This article will consider imagination in mathematics from a historical point of view, noting the key moments in its conception during the ancient, modern and contemporary eras.
Traditional geometry concerns itself with planimetric and stereometric considerations, which are at the root of the division between plane and solid geometry. To raise the issue of the relation between these two areas brings with it a host of different problems that pertain to mathematical practice, epistemology, semantics, ontology, methodology, and logic. In addition, issues of psychology and pedagogy are also important here. To our knowledge there is no single contribution that studies in detail even one of the aforementioned areas.
Roughly, a proof of a theorem, is “pure” if it draws only on what is “close” or “intrinsic” to that theorem. Mathematicians employ a variety of terms to identify pure proofs, saying that a pure proof is one that avoids what is “extrinsic,” “extraneous,” “distant,” “remote,” “alien,” or “foreign” to the problem or theorem under investigation. In the background of these attributions is the view that there is a distance measure (or a variety of such measures) between mathematical statements and (...) proofs. Mathematicians have paid little attention to specifying such distance measures precisely because in practice certain methods of proof have seemed self- evidently impure by design: think for instance of analytic geometry and analytic number theory. By contrast, mathematicians have paid considerable attention to whether such impurities are a good thing or to be avoided, and some have claimed that they are valuable because generally impure proofs are simpler than pure proofs. This article is an investigation of this claim, formulated more precisely by proof- theoretic means. After assembling evidence from proof theory that may be thought to support this claim, we will argue that on the contrary this evidence does not support the claim. (shrink)
Gaisi Takeuti (1926–2017) is one of the most distinguished logicians in proof theory after Hilbert and Gentzen. He extensively extended Hilbert's program in the sense that he formulated Gentzen's sequent calculus, conjectured that cut-elimination holds for it (Takeuti's conjecture), and obtained several stunning results in the 1950–60s towards the solution of his conjecture. Though he has been known chiefly as a great mathematician, he wrote many papers in English and Japanese where he expressed his philosophical thoughts. In particular, he used (...) several keywords such as "active intuition" and "self-reflection" from Nishida's philosophy. In this paper, we aim to describe a general outline of our project to investigate Takeuti's philosophy of mathematics. In particular, after reviewing Takeuti's proof-theoretic results briefly, we describe some key elements in Takeuti's texts. By explaining these texts, we point out the connection between Takeuti's proof theory and Nishida's philosophy and explain the future goals of our project. (shrink)
Many mathematicians have cited depth as an important value in their research. However, there is no single widely accepted account of mathematical depth. This article is an attempt to bridge this gap. The strategy is to begin with a discussion of Szemerédi's theorem, which says that each subset of the natural numbers that is sufficiently dense contains an arithmetical progression of arbitrary length. This theorem has been judged deep by many mathematicians, and so makes for a good case on which (...) to focus in analyzing mathematical depth. After introducing the theorem, four accounts of mathematical depth will be considered. (shrink)
Over the years many mathematicians have voiced a preference for proofs that stay “close” to the statements being proved, avoiding “foreign”, “extraneous”, or “remote” considerations. Such proofs have come to be known as “pure”. Purity issues have arisen repeatedly in the practice of arithmetic; a famous instance is the question of complex-analytic considerations in the proof of the prime number theorem. This article surveys several such issues, and discusses ways in which logical considerations shed light on these issues.
Une preuve est pure si, en gros, elle ne réfère dans son développement qu’à ce qui est « proche » de, ou « intrinsèque » à l’énoncé à prouver. L’infinité des nombres premiers, un théorème classique de l’arithmétique, est un cas d’étude particulièrement riche pour les recherches philosophiques sur la pureté. Deux preuves différentes de ce résultat sont ici considérées, à savoir la preuve euclidienne classique et une preuve « topologique » plus récente proposée par Furstenberg. D’un point de vue (...) naïf, il semblerait que la première soit pure et la seconde impure. Des objections à cette vue naïve sont ici considérées et réfutées. Concernant la preuve euclidienne, la question relève de la logique, notamment de la définissabilité arithmétique de l’addition en termes de successeur et de divisibilité telle que démontrée par Julia Robinson, tandis qu’en ce qui concerne la preuve topologique, la question relève de la sémantique, notamment pour tout ce qui touche au problème de savoir ce qui est « inclus » dans le contenu d’énoncés particuliers.A proof is pure, roughly, if it draws only on what is « close » or « intrinsic » to the statement being proved. The infinitude of prime numbers, a classical theorem of arithmetic, is a rich case study for philosophical investigation of purity. Two different proofs of this result are considered, namely the classical Euclidean proof and a more recent « topological » proof by Furstenberg. Naively the former would seem to be pure and the latter to be impure. Objections to these naive views are considered and met. In the case of the former the issue rests on logical matters, specifically the arithmetic definability of addition in terms of successor and divisibility shown by Julia Robinson, while in the case of the latter the issue rests on semantic matters, specifically with respect to what is « contained » in the content of particular statements. (shrink)
Review of Dowek, Gilles, Computation, Proof, Machine, Cambridge University Press, Cambridge, 2015. Translation of Les Métamorphoses du calcul, Le Pommier, Paris, 2007. Translation from the French by Pierre Guillot and Marion Roman.
When mathematicians think of the philosophy of mathematics, they probably think of endless debates about what numbers are and whether they exist. Since plenty of mathematical progress continues to be made without taking a stance on either of these questions, mathematicians feel confident they can work without much regard for philosophical reflections. In his sharp–toned, sprawling book, David Corfield acknowledges the irrelevance of much contemporary philosophy of mathematics to current mathematical practice, and proposes reforming the subject accordingly.
Our visual experience seems to suggest that no continuous curve can cover every point of the unit square, yet in the late nineteenth century Giuseppe Peano proved that such a curve exists. Examples like this, particularly in analysis (in the sense of the infinitesimal calculus) received much attention in the nineteenth century. They helped instigate what Hans Hahn called a “crisis of intuition”, wherein visual reasoning in mathematics came to be thought to be epistemically problematic. Hahn described this “crisis” as (...) follows: Mathematicians had for a long time made use of supposedly geometric evidence as a means of proof in much too naive and much too uncritical a way, till the unclarities and mistakes that arose as a result forced a turnabout. Geometrical intuition was now declared to be inadmissible as a means of proof... (p. 67) Avoiding geometrical evidence, Hahn continued, mathematicians aware of this crisis pursued what he called “logicization”, “when the discipline requires nothing but purely logical fundamental concepts and propositions for its development.” On this view, an epistemically ideal mathematics would minimize, or avoid altogether, appeals to visual representations. This would be a radical reformation of past practice, necessary, according to its advocates, for avoiding “unclarities and mistakes” like the one exposed by Peano. (shrink)
This collection of essays explores what makes modern mathematics ‘modern’, where ‘modern mathematics’ is understood as the mathematics done in the West from roughly 1800 to 1970. This is not the trivial matter of exploring what makes recent mathematics recent. The term ‘modern’ (or ‘modernism’) is used widely in the humanities to describe the era since about 1900, exemplified by Picasso or Kandinsky in the visual arts, Rilke or Pound in poetry, or Le Corbusier or Loos in architecture (a building (...) by the latter graces the cover of this book’s dust jacket). (shrink)
In this paper I begin by extending two results of Solovay; the first characterizes the possible Turing degrees of models of True Arithmetic (TA), the complete first-order theory of the standard model of PA, while the second characterizes the possible Turing degrees of arbitrary completions of P. I extend these two results to characterize the possible Turing degrees of m-diagrams of models of TA and of arbitrary complete extensions of PA. I next give a construction showing that the conditions Solovay (...) identified for his characterization of degrees of models of arbitrary completions of PA cannot be dropped (I showed that these conditions cannot be simplified in the paper. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.