmáticas, sincronizan-do suas divisões mitóticas. Nessa etapa alcança-se a máxima população de células germinais no ovário, que antes de nascer se reduzirá drasticamente por apoptose. No ovário do feto humano chegam a haver até sete milhões de células germinais que ao nascimento se reduzem a dois milhões. Os ovários fetais do bovino, de maneira análoga, chegam a ter até 2.100.000 células germinais, que ao nascimento reduzem para 130.000 aproximadamente. A redução no número de ovogonias produz-se ao mesmo tempo que essas células, que vêm dividindo-se por mitose e estão agrupadas em ninhos, iniciam sua primeira divisão meiótica para se transformarem em ovócitos primários: células germinais que se encontram em uma etapa de suspensão (diplóteno) da prófase da primeira divisão meiótica. Nesse período produz-se uma grande proporção de células germinais; as células somáticas dos cordões sexuais, por sua vez, emitem projeções citoplasmáticas que separam a isolam os ovócitos primários sobreviventes, ficando cada um deles rodeados por uma capa de células aplanadas da (pré) granulosa. Ao mesmo tempo em que se forma uma membrana basal entre as células da granulosa e o tecido intersticial do ovário. Ao ovócito primário rodeado de uma capa de células da (pré) granulosa aplanadas e delimita-das por uma membrana basal denomina-se de folículo primordial (figura 11). Nas vacas os folículos primordiais bem formados já estão presentes nos ovários a partir do dia 90 da gestação. A maioria dos folículos primordiais com os que nasce uma fêmea se manterão inativos durante um longo tempo; muitos deles durante toda a vida do animal. Nos folículos primordiais inativos tanto os ovócitos primários como as células da granulosa conservam sua forma original e mantém um metabolismo reduzido estritamente ao mínimo necessário para manter-se viáveis. Por essa razão, ao realizar um corte histológico de qualquer ovário as estruturas mais numerosas que se observam serão os folículos primordiais. No entanto, cada dia da vida de um animal, inclusive desde a vida fetal, um certo número de folículos primordiais reiniciam seu desenvolvimento, e a partir desse momento um folículo exclusivamente pode ter dois destinos: o primeiro, prosseguir seu desenvolvi-mento até chegar a ovular, e o segundo (que é muito mais frequente) encontrar em algum momento condições inadequadas que fazem fronteira com ele para parar seu desenvolvi-mento, levando-o a sofrer atresia e degenerar até desaparecer do ovário. Figura 11: sequência da foliculogênese apresentando as diferentes estruturas que podemos encontrar em cada fase. Fonte: ZARCO, 2018. Culminação da ovogênese A ovogênese somente se completará quando um ovócito primário reinicia a meio-se; completa sua primeira divisão meiótica para formar um ovócito secundário e um primeiro corpo polar e, quando, finalmente sofrer uma segunda divisão meiótica para formar um óvulo e um segundo corpo polar. Os óvulos são as células 1n que constituem os gametas femininos, pouco numerosos, grandes e imóveis. A grande maioria dos ovóci-tos primários, como veremos mais adiante, nunca retomam a meiose e, em consequência, não chegam a formar ovócitos secundários, e muitos dos ovócitos secundários tampouco sofrem uma segunda divisão meiótica, pelo que não chegam a formar os óvulos. Ao longo da vida de uma fêmea, na maioria das espécies, menos de 0,1% dos ovócitos primários (um a cada mil) chega a terminar a ovogênese, dando origem a um óvulo. O supracitado deve-se a que a ovogênese somente pode retomar-se e ser completa-da em ovócitos primários que se encontram dentro dos folículos primordiais que (uma vez ativados) vão alcançando diversas etapas de seu desenvolvimento em momentos precisos aos que encontram as condições ideais de oxigenação, nutrição, vascularização e exposição a fatores parácrinos e a exposição a concentrações de hormônios que se requerem para que o folículo continue em cada etapa de seu desenvolvimento com o processo de foliculogênese até chegar a ovular. Qualquer folículo que não esteja nessas condições ao longo do desenvolvimento sofrerá degeneração e atresia, pelo que o ovócito primário em seu interior nunca chegará ao ponto em que pode retomar a primeira divisão meiótica. No que resta da presente seção revisaremos o processo de foliculogênese em cujo marco se desenvolve a ovogênese; havemos que tomar de conta que essa última se limita ao que ocorre nas células germinais (ovogonia, ovócito primário, secundário e óvulo), pelo qual depende intimamente do desenvolvimento do folículo de que essas células formam parte. Em um princípio a ativação do folículo primordial e o desenvolvimento folicular são independentes das gonadotropinas: não se conhecem os mecanismos precisos median-te os quais um folículo primordial se ativa e reinicia seu desenvolvimento, nem como se decide quais folículos, dentre as dezenas de milhares de ou centenas de milhares presentes em um ovário se reativarão em um dia em particular. A reativação trata-se de uma liberação de influência de fatores inibidores, já que os folículos primordiais se reativam espontaneamente quando cultivados in vitro, isolados do resto do tecido ovariano. Uma vez que um folículo primordial se ativa, inicia-se um longo processo de desenvolvimento que somente depois de vários meses (ao redor de cinco meses no caso dos bovinos) o levará a um estádio em que seu desenvolvimento posterior requer a presença das gonado-tropinas; daí que se diz que as primeiras etapas do desenvolvimento são independentes das gonadotropinas. Durante a fase independente de gonadotropinas, um folículo primordial que tenha sido ativado e tenha começado a crescer; passará primeiro para a etapa de folículo primá-rio, caracterizada por conter um ovócito primário que está rodeado, por sua vez, por uma capa de células da granulosa, que não são planas, e sim cúbicas. Depois, se o folículo continuar crescendo se transformará em um folículo secundário, ao qual as células da granulosa começam a proliferar (aumentando em número) e se organizam em duas ou mais capas que rodeiam o ovócito primário. Entre o ovócito e as células da granulosa que o rodeiam se forma nesta uma zona pelúcida; ainda assim o ovócito mantém contato direto com essas células, mediante o estabelecimento de pontes citoplasmáticas que atravessam a zona pelúcida. Através dessas pontes citoplasmáticas as células da granulosa podem passar nutrientes e informação ao ovócito primário. O volume e o diâmetro do ovócito primário aumentam ao mesmo tempo que as células da granulosa proliferam-se, para incrementar as capas ao redor do ovócito. De maneira gradual o citoplasma do ovócito primário aumenta até 50 vezes seu volume e a proliferação das células continua. Esses folículos que possuem cada vez mais células e portanto mais capas de células da granulosa se denominam folículos secundários. Para evitar confusões, há a necessidade de nomen-clatura ao qual o folículo vá mudando de nome de primordial a primário e logo, de secun-dário, a terciário, por sua vez, o ovócito que encontra-se em seu interior, a todo momento, segue sendo um ovócito primário. Durante a etapa dependente de gonadotropinas, os folículos secundários começam a formar um espaço cheio de líquido, o antro folicular, desse modo se convertem em folí-culos terciários. Com a utilização de outra nomenclatura, a formação do antro marca a transição entre folículos pré-antrais (sem antro) e folículos antrais (com antro). Em algum momento dessa transição entre folículo secundário e terciário, também aparece a depen-dência de folículos em direção as gonadotropinas, pelo qual somente podem seguir crescendo na presença do hormônio luteinizante (LH) e do hormônio folículo estimulante (FSH). Nos bovinos e em outras espécies (para seu estudo), os folículos antrais são dividi-dos em pequenos, médios e grandes. Embora todos eles possuam um antro folicular, dependendo do seu grau de desenvolvimento requerem diferentes concentrações de gona-dotropinas para continuar o crescimento. Os folículos antrais mais pequenos somente re-querem concentrações baixas de LH e FSH, pelo qual podem continuar crescendo em qualquer momento do ciclo estral inclusive em animais que não estão ciclando (fêmeas em anestro pré-puberal, gestacional, lactacional, estacional). Nas etapas posteriores os folículos antrais requerem primeiro concentrações elevadas de FSH, e nas etapas finais somente podem continuar crescendo na presença de pulsos frequentes de LH, pelo qual somente os folículos que encontram-se sob concentrações apropriadas desses hormônios podem seguir crescendo. Por essa razão, nos animais que se encontram em anestro de qualquer tipo somente é possível encontrar folículos antrais pequenos ou médios, segundo a espécie, e nos animais que se encontram ciclando (estro) o maior tamanho folicular encontrado em um determinado dia do ciclo dependerá das concentrações de FSH e LH presentes nesse momento e nos dias anteriores. Um folículo que chega ao estado máximo de desenvolvimento, conhecido como folículo pré-ovulatório, ao final, somente chegará a ovular se for exposto a um pico pré-ovulatório de LH. Como supracitado, cada dia na vida de uma fêmea inicia seu desenvolvimento um certo número de folículos; a grande maioria sofrem atresia, mas depois da puberdade em cada dia do ciclo estral um ou vários folículos vão encontrando ao longo do seu desenvol-vimento concentrações hormonais que lhes permite chegar na etapa de folículo pré-ovula-tório. Somente nestes folículos, e como consequência de um pico pré-ovulatório de LH, se reinicia e completa-se a primeira divisão meiótica do ovócito primário, produzindo duas células distintas. Uma delas é o ovócito secundário, que retém praticamente todo o citoplasma. Contém, assim mesmo, em seu núcleo um par de cromossomos duplos, a outra é o primeiro corpo polar, que é exclusivamente um núcleo com uma quantidade mínima de citoplasma. Na maioria das espécies ovula-se um ovócito secundário que se encontra, então, suspendido na segunda divisão meiótica. Esta segunda divisão meiótica somente reinicia-rá e completarar-se uma vez que o espermatozoide começa a penetrar sob o ovócito secundário. Ao concluir-se a divisão se forma o segundo corpo polar e completa-se a ovogênese com o qual se obtém o óvulo, célula 1n que constitui o gameta feminino. No entanto, o óvulo existe pouco tempo como tal, já que em poucos minutos/horas (depen-dendo da espécie) se produzirá a fusão do núcleo do mesmo (pró-núcleo feminino) com o do espermatozoide (pró-núcleo masculino), com o qual se completa a fertilização e se forma um novo indivíduo (o ovo ou zigoto). -/- Ondas foliculares -/- Como mencionado supra, todos os dias um determinado número de folículos pri-mordiais se ativam e começam a crescer, os quais crescem em um ritmo característico em cada espécie. Isso provoca que em qualquer momento existam nos ovários folículos pri-mordiais (que começam a crescer em alguns dias ou semanas), assim como folículos secundários em diversas etapas do desenvolvimento, os quais iniciaram seu desenvolvi-mento em semanas ou inclusive meses (segundo o grau de desenvolvimento atual). Também em qualquer momento poderá haver folículos antrais nas etapas iniciais de seu desenvolvimento (com antros que já se podem detectar em cortes histológicos mas não são visíveis macroscopicamente). Todos esses folículos chegaram até seu estado de de-senvolvimento atual (primário, secundário ou antral pequeno), independente da etapa do ciclo estral em que sejam observados ou encontrados. Nos bovinos, os folículos que chegam ao início da etapa antral iniciaram seu desenvolvimento cinco meses antes, e todavia requerem ao redor de 42 dias para chegar ao estado pré-ovulatório. Para continuar seu desenvolvimento, os folículos antrais pequenos devem encon-trar concentrações altas de FSH, que os estimulam para prosseguir o crescimento. Cada vez que se produz uma elevação nas concentrações de FSH, esse hormônio estimula o desenvolvimento de um grupo de folículos antrais pequenos, que começaram a crescer muito tempo antes e que o dia da elevação de FSH tenha alcançado o grau de desenvolvi-mento preciso para responder com eficiência a este hormônio, o qual atuará através de seus receptores nas células da granulosa para estimular a produção de estradiol, a secreção de inibina, a produção de líquido folicular e a proliferação das células da granulosa. Um grupo de folículos antrais pequenos é assim recrutado pelo FSH para acelerar seu cresci-mento e aumentar sua produção de estradiol e inibina (figura 12). Mediante um seguimento ultrassonográfico dos ovários é possível identificar pou-cos dias depois um certo número de folículos, que por haver sido recrutados começam um período de crescimento acelerado. Durante alguns dias vários folículos crescem juntos, porém depois um deles é selecionado para continuar crescendo, enquanto que o restante do grupo deixam de fazê-lo e terminam sofrendo atresia. Através da ultrassom é possível identificar o folículo selecionado, agora chamado folículo domi-nante, já que sua trajetória de crescimento sofre um desvio com respeito a seguida pelo restante do grupo. Os folículos que não foram selecionados deixam de crescer e sofrem atresia já que deixam de possuir o suporte gonadotrópico de FSH, uma vez que as concentrações desse hormônio são suprimidos pela inibina e o estradiol produzidos pelo conjunto de folículos que conformam a onda folicular (figura 12), porém o folículo mais desenvolvido do grupo se converterá em dominante. A inibina atua diretamente a nível hipofisário para reduzir a secreção de FSH. Figura 12: onda folicular e relação dos níveis de FSH, estradiol e LH. Fonte: ZARCO, 2018. -/- Figura 13: Recrutamento, seleção e dominação folicular na espécie ovina e influência do FSH e LH nas fases. Fonte: SILVA, E. I. C. da, 2019. -/- A razão pela qual o folículo dominante é capaz de continuar seu desenvolvimento apesar da baixa nas concentrações de FSH é que o folículo é o único que alcançou o grau de progresso necessário para que apareçam os receptores para LH em suas células da granulosa. Esse processo permite ao folículo dominante ser estimulado pela LH, e que requeira baixas concentrações de FSH para manter seu desenvolvimento. A secreção de LH em forma de pulsos de baixa frequência (um pulso a cada quatro a seis horas), característica da fase lútea do ciclo estral; é suficiente para permitir que um folículo dominante continue crescendo por mais dias depois da sua seleção e que mais tarde mantenha-se viável durante alguns dias embora não aumentem de tamanho. Contu-do, se durante o período viável desse folículo não seja finalizada a fase lútea e não diminuam as concentrações de progesterona, o folículo terminará sofrendo atresia devido a exigência de um padrão de secreção acelerada de LH (aproximadamente um pulso por hora) durante o desenvolvimento pré-ovulatório, que somente pode ser produzido com a ausência da progesterona. Uma vez que um folículo dominante sofre atresia deixa de produzir inibina, pelo qual as concentrações de FSH podem elevar-se novamente para iniciar o recrutamento de outro grupo de folículos a partir da qual se origina uma nova onda folicular. Durante o ciclo estral de uma vaca podem gerar-se dois ou três ondas foliculares; somente em raros casos quatro. A etapa de dominância folicular da primeira onda na grande maioria dos casos não coincide com a regressão do corpo lúteo, pelo qual o primei-ro folículo dominante quase invariavelmente termina em atresia. Em algumas vacas o fo-lículo dominante da segunda onda ainda está viável quando se produz a regressão do corpo lúteo e acelera-se a secreção de LH, pelo qual esse segundo folículo dominante se converte em folículo pré-ovulatório e, ao final ovula. Em outros animais o segundo folícu-lo dominante também perde a sua viabilidade antes da regressão do corpo lúteo, por onde nesses animais se inicia uma terceira onda folicular, da qual surge o folículo que finalmen-te ovulará depois de produzir-se a regressão do corpo lúteo. Sem importar a onda em que se origine, uma vez que um folículo dominante é ex-posto a alta frequência de secreção de LH que se produz depois da regressão do corpo lúteo, aumenta ainda mais sua secreção de estradiol até que as altas concentrações desse hormônio comecem a exercer um feedback positivo para a secreção do LH. Isso provoca-rá a aceleração da frequência de secreção do LH até que os pulsos são tão frequentes que começam a ficar por cima e produzir-se o pico pré-ovulatório de LH, que é responsável pela realização da ovulação e a maturação final do ovócito. -/- •___DIFERENÇAS ENTRE ESPERMATOGÊNESE E OVOGÊNESE -/- Enquanto que na fêmea a ovogênese inicia-se durante a vida fetal, no macho a es-permatogênese começa na puberdade. Na fêmea, a partir de um ovócito primário se origi-na um óvulo; no macho, de um espermatócito primário se produzem, teoricamente, quatro espermatozoides. Outra característica interessante é que enquanto a fêmea já conta desde o nasci-mento com todos os ovócitos que necessitará na vida adulta, o macho necessitará chegar a puberdade para iniciar o desenvolvimento das células sexuais, já que ao nascer somente possui gonócitos precursores das células germinais, células de Sertoli e intersticiais. Na vida adulta de uma fêmea, o número de células germinais desaparece paulati-namente. Uma vez iniciada a espermatogênese no macho, a cada ciclo do epitélio seminí-fero as células germinais são renovadas mantendo a provisão para toda a vida reprodutiva. Na fêmea, a meiose sofre duas interrupções em seu transcurso, e no macho é ininterrupta. Figura 14: representação em diagramação comparativa do desenvolvimento da gametogênese. -/- Principais pontos abordados sobre as diferenças entre a gametogênese masculina e feminina: ❙ Na ovogênese a meiose contêm-se em duas ocasiões esperando acontecimentos externos para prosseguir. Já na espermatogênese não existe a suspensão da meiose. ❙ A espermatogênese é um processo contínuo, enquanto que a ovogênese pode completar exclusivamente um óvulo em cada ciclo estral; já que só pode ser completada por mais de um nas espécies que ovulam vários ovócitos no caso das porcas, cadelas, gatas etc. ❙ Na espermatogênese existem células de reserva que permitem a continuação du-rante toda a vida, enquanto que na ovogênese o número de ovócitos primários é limitado. A fêmea somente conta com os que nasceu, e eles não se dividem. ❙ Na espermatogênese obtém-se até 256 espermatozoides para cada espermatogo-nia que inicia o processo, enquanto que na ovogênese somente se obtém um óvulo a partir de cada ovócito primário. ❙ Durante a espermatogênese se produz uma metamorfose que transforma as es-permátides em espermatozoides. Na ovogênese não ocorre um processo análogo. ❙ Na espermatogênese, durante a meiose produzem-se quatro espermátides a partir de cada espermatócito primário. Na ovogênese se produz somente um óvulo a partir de cada ovócito primário; produz, ademais, dois corpos polares. ❙ Todos os óvulos que se produzem durante a ovogênese contém um cromossomo X, enquanto que a metade dos espermatozoides possuem um cromossomo Y e a outra metade um cromossomo X. ❙ Na espermatogênese produzem-se centenas ou dezenas de milhões de esperma-tozoides por dia, enquanto que na ovogênese se produz um ou alguns óvulos a cada ciclo estral. ❙ A espermatogênese produz gametas macroscópicos e com motilidade própria, enquanto que a ovogênese produz gametas grandes e imóveis. -/- REFERÊNCIAS BIBLIOGRÁFICAS -/- ABDEL-RAOUF, Mohammed et al. The postnatal development of the reproductive organs in bullswith special reference to puberty.(Including growth of the hypophysis and the adrenals). Acta endocrinologica, n. Suppl No. 49, 1960. ADONA, Paulo Roberto et al. Ovogênese e foliculogênese em mamíferos. Journal of Health Sciences, v. 15, n. 3, 2013. AERTS, J. M. J.; BOLS, P. E. J. Ovarian follicular dynamics: a review with emphasis on the bovine species. Part I: Folliculogenesis and pre‐antral follicle development. Reproduction in domestic animals, v. 45, n. 1, p. 171-179, 2010. AERTS, J. M. J.; BOLS, P. E. J. Ovarian follicular dynamics. A review with emphasis on the bovine species. Part II: Antral development, exogenous influence and future prospects. Reproduction in domestic animals, v. 45, n. 1, p. 180-187, 2010. ALBERTINI, David F.; CARABATSOS, Mary Jo. Comparative aspects of meiotic cell cycle control in mammals. Journal of molecular medicine, v. 76, n. 12, p. 795-799, 1998. AUSTIN, Colin Russell; SHORT, R. Reproduction in mammals. Cambridge, 1972. BAKER, T. G. Oogenesis and ovulation. In. Reproduction in Mammals I Germ Cells and Fertilization, p. 29-30, 1972. BEARDEN, Henry Joe et al. Reproducción animal aplicada. México: Manual Moderno, 1982. BIGGERS, John D.; SCHUETZ, Allen W. Oogenesis. University Park Press, 1972. BINELLI, Mario; MURPHY, Bruce D. Coordinated regulation of follicle development by germ and somatic cells. Reproduction, Fertility and Development, v. 22, n. 1, p. 1-12, 2009. CHIARINI-GARCIA, Helio; RUSSELL, Lonnie D. High-resolution light microscopic characterization of mouse spermatogonia. Biology of reproduction, v. 65, n. 4, p. 1170-1178, 2001. CHOUDARY, J. B.; GIER, H. T.; MARION, G. B. Cyclic changes in bovine vesicular follicles. Journal of animal science, v. 27, n. 2, p. 468-471, 1968. CLERMONT, Yves; PEREY, Bernard. Quantitative study of the cell population of the seminiferous tubules in immature rats. American Journal of Anatomy, v. 100, n. 2, p. 241-267, 1957. COSTA, DEILER SAMPAIO; PAULA, T. A. R. Espermatogênese em mamíferos. Scientia, v. 4, 2003. CUNNINGHAM, James. Tratado de fisiologia veterinária. Elsevier Health Sciences, 2011. CUPPS, Perry T. (Ed.). Reproduction in domestic animals. Elsevier, 1991. DA SILVA, Emanuel Isaque Cordeiro. Fisiologia Clínica do Ciclo Estral de Vacas Leiteiras: Desenvolvimento Folicular, Corpo Lúteo e Etapas do Estro. 2020. Acervo pessoal. DA SILVA, Emanuel Isaque Cordeiro. Fisiologia da Reprodução Animal: Ovulação, Controle e Sincronização do Cio. 2020. Acervo pessoal. DUKES, Henry Hugh; SWENSON, Melvin J.; REECE, William O. Dukes fisiologia dos animais domésticos. Editora Guanabara Koogan, 1996. EPIFANO, Olga; DEAN, Jurrien. Genetic control of early folliculogenesis in mice. Trends in Endocrinology & Metabolism, v. 13, n. 4, p. 169-173, 2002. ERICKSON, B. H. Development and senescence of the postnatal bovine ovary. Journal of animal science, v. 25, n. 3, p. 800-805, 1966. REFERÊNCIAS BIBLIOGRÁFICAS -/- FELDMAN, Edward C. et al. Canine and feline endocrinology-e-book. Elsevier health sciences, 2014. FUSCO, Giuseppe; MINELLI, Alessandro. The Biology of Reproduction. Cambridge University Press, 2019. GALINA-HIDALGO, Carlos Salvador. A study of the development of testicular function and an evaluation of testicular biopsy in farm animals. 1971. Tese de Doutorado. Royal Veterinary College (University of London). GALLICANO, G. Ian. Composition, regulation, and function of the cytoskeleton in mammalian eggs and embryos. Front Biosci, v. 6, p. D1089-1108, 2001. GILBERT, Scott F. Biología del desarrollo. Ed. Médica Panamericana, 2005. GNESSI, Lucio; FABBRI, Andrea; SPERA, Giovanni. Gonadal peptides as mediators of development and functional control of the testis: an integrated system with hormones and local environment. Endocrine reviews, v. 18, n. 4, p. 541-609, 1997. HAFEZ, Elsayed Saad Eldin; HAFEZ, Bahaa. Reprodução animal. São Paulo: Manole, 2004. HEDGER, Mark P. Testicular leukocytes: what are they doing?. Reviews of reproduction, v. 2, n. 1, p. 38-47, 1997. HUTSON, James C. Testicular macrophages. In: International review of cytology. Academic Press, 1994. p. 99-143. HYTTEL, P. Gametogênese. In. HYTTEL, Poul; SINOWATZ, Fred; VEJLSTED, Morten. Embriologia veterinária. São Paulo: Elsevier Brasil, 2012. JOHNSON, Martin H. Essential reproduction. Nova Jersey: John Wiley & Sons, 2018. JONES, Richard E.; LOPEZ, Kristin H. Human reproductive biology. Academic Press, 2013. KIERSZENBAUM, Abraham L.; TRES, Laura L. Primordial germ cell‐somatic cell partnership: A balancing cell signaling act. Molecular Reproduction and Development: Incorporating Gamete Research, v. 60, n. 3, p. 277-280, 2001. MATZUK, Martin M. et al. Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science, v. 296, n. 5576, p. 2178-2180, 2002. MCLAREN, Anne. Germ and somatic cell lineages in the developing gonad. Molecular and cellular endocrinology, v. 163, n. 1-2, p. 3-9, 2000. MCKINNON, Angus O. et al. (Ed.). Equine reproduction. John Wiley & Sons, 2011. MERCHANT-LARIOS, Horacio; MORENO-MENDOZA, Norma. Onset of sex differentiation: dialog between genes and cells. Archives of medical research, v. 32, n. 6, p. 553-558, 2001. MINTZ, Beatrice et al. Embryological phases of mammalian gametogenesis. Embryological phases of mammalian gametogenesis., v. 56, n. Suppl. 1, p. 31-43, 1960. MORALES, M. E. et al. Gametogénesis. I. Revisión de la literatura, con enfoque en la ovogénesis. Medicina Universitaria, v. 8, n. 32, p. 183-9, 2006. NAKATSUJI, NORIO; CHUMA, SHINICHIRO. Differentiation of mouse primordial germ cells into female or male germ cells. International Journal of Developmental Biology, v. 45, n. 3, p. 541-548, 2002. NILSSON, Eric; PARROTT, Jeff A.; SKINNER, Michael K. Basic fibroblast growth factor induces primordial follicle development and initiates folliculogenesis. Molecular and cellular endocrinology, v. 175, n. 1-2, p. 123-130, 2001. REFERÊNCIAS BIBLIOGRÁFICAS -/- NORRIS, David O.; LOPEZ, Kristin H. The endocrinology of the mammalian ovary. In: Hormones and reproduction of vertebrates. Academic Press, 2011. p. 59-72. PEDERSEN, Torben. Follicle growth in the immature mouse ovary. European Journal of Endocrinology, v. 62, n. 1, p. 117-132, 1969. PINEDA, Mauricio H. et al. McDonald's veterinary endocrinology and reproduction. Iowa state press, 2003. ROSER, J. F. Endocrine and paracrine control of sperm production in stallions. Animal Reproduction Science, v. 68, n. 3-4, p. 139-151, 2001. RUSSELL, Lonnie D. et al. Histological and histopathological evaluation of the testis. International journal of andrology, v. 16, n. 1, p. 83-83, 1993. RÜSSE, I.; SINOWATZ, F. Gametogenese. Lehrbuch der Embryologie der Haustiere, p. 42-92, 1991. SAITOU, Mitinori; BARTON, Sheila C.; SURANI, M. Azim. A molecular programme for the specification of germ cell fate in mice. Nature, v. 418, n. 6895, p. 293-300, 2002. SALISBURY, Glenn Wade et al. Physiology of reproduction and artificial insemination of cattle. WH Freeman and Company., 1978. SAWYER, Heywood R. et al. Formation of ovarian follicles during fetal development in sheep. Biology of reproduction, v. 66, n. 4, p. 1134-1150, 2002. SCARAMUZZI, R. J.; MARTENSZ, N. D.; VAN LOOK, P. F. A. Ovarian morphology and the concentration of steroids, and of gonadotrophins during the breeding season in ewes actively immunized against oestradiol-17β or oestrone. Reproduction, v. 59, n. 2, p. 303-310, 1980. SEIDEL JR, G. E. et al. Control of folliculogenesis and ovulation in domestic animals: puberal and adult function. In: 9th International Congress on Animal Reproduction and Artificial Insemination, 16th-20th June 1980. II. Round tables. Editorial Garsi., 1980. p. 11-16. SKINNER, Michael K. Cell-cell interactions in the testis. Endocrine Reviews, v. 12, n. 1, p. 45-77, 1991. SMITZ, J. E.; CORTVRINDT, Rita G. The earliest stages of folliculogenesis in vitro. Reproduction, v. 123, n. 2, p. 185-202, 2002. SORENSEN, Anton Marinus. Reproducción animal: principios y prácticas. México, 1982. SUTOVSKY, Peter; MANANDHAR, Gaurishankar. Mammalian spermatogenesis and sperm structure: anatomical and compartmental analysis. In. The sperm cell: Production, maturation, fertilization, regeneration, p. 1-30, 2006. TAZUKE, Salli I. et al. A germline-specific gap junction protein required for survival of differentiating early germ cells. Development, v. 129, n. 10, p. 2529-2539, 2002. VAN STRAATEN, H. W. M.; WENSING, C. J. G. Leydig cell development in the testis of the pig. Biology of Reproduction, v. 18, n. 1, p. 86-93, 1978. TURNBULL, K. E.; BRADEN, A. W. H.; MATTNER, P. E. The pattern of follicular growth and atresia in the ovine ovary. Australian Journal of Biological Sciences, v. 30, n. 3, p. 229-242, 1977. WASSARMAN, Paul M. Gametogenesis. Londres: Academic Press, 2012. WROBEL, K.-H.; SÜß, Franz. Identification and temporospatial distribution of bovine primordial germ cells prior to gonadal sexual differentiation. Anatomy and embryology, v. 197, n. 6, p. 451-467, 1998. REFERÊNCIAS BIBLIOGRÁFICAS -/- ZARCO, L. Gametogénese. In. PORTA, L. R.; MEDRANO, J. H. H. Fisiología reproductiva de los animales domésticos. Cidade do México: FMVZ-UNAM, 2018. ZIRKIN, Barry R. et al. Endocrine and Paracrine Regulation of Mammalian Spermatogenesis. In: Hormones and Reproduction of Vertebrates. Academic Press, 2011. p. 45-57. -/- REALIZAÇÃO -/- . (shrink)
Wittgenstein’s and Heidegger’s objections against the possibility of a science of aesthetics were influential on different sides of the analytic/continental divide. Heidegger’s anti-scientism leads him to an alētheic view of artworks which precedes and exceeds any possible aesthetic reduction. Wittgenstein also rejects the relevance of causal explanations, psychological or physiological, to aesthetic questions. The main aim of this paper is to compare Heidegger with Wittgenstein, showing that: (a) there are significant parallels to be drawn between Wittgenstein’s and Heidegger’s anti-scientism about (...) aesthetics, and that (b) their anti-scientism leads both towards partly divergent criticisms of what I will call ‘aestheticism’. The divergence is mainly due to a broader metaphilosophical disagreement concerning appeals to ordinary language. Thus situating the two philosophers’ positions facilitates a possible critical dialogue between analytic and continental approaches in aesthetics. (shrink)
HORMÔNIOS E SISTEMA ENDÓCRINO NA REPRODUÇÃO ANIMAL -/- OBJETIVO -/- As glândulas secretoras do corpo são estudadas pelo ramo da endocrinologia. O estudante de Veterinária e/ou Zootecnia que se preze, deverá entender os processos fisio-lógicos que interagem entre si para a estimulação das glândulas para a secreção de vários hormônios. -/- Os hormônios, dentro do animal, possuem inúmeras funções; sejam exercendo o papel sobre a nutrição, sobre a produção de leite e sobre a reprodução, os hormônios desempenham um primordial papel (...) quanto ao funcionamento do animal. -/- Nesse capítulo, o estudante identificará os hormônios relevantes para o controle reprodutivo, suas características e o uso clínico dos mesmos. -/- -/- INTRODUÇÃO -/- A endocrinologia é a ciência que se encarrega do estudo do sistema endócrino: um sistema de comunicação entre as células de um organismo; esse trabalho de comunicação é compartilhado com o sistema nervoso já que ambos sistemas possuem características distintas que lhes permite complementar-se para alcançar uma adequada coordenação das funções. Em algumas ocasiões o sistema nervoso e o sistema endócrino interagem direta-mente na transmissão de uma mensagem, pelo qual se conhece como sistema neuroendó-crino. -/- -/- OS HORMÔNIOS -/- A endocrinologia é a ciência que se encarrega do estudo dos hormônios e seus e-feitos. De maneira tradicional os hormônios são considerados como “substâncias secreta-das em direção a circulação pelas glândulas especializadas, e que exercem uma função sobre um órgão branco”. Essa definição, no entanto, é limitada e imprecisa. É necessário ser mais pontual, já que os hormônios não são produzidos em qualquer célula da glândula, senão nas células específicas. Por exemplo, o hormônio luteinizante (LH) é produzido pelos gonadotropos da adenohipófise e não por qualquer outro tipo de célula hipofisária. Da mesma maneira, falar de um “órgão branco” não é exato, já que os hormônios atuam somente nas células que tenham receptores específicos para esse hormônio, e não outras células do mesmo órgão; logo, falar de uma “célula branca” é mais apropriado que falar de um “órgão branco”. As células brancas do LH no testículo são as células de Leydig e as células brancas do hormônio folículo estimulante (FSH) no mesmo órgão são as células de Sertoli. -/- Mediante o supracitado, uma definição mais apropriada de hormônio é a seguinte: “Os hormônios são reguladores biológicos, produzidos e secretados em quantidades pe-quenas pelas células vivas, que depois de viajar pelo meio extracelular atuam sobre as cé-lulas brancas, onde exercem uma ação específica”. -/- É importante levar em conta que os hormônios somente regulam (estimulam ou inibem) funções que já existem na célula branca. Ademais, os hormônios são extraordina-riamente potentes, pelo qual se requerem quantidades muito pequenas para induzir uma resposta na célula. As concentrações circulantes da maioria dos hormônios estão na ordem de nanogramas (10-9 g) ou pictogramas (10-12 g) por mililitro. -/- Etimologicamente o termo “endócrino” significa “secretar em direção adentro”, já que os hormônios são secretados em direção ao interior do organismo (o sangue ou o espaço intracelular), em diferença das secreções exócrinas (em direção ao exterior), que são secretadas em direção a luz de um órgão, como o intestino no caso das enzimas pan-creáticas. -/- Algumas substâncias, sem deixar de ser hormônios, recebem uma classificação adicional em relação ao seu local de ação, ao tipo de células que lhes produzem, ou a al-guma outra característica. Agora, serão descritas algumas dessas características (figura 1). -/- -/- Parahormônio ou hormônio local -/- A maioria dos hormônios são transportados pela circulação desde seu local de se-creção até a célula branca. No entanto, alguns hormônios exercem seu efeito em células adjacentes aquelas que foram produzidos, ao qual não é necessário seu transporte através da circulação geral. Esse tipo de substâncias são chamadas de parahormônios ou hormô-nios locais, e sua liberação é denominada como secreção parácrina. Um exemplo é a pros-taglandina F2 alfa (PGF₂α), que é produzida no epitélio uterino (endométrio) e provoca as contrações nas células musculares do mesmo órgão (miométrio). Deve-se tomar em conta que a mesma substância poderia se comportar em outros casos como um hormônio clássico, atuando em um órgão distinto ao local de sua produção; é o caso da mesma PGF₂α de origem endometrial quando atua sobre as células do corpo lúteo do ovário, pro-vocando sua regressão. A classificação de uma substância como hormônio ou parahormô-nio não depende de sua estrutura química, senão da relação espacial existente entre a célu-la que o produz e a célula branca. -/- -/- Neurohormônio -/- A maioria dos hormônios são produzidos pelas células de origem epitelial, porém, muitos deles são produtos pelos neurônios, logo denominados como neurohormônios. To-dos os neurônios segregam alguma substância, porém tratam-se dos neurohormônios quando o neurônio que os produz despeja-os diretamente em direção a circulação geral, através da qual chegam aos órgãos para exercer seu efeito, sejam na indução, inibição ou estimulação do mesmo. -/- Esse processo é diferente dos neurotransmissores, os quais também são secretados por um neurônio, mas exercem seu efeito em uma célula adjacente com o qual o neurônio estabelece uma sinapse (neuroma com neurônio, neurônio com célula muscular, neurônio com célula glandular). A classificação de uma substância como hormônio ou como neuro-hormônio não depende de sua estrutura química, senão do tipo de célula que o produz. Uma mesma substância é um hormônio quando ele é produzido por uma célula epitelial e um neurohormônio se é produzido por um neurônio. A ocitocina, por exemplo, é secre-tada na neurohipófise por neurônios hipotalâmicos, nesse caso se trata de um neurohor-mônio, mas também é secretada por células do corpo lúteo dos ruminantes, e se trata nesse caso, de um hormônio. A distinção entre um neurohormônio e um hormônio é um neuro-transmissor, da mesma forma, não depende de sua estrutura química, e sim do local onde é secretado. Por exemplo, a dopamina atua como neurotransmissor quando se libera em sinapse da substância negra do mesencéfalo z mas atua como neurohormônio quando é liberada por neurônios hipotalâmicos em direção a circulação do eixo hipotálamo-hipofisário. -/- -/- Pré-hormônio -/- Em alguns casos, os hormônios são secretados em forma inativa (pré-hormônio), que requer uma transformação posterior para converter-se na forma ativa de hormônio. O angiotensinógeno circulante somente cobrará atividade biológica ao se transformar em angiotensina por ação da enzima renina. Algumas substâncias podem atuar como hormô-nios m alguns casos e como pré-hormônios em outros. A testosterona, por exemplo, atua como hormônio nas células musculares, aos quais possui um efeito anabólico direto. O certo é que para a testosterona induzir a masculinização dos órgãos genitais externos em um efeito macho é necessário que seja transformada previamente em 5α-di-hidrotes-tosterona pela enzima 5α-redutase presente nas células de tecido branco, por onde, nesse caso a testosterona é um pré-hormônio de di-hidrotestosterona. -/- -/- Feromônio -/- Os hormônios são mensagens químicas que comunicam a células distintas dentro do mesmo organismo, embora existam casos aos que requerem uma comunicação quími-ca entre organismos diferentes, em geral da mesma espécie. As substâncias empregadas para esse fim denominam-se feromônios. Essas substâncias devem possuir a capacidade de dispersão sobre o ambiente, pelo que nos organismos terrestres geralmente trata-se de substâncias voláteis, enquanto que os feromônios de organismos aquáticos geralmente são substâncias hidrossolúveis. Embora muitos feromônios possuam uma função sexual ou reprodutiva como é o caso de muitas espécies como a canina em que a fêmea em cio dispersa grandes quantidades de feromônios que são captados de longe pelos machos, todavia esse não é sempre o caso, e eles podem ser utilizados para outros tipos de comunicação, como é o caso dos feromônios utilizados pelas formigas para sinalização da rota em direção a fonte de alimentação. E como as abelhas no sentido de orientação da fonte de pólen até a colmeia. Muitos desses feromônios podem ser artificializados, isto é, elaborados pelo homem em laboratório para o estudo ou manipulação de algum animal. -/- -/- O SISTEMA ENDÓCRINO COMO UM SISTEMA DE COMUNICAÇÃO -/- O sistema endócrino é um sistema de comunicação que tem como objetivo coor-denar as funções das células de diferentes órgãos para mantença da homeostase do orga-nismo e promover seu desenvolvimento, crescimento e reprodução. Também ajuda os or-ganismos a adaptarem-se as mudanças de ambiente e ao habitat. O sistema endócrino representa um sistema de comunicação do tipo sem fio, diferentemente do sistema nervo-so que é um sistema de comunicação com fio. -/- Em todo o sistema de comunicação existe uma série de elementos que são necessá-rios para a realização da comunicação de forma efetiva. Esses elementos incluem o emis-sor, a mensagem, o sinal, o meio de transporte do sinal, o receptor, o efetor, a resposta e o feedback ou retroalimentação (figura 1). Todos os elementos são igualmente importan-tes e uma deficiência em qualquer deles pode interromper ou alterar a comunicação. -/- -/- Figura 1: componentes do sistema endócrino de comunicação. Fonte: ZARCO, 2018. -/- -/- Emissor ou transmissor -/- É o elemento responsável pela transmissão de uma mensagem; poderíamos com-pará-lo com a redação de notícias de um canal de televisão. Antes de decidir quais serão as notícias que serão transmitidas esse dia, em que ordem se apresentarão e que ênfase lhes darão, as pessoas da redação analisa rodas as informações disponíveis: provenientes de seus repórteres, de agências de notícias internacionais, publicada em jornais do dia, a existente na internet ou disponíveis através de redes sociais; isso significa que as mensa-gens transmitidas pelo emissor não são aleatórias, e sim respondem a uma análise respon-sável das necessidades de informação. -/- No sistema endócrino o emissor é a célula que produz e secreta um hormônio. Co-mo todo emissor responsável, a mesma célula analisa toda a informação relevante dispo-nível, tal como a concentração de diversos metabólitos no sangue, a concentração de ou-tros hormônios, e as mensagens que recebem por via nervosa, antes de decidir se secretará seu hormônio, em que quantidade o fará e com que frequência. Por essa razão, ao estudar o sistema endócrino não somente devemos conhecer a célula transmissora, e sim qual é a informação que a célula pode receber, e como a analisa e a prioriza para construir sua mensagem. -/- -/- Mensagem -/- É a informação transmitida pelo emissor. No caso de um sistema de notícias tele-visivas a mensagem é a notícia, por exemplo “Vaca dá a luz trigêmeos, um caso raro no Brasil”. No sistema endócrino a mensagem que se transmite é uma instrução para que em outra célula se realize determinadas ações. Por exemplo, os neurônios produtores de GnRH no hipotálamo de uma coelha, ao analisar as concentrações de estradiol circulantes e a informação nervosa procedente de neurônios sensoriais nós órgãos genitais da fêmea, podem “saber” que nos ovários existam folículos lisos para ovularem e que a coelha está copulando, pelo qual decidem transmitir a mensagem “Solicita-se os gonadotropos da adenohipófise a liberação de LH em quantidade suficiente para provocar a ovulação”. -/- -/- Sinal -/- É a forma a qual se codifica a mensagem para permitir sua difusão. No caso de um jornal, a mensagem (por exemplo a notícia da vaca que deu a luz trigêmeos) se codifi-ca em forma de ondas de rádio de uma determinada frequência, amplitude e intensidade; no caso do sistema endócrino a mensagem (a necessidade de realizar uma função celular) é codificada em forma de hormônio secretado em determinada quantidade, frequência e amplitude. Para o exemplo descrito supra, a mensagem se codifica na forma de uma grande elevação nas concentrações de GnRH no sangue do sistema porta hipotálamo-hipofisário. -/- É necessário tomar em conta que o emissor codifica a mensagem de forma tal que quando o receptor decifre o sinal obtenha a informação originalmente contida na mensa-gem. No entanto, o sinal pode ser interpretado de diferentes formas por receptores distintos, o que pode provocar respostas contrárias as esperadas. A notícia transmitida por um jornal de rádio, por exemplo, poderia estar codificada em forma de ondas de rádio que, casualmente, para o sistema eletrônico de um avião signifiquem “baixe a altitude e acelere”, razão pela qual é proibido utilizar aparelhos eletrônicos durante a decolagem e aterrissagem desses aparelhos. -/- Do mesmo modo, a mensagem codificada na forma de secreção de estradiol por parte dos ovários pode ser interpretado pelo sistema nervoso de uma ovelha como uma ordem para apresentar conduta de estro, pelas células do folículo ovariano como uma instrução para sofrer mitose e secretar o líquido folicular, pelos gonadotropos como uma ordem para a secreção de um pico pré-ovulatório de LH, e pelas células do endométrio como uma instrução para sintetizar receptores para a ocitocina. Dessa forma, o mesmo sinal (secreção de estradiol) pode conter diferentes mensagens para diferentes células do organismo. -/- Em alguns casos, pode-se apresentar uma resposta patológica devido as diversas formas de interpretação de uma mensagem, por exemplo, a repetição da secreção de adrenalina em um indivíduo estressado pode resultar no desenvolvimento de um proble-ma de hipertensão arterial. Por isso é necessário conhecer a maneira em que cada célula endócrina codifica suas mensagens, assim como a forma em que esses sinais podem ser interpretados em diferentes órgãos e tecidos, em diferentes momentos da vida do animal, em animais com diferentes antecedentes de espécies diferentes. -/- -/- Meio de transporte do sinal -/- O sinal tem que viajar ou difundir-se desde o emissor até o receptor, e em seu ca-minho pode ser modificado de diversas formas. Os sinais de rádio, por exemplo, viajam através da atmosfera e durante esse trajeto podem ser bloqueados por uma barreira física (como ocorre com as ondas de rádio AM em um túnel), ampliadas por uma estação repeti-dora, alteradas por um campo eletromagnético (uma aspiradora funcionando ao lado da sala de transmissão), entre outros. Da mesma forma, os sinais endócrinos que geralmente viajam no sangue, podem ser modificados ao longo do seu caminho. -/- A PGF₂α é inativada ao passar pelo pulmão, o angiotensinógeno é ativado pela re-nina na circulação, e a testosterona pode ser transformada em di-hidrotestosterona nas células da pele e na próstata, ou em estrógenos nos adipócitos e nos neurônios. Por tudo isso, o sinal que finalmente chega ao receptor pode ser diferente do transmitido pelo emissor. -/- Portanto, ao estudar qualquer sistema hormonal devemos conhecer as possíveis modificações que o hormônio pode sofrer desde o momento em que é secretado até que se uma ao seu receptor na célula branca. -/- -/- Receptor -/- É o elemento que recebe o sinal e interpreta a mensagem contida nele. No caso de um jornal de TV, o receptor é o canal correspondente (por exemplo o canal 2) em um aparelho de televisão. É importante ressaltar que um aparelho de TV possui muitos canais distintos, mas somente receberá mensagens se estiver ligado e sintonizado no canal que está transmitindo a mensagem de interesse. Ou seja, o receptor tem que estar ativo. -/- No caso das mensagens endócrinas os receptores são moléculas específicas nas células brancas. Essas moléculas são proteínas membranais ou citoplasmáticas (segundo o tipo de hormônio), que possui uma alta afinidade por seu hormônio, o que lhes permite registrar a mensagem apenas das baixíssimas concentrações em que os hormônios circu-lam. Os receptores possuem uma alta especificidade, o que significa que somente se unem a seu próprio hormônio, e não a outras substâncias. Em algumas ocasiões um receptor pode receber diversos hormônios do mesmo tipo; por exemplo o receptor de andrógenos pode unir testosterona, androstenediona, di-hidrotestosterona e diversos andrógenos sin-téticos. Apesar disso, cada um desses hormônios pode possuir uma afinidade diferente pelo receptor, pelo qual alguns serão mais potentes que outros para estimulação. -/- Em geral existe um número limitado de moléculas receptoras em cada célula, logo diz-se que os receptores são “saturáveis”, o qual significa que uma vez que todos sejam ocupados a célula não pode receber mais moléculas desse hormônio. Por essa razão a magnitude da resposta de um determinado hormônio vai aumentando conforme se aumen-tam suas concentrações, porém ao saturar-se os receptores alcançam um ponto em que a resposta já não aumenta embora sigam incrementando as concentrações hormonais já que os receptores não permanecem livres para unirem-se ao excesso de moléculas do hormô-nio. -/- As células, em contrapartida, podem regular tanto o número de receptores presen-tes como a afinidade destes por seu hormônio; isso significa que a magnitude da resposta antes um determinado sinal endócrino pode ser distinta em diferentes momentos da vida de um animal; depende do estado dos receptores presentes nos tecidos, pelo qual é impor-tante conhecer quais são os fatores que podem aumentar ou reduzir o número de recepto-res em uma célula, assim como aqueles que podem aumentar ou diminuir a afinidade des-ses receptores por seus hormônios. -/- -/- Efetor -/- É o elemento encarregado de responder a uma mensagem realizando uma ação, e é um elemento diferente do receptor. Vale ressaltar que no caso de uma transmissão de televisão o receptor é o aparelho sintonizado no canal de interesse, porém o efetor é o te-lespectador que está exposto as notícias. Esse telespectador sofrerá mudanças que podem resultar em uma ação. A mudança pode ser evidente (e auxiliar as vítimas de um desastre), ou simplesmente uma mudança potencial (ao se inteirar de uma notícia não se pode produ-zir nenhuma mudança aparente até que alguém lhe pergunte: já se interessou?, E nesse caso a resposta será: “sim” em lugar do “não”). Deve-se tomar em conta que o efetor pode estar ausente embora o receptor esteja presente (um televisor ligado em uma sala vazia). O efetor também pode estar inativado (o telespectador encontra-se dormindo); quando assim ocorre não irá produzir uma resposta embora o receptor esteja presente. -/- No sistema endócrino o efetor é, em geral, um sistema celular encarregado de rea-lizar uma determinada função. Na maioria dos casos trata-se de sistemas enzimáticos cuja função é estimulada pela união do hormônio ao seu receptor. Alguns hormônios, por exemplo, atuam através do sistema AMP cíclico (AMPc) logo, a união do hormônio ao seu receptor resulta na ativação de uma proteína chamada Proteína Gs, que ativa a enzima Adenil-ciclase (ou adenilato ciclase), a qual transforma ATP em AMPc. A presença de AMPc resulta na ativação de uma enzima cinese de proteínas que fosforiza outras enzi-mas, o que pode ativá-las ou inativá-las; nesses casos, é gerada uma cascata de eventos que resulta em uma mudança na atividade celular; por exemplo, a cadeia de eventos que produz-se em resposta ao AMPc quando a célula de Leydig do testículo é estimulada pela união do LH a seu receptor resulta na produção de testosterona, enquanto que a estimula-ção de um adipócito provocada pela união da adrenalina a seu receptor, que também atua através do sistema AMPc, resulta em uma série de eventos que provocam, finalmente, a liberação de ácidos graxos livres em direção a circulação. -/- Nos exemplos supra, o AMPc é considerado um mensageiro intracelular, já que o receptor capta o sinal (hormônio) no exterior da célula, o que resulta na produção de um novo sinal (mudança nas concentrações de AMPc) no interior da célula. Embora o sistema AMPc seja utilizado por muitos hormônios, não é um sistema universal; existem outros sistemas mensageiros intracelulares que também são utilizados para responder os hormô-nios que não entram nas células, por exemplo o sistema cálcio-calmodulina, ou os siste-mas baseados em receptores com atividade de cineses de tirosina. Nos casos que os hor-mônios possa atravessar livremente a membrana celular, como acontece com os hormôni-os esteroides, o hormônio se une a receptores presentes no citoplasma, que depois ingres-sam ao núcleo celular para intervir na regulação da transcrição do genoma. -/- De maneira independente ao mecanismo de ação de um determinado hormônio, sua presença finalmente desencadeará mudanças em um ou mais sistemas efetores da célula, o que permitirá que a mesma responda a mensagem que o emissor transmitiu originalmente. É evidente que para compreender a ação de qualquer hormônio é indispensável conhecer seu mecanismo de ação, o papel dos mensageiros intracelulares e as característi-cas dos sistemas efetores. Deve-se conhecer também quais são os fatores que afetam a transdução da mensagem já que uma célula pode regular seus sistemas efetores e dessa forma ter uma resposta maior, menor ou alterada ante a mesma mensagem. -/- -/- Resposta -/- Como mencionado, qualquer mensagem provoca uma resposta (embora somente seja potencial) sobre o efetor que a recebe. No sistema endócrino, as mensagens hormonais viajam constantemente pelo organismo e são captadas por todas as células que possuem receptores ativos para um determinado hormônio. Uma única célula pode ter receptores para diferentes hormônios, pelo qual pode estar recebendo diversas mensagens simultaneamente, e cada uma dessas mensagens pode afetar a resposta de outras mensagens. Por exemplo, a presença de progesterona pode alterar a resposta das células endometriais ao estradiol. Ademais, as células podem estar recebendo ao mesmo tempo uma informação não hormonal, como as concentrações de diversos metabólitos na circulação, ou a recebida pelo sistema nervoso. A célula analisa toda essa informação e com base nela decide se deve responder a mensagem hormonal que está recebendo como deve responder, com que intensidade e durante quanto tempo. A resposta final pode ser uma resposta física imediata (contração, secreção de um hormônio armazenado previa-mente), uma modificação bioquímica a curto prazo (síntese de um determinado hormônio ou outra substância), ou o início de uma série de mudanças que levam a uma mudança a longo prazo (divisão celular, diferenciação celular, crescimento, morte celular). -/- -/- Feedback ou retroalimentação -/- Quando em um sistema de comunicação se produz uma resposta, em muitos casos essa resposta engloba a geração de informação que vai retornar ao emissor, e que agora constituirá um ou mais dos elementos que o emissor tomará em conta antes de transmitir uma nova mensagem. Assim, se um jornal transmite uma mensagem “menina pobre necessita de doação de roupas”, a resposta de alguns efetores (telespectadores) que virão a doar roupas será conhecida pelo emissor, que assim saberá que já não será mais neces-sário voltar a transmitir a mensagem, o que o fará tomar a decisão de transmitir uma mensagem diferente como “menina pobre já não necessita de roupas, porém requer de ali-mentos para sua família”. Essa modificação da mensagem provocada pela resposta do efetor é conhecida como retroalimentação. -/- De forma análoga, no sistema endócrino a resposta da célula efetora geralmente é reconhecida pelo emissor, que em consequência modifica sua mensagem. Na maioria dos casos se produz uma retroalimentação negativa, que consiste em que a resposta do efetor provoca uma redução na intensidade da mensagem transmitida pelo emissor. Quando os gonadotropos de uma vaca secretam hormônio folículo estimulante (FSH), as células da granulosa de seus folículos ovarianos respondem realizando diversas funções, uma das quais é a secreção de inibina. A elevação nas concentrações circulantes de inibina é capta-da pelos gonadotropos, que logo sabem que o FSH já transmitiu sua mensagem, pelo que reduzem a secreção deste hormônio. A retroalimentação negativa é muito importante em qualquer sistema endócrino já que permite manter as concentrações hormonais dentro de limites aceitáveis. -/- A retroalimentação negativa pode ser de onda ultracurta, curta ou longa. A onda ultracurta é quando o hormônio produzido por uma célula pode inibir sua própria secre-ção. A retroalimentação negativa de onda curta é quando o hormônio produzido por uma célula pode inibir a de um órgão imediatamente superior na hierarquia (por exemplo, quando a progesterona produzida pelo corpo lúteo do ovário inibe a secreção de LH pelos gonadotropos da hipófise). O feedback negativo de onda longa sucede quando o hormônio produzido por uma célula inibe a uma célula de um órgão que está dois ou mais níveis por cima na escala hierárquica, por exemplo, quando a testosterona produzida pelas células de Leydig do testículo inibe diretamente os neurônios produtores de GnRH, saltando as células produtoras de LH e adenohipófise. -/- Existe também a retroalimentação positiva, da qual o primeiro hormônio estimula a secreção de um segundo hormônio, o que por sua vez estimula o primeiro, com o que se estabelece um círculo progressivo de estimulação. Um exemplo de retroalimentação positiva é a que se produz pouco antes da ovulação entre o LH hipofisário e o estradiol de origem folicular. Os dois hormônios se estimulam mutuamente até que alcancem níveis elevados de LH que provoca a ovulação. O círculo de feedback positivo termina quando o pico pré-ovulatório de LH mudanças sobre o folículo que incluem a perda da capacidade de produção de estrógenos. Todo o sistema de retroalimentação positiva deve ter um final abrupto sobre o qual se rompe o ciclo de estimulação mútua, já que não mais deverá ser produzida quantidades elevadas dos hormônios, até que todos os recursos do organismo sejam utilizados para esse fim. -/- -/- CLASSIFICAÇÃO QUÍMICA DOS HORMÔNIOS -/- Do ponto de vista químico e sobre o estudo da Fisiologia da Reprodução Animal, existem quatro grupos principais de hormônios: polipeptídios, esteroides, aminas e prostaglandinas; dentro de cada grupo, por sua vez, existem mais grupos de inúmeros outros hormônios dispostos em subdivisões. -/- -/- Hormônios polipeptídios -/- Os polipeptídios são cadeias de aminoácidos. Quando uma dessas cadeias está constituída por poucos aminoácidos é denominada simplesmente de polipeptídios, mas quando uma cadeia de aminoácidos é longa e adquire uma configuração espacial de três dimensões o polipeptídio é denominado proteína (figura 2). Muitos neurohormônios hipo-talâmicos são polipeptídios, como o liberador de gonadotropinas (GnRH), constituído por 10 aminoácidos, o hormônio liberador de tirotropina (TRH), formado por 3 aminoácidos, o somatostatina, constituído por 14 aminoácidos, a ocitocina que é formada por 8 aminoá-cidos etc. O sistema nervoso central e a hipófise produzem peptídeos opioides. -/- Entre os hormônios polipeptídios que por seu tamanho são considerados proteínas encontramos a prolactina, o hormônio do crescimento, os lactogênios placentários, a relaxina, a insulina e fatores de crescimento parecidos com a insulina (IGFs). Existe outro grupo de hormônios polipeptídios classificados como glicoproteínas. Trata-se de proteí-nas que possuem carboidratos unidos a alguns de seus aminoácidos. -/- -/- Figura 2: classificação dos hormônios polipeptídios. Fonte: ZARCO, 2018. -/- -/- Há um grupo de hormônios glicoproteicos que constituem uma família de molécu-las similares entre si, dentro das quais estão o hormônio luteinizante (LH), o hormônio folículo estimulante (FSH), o hormônio estimulante da tireoide (TSH), a gonadotropina coriônica humana (hCG) e a gonadotropina coriônica equina (eCG); todos estão formados pela subunidade alfa que é idêntica para os hormônios de uma determinada espécie animal, e por uma subunidade beta específica para cada hormônio. As duas subunidades mantém-se unidas através de ligações dissulfeto. Deve-se mencionar que os carboidratos associados as glicoproteínas podem ser distintos em diferentes idades, épocas do ano ou estados fisiológicos; esse processo é conhecido como microheterogenicidade, e recente-mente têm-se dado grande importância a seu estudo, já que é reconhecido fatores tais como a vida média de um hormônio ou sua atividade biológica podem ser modificados de acordo com o tipo de carboidratos presentes na molécula. -/- Existe outra família de hormônios glicoproteicos, que incluem a inibina A, a B, e a activina A, AB e B. Todos os hormônios polipeptídios possuem algumas características comuns. Em primeiro lugar, trata-se de moléculas hidrossolúveis que não conseguem atravessar as membranas celulares pelo qual se unem a receptores transmembranais que flutuam sobre a parede externa da membrana da célula branca e requerem de um segundo mensageiro intracelular, como o cálcio ou o AMPc, para levar sua mensagem ao interior da célula. -/- Os hormônios desse grupo, não podem ser administrados por via dérmica, oral, retal ou intravaginal, já que não podem atravessar a pela ou as mucosas intestinais, retais ou vaginais. Os polipeptídios são digeridos no estômago, o que também impede sua admi-nistração oral. Outra característica que deve-se tomar em conta é que as proteínas (embora não os polipeptídios pequenos) podem se desnaturalizar por fatores como o calor (são termolábeis), a congelação, ou mudanças de pH m a desnaturalização consiste em uma mudança na forma natural da proteína, o que leva a perda de sua função. Por essa razão, ao trabalhar com hormônios proteicos devem-se tomar cuidados especiais durante seu manejo para evitar a exposição a fatores desnaturalizantes. -/- -/- Hormônios esteroides -/- São moléculas derivadas do colesterol; a célula esteroidogênica pode sintetizar o colesterol, obtê-lo de reservas intracelulares ou da circulação. Na célula esteroidogênica existem diversas enzimas que atuam sequencialmente sobre a molécula de colesterol, provocando mudanças sucessivas até obter o hormônio final que será secretado, ao qual dependerá das enzimas que estão presentes e ativas na célula. -/- Existem cinco grupos principais de hormônios esteroides; os progestágenos, os estrógenos, os glicocorticoides e os mineralocorticoides (figura 3). -/- Os progestágenos são hormônios que favorecem o desenvolvimento da gestação; seus efeitos incluem, entre outros, a estimulação da secreção endometrial de substâncias nutritivas para o embrião, a estimulação do desenvolvimento embrionário e placentário, a inibição das contrações uterinas, bem como fazer com que a cérvix fique fechada. O principal hormônio natural desse grupo é a progesterona, mas existem uma grande quantidade de progestágenos sintéticos utilizados na medicina veterinária, tais como o acetato fluorogestona (FGA), o acetato de melengestrol (MGA), o altrenogest e o norgestomet. -/- Os estrógenos são os hormônios femininos responsáveis, entre outras funções, dos sinais do estro ou receptividade sexual nas fêmeas. A maior parte de seus efeitos estão no alcance da fertilização do ovócito. Os estrógenos, além de estimular a conduta sexual feminina, favorecem, entre outras coisas, a abertura da cérvix para permitir a passagem do espermatozoide, e as contrações uterinas para impulsionar o sêmen em direção aos ovidutos. O principal estrógeno natural é o estradiol 17β, outros membros naturais do grupo são a estrona, a equilina e a equilenina, esses dois últimos presentes exclusivamente em éguas gestantes. Também existem numerosos estrógenos sintéticos, tais como o valerato de estradiol, o benzoato de estradiol e o cipionato de estradiol. -/- Os andrógenos são hormônios masculinos. Possuem uma grande quantidade de efeitos encaminhados a alcançar o êxito reprodutivo do macho, como estimular a conduta sexual, estimular a produção de espermatozoides e estimular as secreções das glândulas sexuais acessórias. O andrógeno principal é a testosterona, outros andrógenos naturais incluem a androstenediona e a di-hidrotestosterona. Existe também inúmeros andrógenos sintéticos. -/- Os glicocorticoides ou corticosteroides possuem funções principalmente metabó-licas e de adaptação ao estresse. O principal corticosteroide na maioria das espécies é o cortisol, enquanto que nos ratos e outros roedores é a corticosterona. Na reprodução, os corticosteroides desempenham um papel relevante, em particular durante o parto e a lac-tação. -/- Os mineralocorticoides, como a aldotestosterona, se encarregam da regulação do balanço de líquidos e eletrólitos no organismo. -/- -/- Figura 3: subgrupos dos hormônios esteroides. Fonte: ZARCO, 2018. -/- -/- Os hormônios esteroides como grupos são hidrossolúveis, pelo qual podem atra-vessar livremente as membranas celulares, por essa razão utilizam receptores intracelula-res que se encontram no citoplasma da célula branca; também pode-se administrar por via oral, pela pele, e através das mucosas retal ou vaginal. São moléculas termoestáveis e não são digeridas no estômago, embora algumas possas sofrer modificações na pH ácido, alterando sua função. -/- -/- Aminas -/- São moléculas derivadas de um aminoácido que se modifica pela ação de enzimas específicas. Existem dois tipos de hormônios aminas: as catecolaminas e as indolaminas (figura 4). As catecolaminas derivam do aminoácido tirosina, e incluem a dopamina, a a-drenalina e a noradrenalina. As indolaminas derivam-se do triptofano, e incluem a seroto-nina e a melatonina. -/- As aminas são moléculas hidrossolúveis que não podem atravessar as membranas celulares e portanto atuam através de receptores membranais e segundos mensageiros intracelulares. -/- -/- Figura 4: classificação dos hormônios peptídicos. Fonte: ZARCO, 2018. -/- -/- Prostaglandinas -/- São substâncias derivadas do ácido araquidônico. A principal fonte desse ácido graxo são os fosfolipídios da membrana celular, a partir dos quais se podem liberar o ácido araquidônico mediante a ação da enzima fosfolipase A2. O ácido araquidônico se transforma em prostaglandina H mediante a ação da enzima ciclo-oxigenase (ou sintetase de prostaglandinas), que mais adiante se transforma em diferentes prostaglandinas especí-ficas pela ação de diversas enzimas. O tipo de prostaglandina produzido por cada célula dependerá do complemento de enzimas presentes. -/- A prostaglandina mais importante na reprodução é a PGF2α, a qual é responsável pela destruição do corpo lúteo na maioria das espécies; também provoca contrações uteri-nas, pelo qual é importante para o parto, e o transporte dos espermatozoides e a involução uterina depois do parto. Na prática veterinária a PGF2α natural (dinoprosr) ou seus seme-lhantes sintéticos (cloprostenol, luprostiol etc.) são utilizados para a sincronização do ciclo estral, para a indução do parto e para tratar diversas patologias. Outra prostaglandina com algumas ações relacionadas com a reprodução é a prostaglandina E2 (PGE2). -/- As prostaglandinas são substâncias anfipáticas (com propriedades hidrossolúveis e lipossolúveis), pelo qual podem atravessar as membranas celulares. -/- REFERÊNCIAS BIBLIOGRÁFICAS -/- AUSTIN, Colin Russell; SHORT, R. Reproduction in mammals. Cambridge, 1972. -/- BEARDEN, Henry Joe et al. Reproducción animal aplicada. México: Manual Moderno, 1982. -/- BECKER, Jill B. et al. (Ed.). Behavioral endocrinology. Mit Press, 2002. -/- BITTAR, Edward (Ed.). Reproductive endocrinology and biology. Elsevier, 1998. -/- BURNSTEIN, Kerry L. (Ed.). Steroid hormones and cell cycle regulation. Kluwer Academic Pub., 2002. -/- CUNNINGHAM, James. Tratado de fisiologia veterinária. Elsevier Health Sciences, 2011. -/- CUPPS, Perry T. (Ed.). Reproduction in domestic animals. Elsevier, 1991. -/- DUKES, Henry Hugh; SWENSON, Melvin J.; REECE, William O. Dukes fisiologia dos animais domésticos. Editora Guanabara Koogan, 1996. -/- FELDMAN, Edward C. et al. Canine and feline endocrinology-e-book. Elsevier health sciences, 2014. -/- FUSCO, Giuseppe; MINELLI, Alessandro. The Biology of Reproduction. Cambridge University Press, 2019. -/- GILBERT, Scott F. Biologia del desarrollo. Ed. Médica Panamericana, 2005. -/- GORE, Andrea C. GnRH: the master molecule of reproduction. Springer Science & Business Media, 2002. -/- HAFEZ, Elsayed Saad Eldin; HAFEZ, Bahaa. Reprodução animal. São Paulo: Manole, 2004. -/- HERNÁNDEZ PARDO, Blanca. Endocrinología: Lo esencial de un vistazo. México: Panamericana, 2016. -/- HYTTEL, Poul; SINOWATZ, Fred; VEJLSTED, Morten. Embriologia veterinária. São Paulo: Elsevier Brasil, 2012. -/- ILLERA MARTIN, Mariano. Endocrinología veterinaria y fisiología de la reproducción. Madrid: COLIBAC, 1984. -/- JOHNSON, Martin H. Essential reproduction. Nova Jersey: John Wiley & Sons, 2018. -/- MANDOKI, Juan José et al. Hormone multifunctionalities: a theory of endocrine signaling, command and control. Progress in biophysics and molecular biology, v. 86, n. 3, p. 353-377, 2004. -/- MANDOKI, Juan José et al. Reflections on the mode of functioning of endocrine systems. Archives of medical research, v. 41, n. 8, p. 653-657, 2010. -/- MCKINNON, Angus O. et al. (Ed.). Equine reproduction. Nova Jersey: John Wiley & Sons, 2011. -/- MELMED, Shlomo (Ed.). The pituitary. Londres: Academic press, 2010. -/- NORRIS, David O.; LOPEZ, Kristin H. (Ed.). Hormones and reproduction of vertebrates. Academic Press, 2010. -/- PARHAR, Ishwar S. (Ed.). Gonadotropin-releasing hormone: molecules and receptors. Elsevier, 2002. -/- PIMENTEL, C. A. Fisiologia e endocrinologia da reprodução da fêmea bovina. I Simpósio de Reprodução de Bovinos, Porto Alegre, RS, 2002. -/- PINEDA, Mauricio H. et al. McDonald's veterinary endocrinology and reproduction. Iowa state press, 2003. -/- RAMOS DUEÑAS, J. I. Endocrinología de la reproducción animal. 2018. -/- SALISBURY, Glenn Wade et al. Physiology of reproduction and artificial insemination of cattle. WH Freeman and Company., 1978. -/- SANDERS, Stephan. Endocrine and reproductive systems. Elsevier Health Sciences, 2003. -/- SORENSEN, Anton Marinus. Reproducción animal: principios y prácticas. México, 1982. -/- SQUIRES, E. James. Applied animal endocrinology. Cambridge: Cabi, 2010. -/- YEN, Samuel SC; JAFFE, Robert B.; BARBIERI, Robert L. Endocrinología de la Reproducción. Fisiología, fisiopatología y manejo clínico. Madrid: Ed. Médica Panamericana, 2001. -/- ZARCO, L. Endocrinología. In. PORTA, L. R.; MEDRANO, J. H. H. Fisiología reproductiva de los animales domésticos. Cidade do México: FMVZ-UNAM, 2018. (shrink)
DESENVOLVIMENTO EMBRIONÁRIO E DIFERENCIAÇÃO SEXUAL -/- E. I. C. da Silva Departamento de Agropecuária – IFPE Campus Belo Jardim Departamento de Zootecnia – UFRPE sede -/- 1.1 INTRODUÇÃO O sexo foi definido como a soma das diferenças morfológicas, fisiológicas e psicológicas que distinguem o macho da fêmea permitindo a reprodução sexual e assegurando a continuidade das espécies. Os processos de diferenciação sexual são realizados durante o desenvolvimento embrionário, onde ocorre a proliferação, diferenciação e maturação das células germinativas e primordiais, precursoras (...) de ovócitos e espermatozoides em fêmeas e machos, respectivamente. Assim, os embriões machos e fêmeas iniciam o seu desenvolvimento de forma semelhante, de modo que em ambos os sexos se estabelecem em estruturas idênticas a partir das quais se formarão os órgãos reprodutores correspondentes a cada sexo. O conhecimento da origem e do desenvolvimento do aparelho genital é indispensável para entender sua função e as alterações que produzem infertilidade ou esterilidade. 1.2 DETERMINAÇÃO DO SEXO CROMOSSÔMICO Nos mamíferos, o sexo cromossômico é determinado no momento da fertilização, quando um óvulo, que contém um cromossomo X, é fecundado por um espermatozoide portador de um cromossomo X ou um cromossomo Y. No primeiro caso, o complemento cromossômico seria XX, o que originaria uma fêmea (sexo homogamético), e no segundo daria como resultado um macho com a fórmula cromossômica XY (sexo heterogâmico). 1.3 A GÔNADA INDIFERENCIADA A primeira manifestação das gônadas se aprecia no embrião em forma de um par de eminências longitudinais chamadas cristas ou dobras gonodais, situadas em ambos os lados da linha média entre os mesonefros (rins em desenvolvimento) e do mesentério dorsal. Nos embriões dos mamíferos, as células germinativas primordiais (CGP) manifestam-se em estágios precoces do desenvolvimento, podendo ser detectadas pela primeira vez na metade da gastrulação. As CGP são células grandes, de citoplasma claro e núcleo grande e redondo, localizadas na parede do saco vitelino, perto do alantoide. Essas células possuem grande capacidade de proliferação e vão migrar desde o endoderma do intestino e o epitélio do saco vitelino, através do mesentério, até as cristas gonodais. Isso ocorre por volta do 26° dia da gestação no bovino. Sua migração realiza-se graças aos movimentos de translocação passiva e deslocamento ameboide ativo. Desconhece-se o mecanismo pelo qual estas células são dirigidas para as cristas gonodais, porém foram estudadas algumas moléculas que se expressam durante sua migração e que poderiam desempenhar um papel importante na diferenciação deste tipo celular. A fosfatase alcalina é uma enzima que tem sido usada como marcador de CGP para determinar a sua origem e migração. Num estudo recente, foi inserido um marcador fluorescente que se exprime unicamente nas células germinativas primordiais de embriões transgênicos, e utilizando este marcador e a fosfatase alcalina determinou-se a origem e o padrão de migração destas células. O primeiro sinal de diferenciação das células germinativas primordiais é a expressão de fosfatase alcalina, e esta apareceu pela primeira vez na parte mais posterior da linha primitiva. No sétimo dia de desenvolvimento no embrião do camundongo, o endoderma visceral (AF+) é substituído pelo endoderma definitivo (AF-) originado na parte anterior da linha primitiva. O fator de transcrição Oct-4 é expresso nas CGP de ambos os sexos, pelo que acredita-se estar envolvido na mantença a totipotêncialidade das células. O receptor tirosina quinase, cujo ligante é o fator de Steel, é outra das moléculas que expressam as CGP. Tem sido demonstrado que este receptor possui um papel muito importante na sobrevivência deste tipo celular. Existem outros fatores que promovem a sobrevivência e/ou proliferação de CGP in vitro. Em experiências realizadas com o fator de transformação beta I (TGFβ-I), observou-se que este tem um efeito negativo sobre a proliferação das CGP. Outra atividade que tem sido postulada a este fator é o de um agente quimioatraente que possivelmente possa direcionar a migração destas células para a gônada. a) Um formado pelas células germinativas primordiais (precursoras dos gametas masculinos ou femininos), rodeadas de células somáticas das quais posteriormente se derivarão as células de Sertoli no macho e as células da granulosa na fêmea. b) O tecido que formará o estroma da gônada: tecido conjuntivo, vasos sanguíneos e as células intersticiais com atividade esteroidogênica (células de Leydig no testículo e a teca interna do ovário). As células somáticas do primórdio gonodal originam-se do mesoderma. Inicialmente são de três tipos: mesenquimáticas, mesoteliais e endoteliais. As células mesenquimáticas e mesoteliais iniciam grande atividade proliferativa ao chegar as CGP. Observa-se então uma condensação de células de origem mesotelial e mesenquimatoso que forma um agregado compacto denominado "blastema gonodal". A partir deste primórdio embrionário, diferenciam-se dois tecidos gonodais: os cordões sexuais e o estroma. Os cordões sexuais são arranjos epiteliais que se encontram delimitados por uma folha basal, e dentro deles encontramos as CGP. Por sua vez, no estroma encontram-se células do tipo mesenquimático e vasos sanguíneos. Neste momento, as gônadas são indiferenciadas e bipotencialmente sexuais, sendo impossível diferenciar, morfologicamente, uma gônada masculina de uma feminina, mas no caso dos machos genéticos já existe uma diferenciação da gônada a nível molecular. Nesta fase já se encontram presentes as estruturas das quais se desenvolvem os dutos mesonéfricos ou de Wolff precursores do aparelho genital masculino e os dutos paramesonéfricos ou de Müller que darão origem ao aparelho reprodutor feminino. Há uma série de fatores envolvidos no desenvolvimento precoce da gônada, entre os quais o fator esteroidogênico I (SFI: Steroidogenic fator l), que é um membro da subfamília de receptores nucleares, receptores órfãos. Este fator de transcrição tem um local de ligação ao DNA composto por dois dedos-de-Zinc. O SFI foi identificado como um ativador de genes envolvidos na biossíntese de esteroides em diferentes células. O SFI está presente durante o desenvolvimento embrionário em regiões associadas com funções endócrinas como gônadas, adrenais, pituitárias e hipotálamos. Os animais homozigotos para o gene SFI defeituoso, necessitam de gônadas e adrenais e têm a função gonadotrófica alterada. Os ratos sem SFI carecem de gonadotrofos e têm um desenvolvimento anormal do núcleo ventro-medial do hipotálamo; em particular as gônadas deixam de se desenvolver entre os dias 11 a 15 e degeneram-se por apoptose. No entanto, a crista genital forma-se e é colonizada pelas células germinativas, o que indica que estas continuam a receber o sinal adequado para a sua migração. Portanto, o SFI não está envolvido no desenvolvimento precoce da gônada e do sistema urogenital, mas parece estar envolvido na manutenção do crescimento das células somáticas presentes na gônada indiferenciada. O gene associado ao tumor de Wilms (WTI: Wilm's tumor Associated) está envolvido no desenvolvimento da gônada e do rim. Durante o desenvolvimento embrionário, WTI se expressa em todo o mesoderma intermediário e posteriormente na gônada indiferenciada, bem como no rim em formação. WTI regula o sinal indutivo do mesênquima para o epitélio celômico dos mesonefros. Se este for o caso, então WTI é responsável pelo crescimento da crista genital ao dirigir a entrada do epitélio celômico. Dado que estas células darão origem às células de Sertoli, a carência de WTI pode causar o desenvolvimento de embriões XY como fêmeas simplesmente porque não se formam as células de Sertoli. Em geral, todos os genes importantes na diferenciação do mesoderma intermediário e do sistema urogenital intervêm no desenvolvimento da gônada precoce. 1.4 DIFERENCIAÇÃO GONODAL O desenvolvimento das gônadas e ductos genitais descritos até o momento, é o mesmo para ambos os sexos. Igualmente, os genes descritos, que estão envolvidos no desenvolvimento das gônadas, ductos genitais e migração das células germinativas, afetam igualmente os embriões com genótipo XX ou XY. A gônada primitiva consiste anatomicamente de uma medula (interna) e uma crosta (externa), e de acordo com o local onde ocorre a colonização das células germinativas, diferenciara em testículo ou um ovário, respectivamente. Nos mamíferos, a primeira manifestação estrutural de diferenciação sexual é detectada na gônada dos machos, onde as células germinativas estão localizadas na medula. A diferenciação do testículo inicia-se quando os cordões sexuais se separam do epitélio celômico como consequência dos arranjos produzidos por uma invasão do mesênquima e vasos sanguíneos que provoca a compactação dos cordões, agora denominados cordões testiculares. As células que rodeiam os cordões se achatam e formam as células mioides, que são responsáveis pela formação das membranas basais. As células do epitélio interno, ou seja, as células de Sertoli, têm duas funções principais: o suporte das CGP e a síntese da hormona antimulleriana, responsável pela regressão dos ductos de Müller e secretada durante o período de diferenciação sexual. As células do estroma que rodeiam os cordões testiculares diferenciam-se para formar vários tipos de células: células mioides, fibroblastos, endotélio e células de Leydig, que são as mais importantes pela sua atividade endócrina. Posteriormente, os cordões testiculares dão origem aos túbulos seminíferos, que contêm o epitélio que produzirá os espermatozoides ao chegar à puberdade. Na fêmea, durante os estágios iniciais de diferenciação gonodal, não se observam mudanças em relação à gônada indiferenciada, só pode-se observar um certo crescimento devido à proliferação de células somáticas e germinativas. As células germinativas iniciam um período de proliferação, que termina com o início da meiose. Iniciada a meiose, dá-se o processo de foliculogênese; neste momento os cordões epiteliais se fragmentam, de tal maneira que cada ovócito fica rodeado de células epiteliais cobertas por uma folha basal fina (figura 1). Para que a gônada primitiva se desenvolva em testículo é indispensável a presença do cromossoma Y, independentemente do número de cromossomas X que contenha o genoma de um indivíduo. O gene determinante do testículo encontra-se localizado no cromossoma Y, denominado sry em ratos e SRY em humanos. O gene sry se expressa durante o desenvolvimento embrionário na crista genital de embriões de camundongos. A expressão é detectável no dia 10,5, pouco depois do aparecimento das cristas genitais, atinge o seu máximo durante o dia 11,5 e mantém-se até pouco depois de ocorrerem os primeiros sinais morfológicos de diferenciação testicular no dia 12,5. Este padrão de expressão é compatível com a teoria de que sry atua induzindo a ativação dos genes (figura 2) que conduzem ao desenvolvimento testicular, sem que exista a necessidade da expressão contínua de sry para manter a diferenciação do testículo após o dia 12,5. Como mencionado anteriormente, a gônada primitiva é composta por vários tipos de células. No entanto, as células germinativas primordiais não são o local de expressão do sry, já que os embriões que necessitam de células germinativas mantêm a expressão de sry e desenvolvem o sexo gonodal normalmente. As células somáticas na gônada em desenvolvimento incluem também as células de suporte. Sabe-se que é nestas células que o sry é expresso para que se diferenciem em células de Sertoli, e a expressão transitória de sry indica que deve ativar a outros genes para a manutenção das células de Sertoli. Uma vez diferenciadas as células de Sertoli, elas se encarregarão da diferenciação do resto das células na gônada. -/- Figura 1: Representação da diferenciação dos órgãos genitais internos. Adaptado de BRONSON, 1989. Figura 2: Cascada de genes envolvidos na diferenciação sexual, adaptado de KOOPMAN, 1999. O fator sry é necessário para a diferenciação do testículo. Embora não se conheçam os genes que provavelmente regulam esse gene, estudos realizados em camundongos demonstram que este gene parece coordenar-se com certos genes autossômicos. Entre estes genes autossômicos, o sox9, que é produzido pelas células de Sertoli uma vez que são estimuladas por sry, de modo que sox9 é um dos genes relacionados estruturalmente com sry. O Sox9 funciona como um fator de transcrição, mas não se sabe se a proteína tem qualquer outra função estrutural; este gene exprime-se abundantemente nos condrócitos e está relacionado com defeitos do aparelho ósseo chamados displasia campomélica. Curiosamente, os pacientes XY com esta condição sofrem frequentemente de reversão do sexo. O Sox9 é um dos poucos genes, além do SRY, do qual as mutações demonstraram interferir com a determinação sexual masculina. No entanto, apenas 75% dos pacientes com anomalias esqueléticas de tipo displasia campomélica têm reversão sexual e não foram encontrados casos de reversão sexual devido a um defeito de Sox9 que não seja acompanhado de defeitos esqueléticos. Isso indica que o Sox9 é apenas um membro da rede de genes que são ativados para determinar a diferenciação sexual, enquanto a rota que rege a condrogênese é mais sensível a perturbações deste. O momento em que se detecta a expressão do gene Sox9 (11dpc em ratos) coincide com a máxima expressão de sry, o que poderia indicar a possibilidade de que sry regule positivamente a Sox9. De fato, na região do promotor de Sox9 há um local de união ao que potencialmente se pode unir o sry. A expressão de Sox9 durante a diferenciação sexual sugere um papel abaixo de sry na diferenciação das células de Sertoli. O cromossoma X também é importante na diferenciação gonodal. O gene DAX-I foi isolado do lócus DSS (Dosage sensitive sex reversal) do cromossoma X. DAX-I é parte da cascata de determinação sexual, mas não é necessário para a formação do testículo. DAX-I é um membro dos receptores nucleares conhecidos como receptores órfãos. Este gene demonstrou ser um poderoso repressor da transcrição de SFI e de vários genes. Os padrões de expressão de DAX-I são complementares daqueles de SFI, ambos expressos nas cristas genitais. Em resumo, dada a evidência exposta, desenvolveu-se a hipótese de que DAX-I é um antagonista de sry; esse antagonismo é dependente dos níveis relativos de DAX-I e sry e de um limiar que varia de espécie para espécie. A DAX-I foi classificada como o gene antitestículo. Na fêmea (cariótipo XX) é importante que ocorra a inativação de um dos cromossomas sexuais X para que se mantenha o equilíbrio genético ao igualar o conteúdo de DNA dos cromossomas. Esse cromossoma inativado constitui o chamado corpúsculo de Barr. No entanto, para que a meiose se realize, é necessário dos dois cromossomas X ativos nos ovócitos para assegurar a diferenciação ovárica e a fertilidade. 1.5 DIFERENCIAÇÃO DOS DUCTOS SEXUAIS O embrião possui, além das gônadas indiferenciadas, dois sistemas de ductos: os de potencialidade masculina denominam-se ductos de Wolff ou mesonéfricos, e os de potencialidade feminina se chamam ductos de Müller ou paramesonéfricos (figura 1). Se a diferenciação gonodal levou à formação de um testículo, a partir do ducto mesonéfrico ou de Wolff se desenvolverão os ductos eferentes, o epidídimo, os ductos deferentes e as vesículas seminais. As hormonas importantes no desenvolvimento do aparelho genital masculino são a testosterona, produzida pelas células de Leydig, e sua forma 5α reduzida, a 5α di-hidrotestosterona. Acredita-se que a testosterona é responsável pela virilização dos ductos de Wolff, e a di-hidrotestosterona dos órgãos genitais externos. No macho, os canais de Müller atrofiam-se devido à ação de uma hormona fetal de origem testicular denominada hormona inibidora das estruturas de Müller (HIM) ou hormona antimulleriana. Este processo começa assim que os cordões espermáticos se formam e se diferenciam as células de Sertoli. A existência de HIM foi proposta baseada em estudos realizados em bezerras freemartin, devido à existência de uma hormona responsável pela atresia dos ductos de Müller que na fêmea dá origem ao útero e aos ovidutos. Essa hormona provoca a involução do aparelho genital do bovino nas gestações gemelares nas quais os produtos de diferente sexo têm comunicação sanguínea por ter ocorrido a anastomose dos vasos de ambas as placentas (figura 3). A HIM é uma glicoproteína pertencente à subfamília de TGFβ, é expressa pelas células que darão origem às células de Sertoli e é um dos primeiros marcadores de diferenciação nestas células. A HIM é secretada na vida adulta pelas células de Sertoli no testículo e por células da granulosa no ovário. No rato a HIM é expressa-se no 12° dia em um teste padrão que segue muito de perto o aumento na expressão de sry. No macho, esta secreção de HIM continua durante a vida fetal e adulta, contudo os níveis de HIM declinam na puberdade devido a um aumento na secreção de testosterona. Vários fatores intervêm na regulação do gene de HIM, incluindo os acima descritos SFI e Sox9. O gene HIM contém segmentos de DNA que são conservados em várias espécies de vertebrados. Existe um nexo de ligação para SFI, que ativa a transcrição de HIM. A mutação no local de ligação de SFI resulta em reversão do sexo em indivíduos XY incluindo genitais femininos normais, presença de um útero formado enfatizando a importância de SFI na determinação sexual e na expressão de HIM. Embora SFI seja um bom candidato como regulador de HIM, é expresso em outras células, como as de Leydig e adrenais, que não expressam HIM. Em contrapartida, Sox9 é expresso unicamente nas células de Sertoli que são as produtoras de HIM. O gene HIM também tem um nexo de ligação para Sox9. Além disso, Sox9 pode atuar sinergicamente com SFI para promover a secreção de HIM. Ao contrário destes dois fatores de transcrição, DAX-I antagoniza a ação de Sox9 e provavelmente SFI sobre o promotor de HIM. Assim, para que as células de Sertoli secretem HIM, a transcrição de DAX-I deve diminuir. Figura 3: Representação da diferenciação dos órgãos genitais externos. Adaptado de BRONSON, 1989. Os ductos de Wolff tornam-se o sistema de ejaculação do macho. A porção mais próxima dos testículos dá origem ao epidídimo, a parte central ao ducto deferente e a porção mais distal às vesículas seminais. A próstata e a parte membranosa da uretra do macho desenvolvem-se a partir da porção pélvica do seio urogenital. A virilização e diferenciação dos ductos de Wolff dependem da produção de testosterona pelo testículo. Quanto aos órgãos genitais externos do macho, o tubérculo genital é ampliado e as dobras uretrais se fundem para formar a uretra peniana. A fusão das dobras uretrais aproxima os tubérculos genitais para formar o escroto (figura 4). Figura 4: Diferenciação do aparelho genital da fêmea e do macho. Adaptado de KOOPMAN, 1989. A diferenciação dos órgãos genitais da fêmea ocorre de forma passiva, já que a ausência de testículos e por isso da hormona inibidora dos ductos de Müller (HIM), assim como dos andrógenos virilizantes, favorece o desenvolvimento dos ductos de Müller, enquanto os de Wolff sofrem atrofia. A porção cefálica dos ductos de Müller dá origem aos ovidutos, que na sua terminação caudal se fundem com o útero. O contato dos ductos de Müller com o seio urogenital induz uma intensa proliferação celular que resulta na formação da área uterovaginal localizado entre o seio urogenital e os ductos de Müller. As células do prato uterovaginal proliferam e aumentam a distância entre as duas estruturas criando o espaço que formará a vagina quando o prato é canalizado e forma um lúmen. Em contraste com o que ocorre no macho, na fêmea a maior parte do seio urogenital se mantém exposta na superfície da abertura onde desembocam a vagina e a uretra. O tubérculo urogenital da fêmea tem um crescimento limitado e forma o clitóris. A sequência de passos da diferenciação sexual do aparelho genital é resumida na tabela 1. Tabela 1: Destino em desenvolvimento dos rudimentos sexuais dos fetos macho e fêmea dos mamíferos -/- Rudimento sexual Macho Fêmea Gônada Testículo Ovário Ductos de Müller (Paramesonéfricos) Vestígios Útero, parte da vagina, ovidutos Ductos de Wolff (Mesonéfricos) Ductos eferentes deferentes, epidídimo, vesículas seminais Vestígios Seio urogenital Uretra, próstata, glândulas bulbouretrais Parte da vagina, uretra, vestíbulo, glândulas vestibulares Tubérculo genital Pênis Clitóris Pregas vestibulares Escroto Lábios vulvares Fonte: HAFEZ, 2004. 1.6 DIFERENCIAÇÃO SEXUAL DO HIPOTÁLAMO Os processos de diferenciação sexual não se limitam apenas às células somáticas do organismo do feto, mas incluem também os centros nervosos superiores do cérebro. Assim, da mesma maneira que a gônada e os ductos sexuais se desenvolvem para o tipo feminino ou masculino, propôs-se que o cérebro pode ser "masculinizado" ou permanecer "Feminizado". A diferenciação do hipotálamo vai depender do ambiente esteroidal do neonato e ocorre na fase perinatal. Estes eventos serão de grande transcendência na vida reprodutiva do indivíduo. Tanto a fêmea como o macho nascem com a capacidade de secreção de gonadotropinas de acordo com um padrão cíclico; contudo, no macho, a exposição do hipotálamo à ação dos andrógenos testiculares durante os primeiros dias da vida extrauterina provoca a masculinização, com o qual o hipotálamo do macho é programado para que a secreção de gonadotropinas se realize a um ritmo relativamente constante por parte da hipófise (secreção tônica). Na fêmea, tanto a secreção tônica como a cíclica se conservam. No entanto, observou-se que a injeção de testosterona ou o transplante de testículo na rata fêmea durante os primeiros dias de vida, suprime a sua futura atividade estral (secreção cíclica). Por outro lado, se os ovários forem transplantados para o rato macho normal castrado na idade adulta, o animal não desenvolve qualquer atividade cíclica, mas se os machos transplantados forem castrados ao nascer, o ovário é capaz de efetuar mudanças cíclicas e ovulações. Isto foi demonstrado em roedores, mas não em animais domésticos ou na espécie humana. Portanto, o padrão de secreção de gonadotropinas, seja cíclico ou tônico, não depende da hipófise, mas do hipotálamo e sua correta diferenciação. 1.7 CONCLUSÕES A maioria dos conhecimentos no campo da biologia do desenvolvimento e, muito especificamente, dos processos de diferenciação sexual têm sido originados de estudos relacionados com desordens congênitas, que na sua maioria devem-se a defeitos de genes específicos. A análise detalhada destas desordens permitiu entender alguns mecanismos endócrinos, moleculares e genéticos envolvidos na diferenciação sexual. A identificação do gene sry como determinante do testículo foi uma contribuição crucial e abriu as portas à compreensão dos mecanismos moleculares e celulares relacionados com o desenvolvimento do testículo. Se este gene não estiver presente, é criado um programa genético alternativo para levar a cabo a diferenciação gonodal para o ovário. Finalmente, devemos ter presente que é necessária uma correlação entre mudanças morfológicas e expressão de genes durante o desenvolvimento para entender os mecanismos relacionados com a diferenciação. -/- Apoio -/- Realização -/- REFERÊNCIAS BIBLIOGRÁFICAS ANDERSON, Robert et al. The onset of germ cell migration in the mouse embryo. Mechanisms of development, v. 91, n. 1-2, p. 61-68, 2000. AUSTIN, Colin Russell; SHORT, R. V. Reproduction in Mammals: Volume 1, Germ Cells and Fertilization. Londres: Cambridge University Press, 1972. BRONSON, Franklin H. Mammalian reproductive biology. Chicago: University of Chicago Press, 1989. BUEHR, Mia. The primordial germ cells of mammals: some current perspectives. Experimental cell research, v. 232, n. 2, p. 194-207, 1997. BYSKOV, Anne G. Differentiation of mammalian embryonic gonad. Physiological reviews, v. 66, n. 1, p. 71-117, 1986. CAPEL, Blanche et al. Migration of mesonephric cells into the mammalian gonad depends on Sry. Mechanisms of development, v. 84, n. 1-2, p. 127-131, 1999. CAPEL, Blanche. The battle of the sexes. Mechanisms of development, v. 92, n. 1, p. 89-103, 2000. DERIVAUX, Jules; BARNABÉ, Renato Campanarut. Reprodução dos animais domésticos. Zaragoza: Acribia, 1980. DOMENICE, Sorahia et al. Aspectos moleculares da determinação e diferenciação sexual. Arquivos Brasileiros de Endocrinologia & Metabologia, v. 46, n. 4, p. 433-443, 2002. DONAHOE, Patricia K. et al. Mullerian inhibiting substance activity in bovine fetal, newborn and prepubertal testes. Biology of reproduction, v. 16, n. 2, p. 238-243, 1977. HAFEZ, Elsayed Saad Eldin; HAFEZ, B. Reprodução animal. São Paulo: Manole, 2004. HANLEY, Neil A. et al. Steroidogenic factor 1 (SF-1) is essential for ovarian development and function. Molecular and cellular endocrinology, v. 163, n. 1-2, p. 27-32, 2000. HIORT, Olaf; PAUL-MARTIN, H. The molecular basis of male sexual differentiation. European journal of endocrinology, v. 142, n. 2, p. 101-110, 2000. HOLY, Lubos; MARTÍNEZ JÚSTIZ, G. Colab. Biología de la reproducción bovina. Havana: Revolucionária, 1975. JOSSO, Nathalie et al. The role of anti-Müllerian hormone in gonadal development. Molecular and cellular endocrinology, v. 145, n. 1-2, p. 3-7, 1998. JOST, Alfred et al. Studies on sex differentiation in mammals. In: Proceedings of the 1972 Laurentian Hormone Conference. Londres: Academic Press, 1973. p. 1-41. KNOBIL, Ernst. Knobil and Neill's physiology of reproduction. EUA: Gulf Professional Publishing, 2006. KOFMAN ALFARO, S.; MERCHANT LARIOS, H.; PEREZ PALACIOS, G. Diferenciacion sexual. I. Bases biologicas del dimorfismo sexual. Rev. invest. clín, p. 349-59, 1982. KOOPMAN, Peter. Sry and Sox9: mammalian testis-determining genes. Cellular and Molecular Life Sciences CMLS, v. 55, n. 6-7, p. 839-856, 1999. MCDONALD, L. E. Veterinary endocrinology. Lea & Febiger, Philadelphia, Pa, 1969. MEIZEL, S.; JOHNSON, M. H. Development in mammals. MH Johnson, Ed, v. 3, p. 1-64, 1978. MELLO, Maricilda Palandi de; ASSUMPÇÃO, Juliana de G.; HACKEL, Christine. Genes envolvidos na determinação e diferenciação do sexo. Arquivos Brasileiros de Endocrinologia & Metabologia, v. 49, n. 1, p. 14-25, 2005. -/- REFERÊNCIAS BIBLIOGRÁFICAS MERCHANT-LARIOS, H. Ovarian differentiation. The Vertebrate Ovary, p. 47-81, 1978. MIES FILHO, Antonio. Reprodução dos animais. Porto Alegre: Sulina, 1987. NEF, Serge; PARADA, Luis F. Hormones in male sexual development. Genes & Development, v. 14, n. 24, p. 3075-3086, 2000. PARKER, Keith L.; SCHEDL, Andreas; SCHIMMER, Bernard P. Gene interactions in gonadal development. Annual review of physiology, v. 61, n. 1, p. 417-433, 1999. SWAIN, Amanda; LOVELL-BADGE, Robin. Mammalian sex determination: a molecular drama. Genes & development, v. 13, n. 7, p. 755-767, 1999. WILHELM, Dagmar; PALMER, Stephen; KOOPMAN, Peter. Sex determination and gonadal development in mammals. Physiological reviews, v. 87, n. 1, p. 1-28, 2007. WILSON, Jean D.; GRIFFIN, James E.; GEORGE, Fredrick W. Sexual differentiation: early hormone synthesis and action. Biology of reproduction, v. 22, n. 1, p. 9-17, 1980. -/- Emanuel Isaque Cordeiro da Silva Belo Jardim, 07 de Maio de 2020. (shrink)
I defend the actualist higher-order thought theory against four objections. The first objection contends that the theory is circular. The second one contends that the theory is unable to account for the alleged epistemic position we are in with respect to our own conscious mental states. The third one contends that the theory is unable to account for the evidence we have for the proposition that all conscious mental states are represented. The fourth one contends that the theory does not (...) accommodate the intimacy we have with our own conscious mental states. To some extent, my defense will be heterodox, in the sense that I will show that some objections are satisfactorily answerable even if we concede to the objectors a point that higher-order theorists do not seem to be willing to concede, that is, that the theory is the result of conceptual analysis. (shrink)
Qual è il rapporto tra la mente cosciente e la natura? A tale questione fondamentale si può rispondere in modi molto diversi, a seconda di come si concepiscono sia la mente che la natura. Questo lavoro offre una risposta originale, integrando la fenomenologia husserliana e la concezione enattiva all’interno di una prospettiva unitaria chiamata fenomenologia enattiva. Nel percorso qui sviluppato, il lettore troverà un’analisi ricca e aggiornata di alcune tra le questioni più dibattute nella filosofia della mente e nelle scienze (...) cognitive contemporanee: il “problema difficile” della coscienza e il suo rapporto con l’intenzionalità, lo statuto epistemologico e ontologico delle qualità sensibili, la filosofia del colore, il dibattito sulla cognizione incorporata (embodiment) e l’approccio fenomenologico allo studio del mentale. L’autore sviluppa infine una proposta generale che si articola in una metafisica monistico-neutrale, processuale e relazionale della natura e della coscienza. (shrink)
This study is the first comprehensive analysis of the physical theory of the Islamic philosopher Avicenna (d. 1037). It seeks to understand his contribution against the developments within the preceding Greek and Arabic intellectual milieus, and to appreciate his philosophy as such by emphasising his independence as a critical and systematic thinker. Exploring Avicenna’s method of "teaching and learning," it investigates the implications of his account of the natural body as a three-dimensionally extended composite of matter and form, and examines (...) his views on nature as a principle of motion and his analysis of its relation to soul. Moreover, it demonstrates how Avicenna defends the Aristotelian conception of place against the strident criticism of his predecessors, among other things, by disproving the existence of void and space. Finally, it sheds new light on Avicenna’s account of the essence and the existence of time. For the first time taking into account the entire range of Avicenna’s major writings, this study fills a gap in our understanding both of the history of natural philosophy in general and of the philosophy of Avicenna in particular. (shrink)
Chapter 14. Andrea Timár engages with literary representations of the experience of perpetrators of dehumanization. Her chapter focuses on perpetrators of dehumanization who do not violate laws of their society (i.e., they are not criminals) but exemplify what Simona Forti, inspired by Hannah Arendt, calls “the normality of evil.” Through the parallel examples of Dezső Kosztolányi’s Anna Édes (1926) and Doris Lessing’s The Grass is Singing (1950), Timár first explores a possible clash between criminals and perpetrators of dehumanization, showing literature’s (...) exceptional ability to reveal the gap between ethics and law. Second, she examines novels focalized through perpetrators and the difficult narrative empathy they provoke, arguing that only the critical reading of these novels can make one engage with the potential perpetrator in oneself. As case studies, Timár examines Daniel Defoe’s Robinson Crusoe (1719), which may potentially turn its reader into an accomplice in the process of dehumanization, and J.M. Coetzee’s Foe (1986), which puts on critical display the dehumanizing potentials of both aesthetic representation and sympathy as imaginative violence. Third, she reads Jonathan Littell’s The Kindly Ones [Les Bienveillantes, 2006], which can make the reader question, through the polyphony of the voice of its protagonist, the notions of narrative voice and readerly empathy, only to reveal that the difficulty involved in empathizing with perpetrator characters lies not so much in the characters’ being perpetrators, but rather in their being literary characters. Eventually, Timár briefly touches upon the problem of the aesthetic and the comic via Nabokov’s Lolita (1955) to ask whether one can avoid some necessarily dehumanizing aspects of humor. (shrink)
Jordan agreed to extensive liberalization undertakings under the General Agreement on Trade in Services (“GATS”) that would open some sectors that were previously closed or restricted to foreign suppliers and investors. It undertook horizontal commitments in cross-border movement of individuals and commercial presence covering all types of services.
Importation in fictional discourse is the phenomenon by which audiences include information in the story over and above what is explicitly stated by the narrator. This paper argues that importation is distinct from generation, the phenomenon by which truth in fiction may outstrip what is made explicit, and draws a distinction between fictional truth and fictional records. The latter comprises the audience’s picture of what is true according to the narrator. The paper argues that importation into fictional records operates according (...) to principles that also govern ordinary conversation. An account of fictional records as a species of common ground information is proposed. Two sources of importation are described in detail, presupposition accommodation and conversational implicatures. It is shown that presuppositions are both mandatorily imported and mandatorily generated. By contrast, conversational implicatures are neither mandatorily imported nor mandatorily generated. The paper distinguishes conversational implicatures from contextual inferences. Both rely on background assumptions, yet conversational implicatures moreover depend on assumptions concerning Gricean cooperation. (shrink)
Research on the ethics of algorithms has grown substantially over the past decade. Alongside the exponential development and application of machine learning algorithms, new ethical problems and solutions relating to their ubiquitous use in society have been proposed. This article builds on a review of the ethics of algorithms published in 2016, 2016). The goals are to contribute to the debate on the identification and analysis of the ethical implications of algorithms, to provide an updated analysis of epistemic and normative (...) concerns, and to offer actionable guidance for the governance of the design, development and deployment of algorithms. (shrink)
H. L. A. Hart’s (1907-1992) influence on contemporary philosophy is not restricted to the philosophy of law. As the book’s sub-title suggests and the table of contents confirm, he wrote widely on matters social, political and moral, not just legal. Probably best known for The Concept of Law (1961), Hart also authored a collection of essays on Jeremy Bentham (Essays on Bentham,1982), two books on the morality of criminal law based on his exchange with Lord Patrick Devlin (Law, Liberty and (...) Morality, 1963) and The Morality of the Criminal Law, 1965), one on punishment (Punishment and Responsibility, 1968), a treatise as well as a collection of essays on jurisprudential theory (Definition and Theory in Jurisprudence, 1953, and Essays in Jurisprudence and Philosophy, 1983), and finally a volume on legal causation, co-authored with Tony Honoré (Causation in the Law, 1959). The book under review here, on Hart’s legacy, is divided into six sections: the first is devoted to Hart’s general jurisprudential theory; the second to his writings on criminal law; the third to legal causation; the fourth to concerns of justice; the fifth to legal, political and moral rights; and the sixth and final section to matters of toleration and liberalism. (shrink)
It is sometimes argued that certain sentences of natural language fail to express truth conditional contents. Standard examples include e.g. Tipper is ready and Steel is strong enough. In this paper, we provide a novel analysis of truth conditional meaning using the notion of a question under discussion. This account explains why these types of sentences are not, in fact, semantically underdetermined, provides a principled analysis of the process by which natural language sentences can come to have enriched meanings in (...) context, and shows why various alternative views, e.g. so-called Radical Contextualism, Moderate Contextualism, and Semantic Minimalism, are partially right in their respective analyses of the problem, but also all ultimately wrong. Our analysis achieves this result using a standard truth conditional and compositional semantics and without making any assumptions about enriched logical forms, i.e. logical forms containing phonologically null expressions. (shrink)
Christoph Andreas Leonhard Creuzer (1768-1844), che dedicherà la propria vita alIa carriera ecclesiastica e aIle attività benefiche, pubblica nel 1793 - ancora giovane ed entusiasta della filosofia - un'opera che suscita un certo scalpore, le Considerazioni scettiche sulla libertà del volere, sulla quale prendono posizione, polernicamente, anche Fichte e Schelling. Pur accogliendo i princlpi della filosofia critica, Creuzer sostiene che l'idea di libertà come autonornia della volontà, quale Kant l'ha definita, conduca nienterneno che alio spinozismo, ossia alia negazione dei (...) concetti di imputazione, merito e colpa. Mascherandosi dietro uno scetticismo di comodo, Creuzer mostra corne tale conclusione spinoziana, a cui Kant ha tentato inutilmente di sottrarsi, sia l'esito obbligato tanto della sua filosofia teoretica quanto di quella pratica, che pure mirava in prima istanza a salvaguardare la responsabilità morale. (shrink)
The main aim of this book is to introduce the topic of limited awareness, and changes in awareness, to those interested in the philosophy of decision-making and uncertain reasoning. (This is for the series Elements of Decision Theory published by Cambridge University Press and edited by Martin Peterson).
It is often assumed that we are only blameworthy for that over which we have control. In recent years, however, several philosophers have argued that we can be blameworthy for occurrences that appear to be outside our control, such as attitudes, beliefs and omissions. This has prompted the question of why control should be a condition on blameworthiness. This paper aims at defending the control condition by developing a new conception of blameworthiness: To be blameworthy, I argue, is most fundamentally (...) to deserve to feel guilty. Being blamed by someone else is not necessarily harmful to the wrongdoer. The blame might not be expressed, or the wrongdoer might not care. But to blame oneself necessarily involves suffering. This conception of blameworthiness explains why the control condition should obtain: We are morally blameworthy for A only if A was under our control because to be blameworthy is to deserve to feel guilty, to feel guilty is to suffer, and one deserves to suffer for A only if A was under one’s control. (shrink)
I argue that the state of boredom (i.e., the transitory and non-pathological experience of boredom) should be understood to be a regulatory psychological state that has the capacity to promote our well-being by contributing to personal growth and to the construction (or reconstruction) of a meaningful life.
I argue that it is possible to improve and methodologically enrich the pragmatic dimension of neurophenomenology by searching for points of contact and possibilities for integration between its phenomenological grounding and various first-person and embodied methodologies and practices, referring in particular to somatics, somaesthetics, and emersiology.
In `Essence and Modality', Kit Fine proposes that for a proposition to be metaphysically necessary is for it to be true in virtue of the nature of all objects whatsoever. Call this view Fine's Thesis. This paper is a study of Fine's Thesis in the context of Fine's logic of essence (LE). Fine himself has offered his most elaborate defense of the thesis in the context of LE. His defense rests on the widely shared assumption that metaphysical necessity obeys the (...) laws of the modal logic S5. In order to get S5 for metaphysical necessity, he assumes a controversial principle about the nature of all objects. I will show that the addition of this principle to his original system E5 leads to inconsistency with an independently plausible principle about essence. In response, I develop a theory that avoids this inconsistency while allowing us to maintain S5 for meta- physical necessity. However, I conclude that our investigation of Fine's Thesis in the context of LE motivates the revisionary conclusion that metaphysical necessity obeys the principles of the modal logic S4, but not those of S5. I argue that this constitutes a distinctively essentialist challenge to the received view that the logic of metaphysical necessity is S5. (shrink)
A Modern Coleridge shows the interrelatedness of the discourses of cultivation, addiction and habit in Coleridge's poetry and prose, and argues that these all revolve around the problematic nexus of a post-Kantian idea of free will, essential to Coleridge's eminently modern idea of the 'human'.
By presenting and synthesizing findings on the character of boredom, the article advances a theoretical account of the function of the state of boredom. The article argues that the state of boredom should be understood as a functional emotion that is both informative and regulatory of one's behavior. Boredom informs one of the presence of an unsatisfactory situation and, at the same time, it motivates one to pursue a new goal when the current goal ceases to be satisfactory, attractive or (...) meaningful. Boredom ultimately promotes both movement and the restoration of the perception that one's activities are meaningful and congruent with one's overall projects. (shrink)
By “Brentanian inner consciousness” I mean the conception of inner consciousness developed by Franz Brentano. The aim of this paper is threefold: first, to present Brentano’s account of inner consciousness; second, to discuss this account in light of the mereology outlined by Brentano himself; and third, to decide whether this account incurs an infinite regress. In this regard, I distinguish two kinds of infinite regress: external infinite regress and internal infinite regress. I contend that the most plausible reading of Brentano’s (...) account is the so-called fusion thesis, and I argue that internal infinite regress turns out to be inherent to Brentanian inner consciousness. (shrink)
An influential tradition holds that thoughts are public: different thinkers share many of their thoughts, and the same applies to a single subject at different times. This ‘publicity principle’ has recently come under attack. Arguments by Mark Crimmins, Richard Heck and Brian Loar seem to show that publicity is inconsistent with the widely accepted principle that someone who is ignorant or mistaken about certain identity facts will have distinct thoughts about the relevant object—for instance, the astronomer who does not know (...) that Hesperus is Phosphorus will have two distinct thoughts Hesperus is bright and Phosphorus is bright. In this paper, I argue that publicity can be defended if we adopt a relational account on which thoughts are individuated by their mutual relations. I then go on to develop a specific relational theory—the ‘linking account’—and contrast it with other relational views. (shrink)
Introspection presents our phenomenal states in a manner otherwise than physical. This observation is often thought to amount to an argument against physicalism: if introspection presents phenomenal states as they essentially are, then phenomenal states cannot be physical states, for we are not introspectively aware of phenomenal states as physical states. In this article, I examine whether this argument threatens a posteriori physicalism. I argue that as along as proponents of a posteriori physicalism maintain that phenomenal concepts present the nature (...) of their referents in a partial and incomplete manner, a posteriori physicalism is safe. (shrink)
Do non-human animals have an interest in sociopolitical freedom? Cochrane has recently taken up this important yet largely neglected quest ion. He argues that animal freedom is not a relevant moral concern in itself, because animals have a merely instrumental but not an intrinsic interest in freedom (Cochrane 2009a, 2012). This paper will argue that even if animals have a merely instrumental interest in freedom, animal freedom should nonetheless be an important goal for our relationships with animals. Drawing on recent (...) work on the value of freedom, it will be argued that freedom is non-specifically instrumentally valuable. Accordingly, freedom is a means to other goods, but often it is not possible to identify those goods in advance or aim for them directly. Some of the reasons that make freedom non-specifically valuable for human relationships, it will be argued, also apply to relationships between humans and animals. Amongst other implications, it will be shown how this argument provides a response to those who fear that stricter animal protection policies might undermine people’s freedom: A concern for freedom actually requires stricter protection policies rather than speak against them. (shrink)
Earman and Roberts claim that there is neither a persuasive account of the truth-conditions of ceteris paribus laws, nor of how such laws can be confirmed or disconfirmed. I will give an account of the truth conditions of ceteris paribus laws in physics in terms of dispositions. It will meet the objections standardly raised against such an account. Furthermore I will elucidate how ceteris paribus laws can be tested in physics. The essential point is that physics provides methodologies for dealing (...) with disturbing factors. For this reason disturbing factors need not be listed explicitly in law-statements. In virtue of the methodologies it is possible to test how systems would behave if the disturbing factors were absent. I will argue that this suffices to establish the tenability of the dispositional account of ceteris paribus laws. (shrink)
In recent years, Brentano’s theory of consciousness has been systematically reassessed. The reconstruction that has received the most attention is the so-called identity reconstruction. It says that secondary consciousness and the mental phenomenon it is about are one and the same. Crucially, it has been claimed that this thesis is the only one which can make Brentano’s theory immune to what he considers the main threat to it, namely, the duplication of the primary object. In this paper, I argue that (...) the identity reconstruction is untenable, and I defend an alternative, which I name the unity reconstruction. According to the unity reconstruction, secondary consciousness is a real part of the mental phenomenon it is about, and hence is distinct from it. I contend that this thesis does not in itself lead to the duplication of the primary object, and that what should be blamed is rather a controversial thesis about the intentional structure of secondary consciousness—a thesis which Brentano ultimately abandoned. (shrink)
Despite great progress in our theoretical and empirical investigations of boredom, a basic issue regarding boredom remains unresolved: it is still unclear whether the construct of boredom is a unitary one or not. By surveying the relevant literature on boredom and arousal, the paper makes a case for the unity of the construct of boredom. It argues, first, that extant empirical findings do not support the heterogeneity of boredom, and, second, that a theoretically motivated and empirically grounded model of boredom (...) (the functional account) supports the view that the construct of boredom is a unitary one. (shrink)
This paper examines Husserl’s theory of intentionality as it is developed in Logical Investigations and other early writings. In Section 1, the author attempts to capture the core of Husserl’s concept of intentionality. Section 2 is devoted to a detailed analysis of the account of intentional relation developed in the fifth Investigation. In Section 3, the author tries to flesh out what is meant by the claim in the sixth Investigation that the designation ‘object’ is a relative one. In Section (...) 4, the author discusses Husserl’s conception of intentionality in light of the mereology outlined in the third Investigation. In Section 5, the author explains how Husserl criticizes the so-called theory of immanent objects and how he addresses the problem of non-existents. In Section 6, the author argues that a phenomenological theory of intentionality grounded in Husserl’s insights cannot be a non-relational one. (shrink)
Responsibility as accountability is normally taken to have stricter control conditions than responsibility as attributability. A common way to argue for this claim is to point to differences in the harmfulness of blame involved in these different kinds of responsibility. This paper argues that this explanation does not work once we shift our focus from other-directed blame to self-blame. To blame oneself in the accountability sense is to feel guilt and feeling guilty is to suffer. To blame oneself in the (...) attributability sense, it will be argued, is to feel shame and feeling shame is also to suffer. The different control conditions cannot be explained by a difference in the harm of blame. Instead, this paper argues that accountability and attributability are governed by different kinds of appropriateness: an agent S is accountability blameworthy for X only if S deserves to feel guilty; an agent S is attributability blameworthy for X only if it is fitting that S feels shame for X. (shrink)
This essay provides an analysis of the role of affectivity in Martin Heidegger's writings from the mid to late 1920s. We begin by situating his account of mood within the context of his project of fundamental ontology in Being and Time. We then discuss the role of Befindlichkeit and Stimmung in his account of human existence, explicate the relationship between the former and the latter, and consider the ways in which the former discloses the world. To give a more vivid (...) and comprehensive picture of Heidegger's account of mood, we focus on the experience of anxiety by articulating both its function within fundamental ontology and, relatedly, its revelatory nature. We conclude by considering the place of emotions in Heidegger's thinking from this period. In a companion essay, ‘Affectivity in Heidegger II: Temporality, Boredom, and Beyond’, we complement our present analysis by revisiting the issue of affectivity in terms of Heidegger's discussion of temporality in Division II of Being and Time. We also expand our present discussion by considering the fundamental mood of boredom and other specific moods that Heidegger considers within his later thinking. (shrink)
A long-standing puzzle for moral philosophers and psychologists alike is the concept of psychopathy, a personality disorder marked by tendencies to defy moral norms despite cognitive knowledge about right and wrong. Previously, discussions of the moral deficits of psychopathy have focused on willingness to harm and cheat others as well as reasoning about rule-based transgressions. Yet recent research in moral psychology has begun to more clearly define the domains of morality, en- compassing issues of harm, fairness, loyalty, authority, and spiritual (...) purity. Clinical descriptions and theories of psychopathy suggest that deficits may exist primarily in the areas of harm and fairness, although quantitative evidence is scarce. Within a broad sample of participants, we found that scores on a measure of psychopathy predicted sharply lower scores on the harm and fairness subscales of a measure of moral concern, but showed no relationship with authority, and very small relationships with ingroup and purity. On a measure of willingness to violate moral standards for money, psychopathy scores predicted greater willingness to violate moral concerns of any type. Results are further explored via potential mediators and analyses of the two factors of psychopathy. (shrink)
This paper addresses the question whether future contingents are knowable, that is, whether one can know that things will go a certain way even though it is possible that things will not go that way. First I will consider a long-established view that implies a negative answer, and draw attention to some endemic problems that affect its credibility. Then I will sketch an alternative line of thought that prompts a positive answer: future contingents are knowable, although our epistemic access of (...) them is limited in some important respects. (shrink)
This paper claims that there is no such thing as the correct answer to the question of what is logical form: two significantly different notions of logical form are needed to fulfil two major theoretical roles that pertain respectively to logic and semantics. The first part of the paper outlines the thesis that a unique notion of logical form fulfils both roles, and argues that the alleged best candidate for making it true is unsuited for one of the two roles. (...) The second part spells out a considerably different notion which is free from that problem, although it does not fit the other role. As it will be suggested, each of the two notions suits at most one role, so the uniqueness thesis is ungrounded. (shrink)
Despite the impressive progress that has been made on both the empirical and conceptual fronts of boredom research, there is one facet of boredom that has received remarkably little attention. This is boredom's relationship to morality. The aim of this article is to explore the moral dimensions of boredom and to argue that boredom is a morally relevant personality trait. The presence of trait boredom hinders our capacity to flourish and in doing so hurts our prospects for a moral life. (...) -/- . (shrink)
Maggior specializzazione del volontariato e azioni di advocacy più mirate. Questi alcuni dei tratti inediti del volontariato toscano che emergono dalla nuova ricerca promossa da Cesvot e condotta dall'Università di Pisa. Un volontariato ‘inatteso', come recita il titolo del libro, che sta modificando il concetto di solidarietà, che come scrive Andrea Salvini, “cessa di essere un'idea o un progetto politico-culturale, ma diviene sempre più un insieme di pratiche che producono significati differenti, in situazioni specifiche”. Nel volume sono pubblicati molti dati (...) significativi sull'organizzazione del lavoro volontario, sull'attività delle associazioni, sui rapporti di collaborazione e networking, sulla capacità di reperire e gestire le risorse economiche. Chiude il volume un approfondimento di Luca Corchia su ‘giovani e volontariato' con dati relativi alla partecipazione giovanile e alle motivazioni che spingono i giovani ad avvicinarsi alle attività di volontariato. (shrink)
In this work, I discuss the role of Husserl’s phenomenology in Paolo Parrini’s positive philosophy. In the first section, I highlight the presence of both empiricist and constructivist elements in Parrini’s anti-foundationalist and anti-absolutist conception of knowledge. In the second section, I stress Parrini’s acknowledgement of the crucial role of phenomenology in investigating the empirical basis of knowledge, thanks to its analysis of the relationship between form and matter of cognition. In the third section, I point out some lines of (...) development of the phenomenological form of empirical realism as revealed in Parrini’s reflection, through a comparison of Husserl’s genetic phenomenology, Mary Hesse’s network model and the tradition of neutral monism. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.