The question as to what makes a perfect Aristotelian syllogism a perfect one has long been discussed by Aristotelian scholars. G. Patzig was the first to point the way to a correct answer: it is the evidence of the logical necessity that is the special feature of perfect syllogisms. Patzig moreover claimed that the evidence of a perfectsyllogism can be seen for Barbara in the transitivity of the a-relation. However, this explanation would give (...) Barbara a different status over the other three first figure syllogisms. I argue that, taking into account the role of the being-contained-as-in-a-whole formulation, transitivity can be seen to be present in all four first figure syllogisms. Using this wording will put the negation sign with the predicate, similar to the notation in modern predicate calculus. (shrink)
Although the theory of the assertoric syllogism was Aristotle's great invention, one which dominated logical theory for the succeeding two millenia, accounts of the syllogism evolved and changed over that time. Indeed, in the twentieth century, doctrines were attributed to Aristotle which lost sight of what Aristotle intended. One of these mistaken doctrines was the very form of the syllogism: that a syllogism consists of three propositions containing three terms arranged in four figures. Yet another was (...) that a syllogism is a conditional proposition deduced from a set of axioms. There is even unclarity about what the basis of syllogistic validity consists in. Returning to Aristotle's text, and reading it in the light of commentary from late antiquity and the middle ages, we find a coherent and precise theory which shows all these claims to be based on a misunderstanding and misreading. (shrink)
This paper sets out to evaluate the claim that Aristotle’s Assertoric Syllogistic is a relevance logic or shows significant similarities with it. I prepare the grounds for a meaningful comparison by extracting the notion of relevance employed in the most influential work on modern relevance logic, Anderson and Belnap’s Entailment. This notion is characterized by two conditions imposed on the concept of validity: first, that some meaning content is shared between the premises and the conclusion, and second, that the premises (...) of a proof are actually used to derive the conclusion. Turning to Aristotle’s Prior Analytics, I argue that there is evidence that Aristotle’s Assertoric Syllogistic satisfies both conditions. Moreover, Aristotle at one point explicitly addresses the potential harmfulness of syllogisms with unused premises. Here, I argue that Aristotle’s analysis allows for a rejection of such syllogisms on formal grounds established in the foregoing parts of the Prior Analytics. In a final section I consider the view that Aristotle distinguished between validity on the one hand and syllogistic validity on the other. Following this line of reasoning, Aristotle’s logic might not be a relevance logic, since relevance is part of syllogistic validity and not, as modern relevance logic demands, of general validity. I argue that the reasons to reject this view are more compelling than the reasons to accept it and that we can, cautiously, uphold the result that Aristotle’s logic is a relevance logic. (shrink)
I use the Corcoran–Smiley interpretation of Aristotle's syllogistic as my starting point for an examination of the syllogistic from the vantage point of modern proof theory. I aim to show that fresh logical insights are afforded by a proof-theoretically more systematic account of all four figures. First I regiment the syllogisms in the Gentzen–Prawitz system of natural deduction, using the universal and existential quantifiers of standard first-order logic, and the usual formalizations of Aristotle's sentence-forms. I explain how the syllogistic is (...) a fragment of my system of Core Logic. Then I introduce my main innovation: the use of binary quantifiers, governed by introduction and elimination rules. The syllogisms in all four figures are re-proved in the binary system, and are thereby revealed as all on a par with each other. I conclude with some comments and results about grammatical generativity, ecthesis, perfect validity, skeletal validity and Aristotle's chain principle. (shrink)
The paper examines Posterior Analytics II 11, 94a20-36 and makes three points. (1) The confusing formula ‘given what things, is it necessary for this to be’ [τίνων ὄντων ἀνάγκη τοῦτ᾿ εἶναι] at a21-22 introduces material cause, not syllogistic necessity. (2) When biological material necessitation is the only causal factor, Aristotle is reluctant to formalize it in syllogistic terms, and this helps to explain why, in II 11, he turns to geometry in order to illustrate a kind of material cause that (...) can be expressed as the middle term of an explanatory syllogism. (3) If geometrical proof is viewed as a complex construction built on simpler constructions, it can in effect be described as a case of purely material constitution. (shrink)
In the paper we examine the method of axiomatic rejection used to describe the set of nonvalid formulae of Aristotle's syllogistic. First we show that the condition which the system of syllogistic has to fulfil to be ompletely axiomatised, is identical to the condition for any first order theory to be used as a logic program. Than we study the connection between models used or refutation in a first order theory and rejected axioms for that theory. We show that any (...) formula of syllogistic enriched with classical connectives is decidable using models in the domain with three members. (shrink)
In the present article we attempt to show that Aristotle's syllogistic is an underlying logiC which includes a natural deductive system and that it isn't an axiomatic theory as had previously been thought. We construct a mathematical model which reflects certain structural aspects of Aristotle's logic. We examine the relation of the model to the system of logic envisaged in scattered parts of Prior and Posterior Analytics. Our interpretation restores Aristotle's reputation as a logician of consummate imagination and skill. Several (...) attributions of shortcomings and logical errors to Aristotle are shown to be without merit. Aristotle's logic is found to be self-sufficient in several senses: his theory of deduction is logically sound in every detail. (His indirect deductions have been criticized, but incorrectly on our account.) Aristotle's logic presupposes no other logical concepts, not even those of propositional logic. The Aristotelian system is seen to be complete in the sense that every valid argument expressible in his system admits of a deduction within his deductive system: every semantically valid argument is deducible. (shrink)
Transformed RAVAL NOTATION solves Syllogism problems very quickly and accurately. This method solves any categorical syllogism problem with same ease and is as simple as ABC… In Transformed RAVAL NOTATION, each premise and conclusion is written in abbreviated form, and then conclusion is reached simply by connecting abbreviated premises.NOTATION: Statements (both premises and conclusions) are represented as follows: Statement Notation a) All S are P, SS-P b) Some S are P, S-P c) Some S are not P, S (...) / PP d) No S is P, SS / PP (- implies are and / implies are not) All is represented by double letters; Some is represented by single letter. No S is P implies No P is S so its notation contains double letters on both sides. -/- RULES: (1) Conclusions are reached by connecting Notations. Two notations can be linked only through common linking terms. When the common linking term multiplies (becomes double from single), divides (becomes single from double) or remains double then conclusion is arrived between terminal terms. (Aristotle’s rule: the middle term must be distributed at least once) -/- (2)If both statements linked are having – signs, resulting conclusion carries – sign (Aristotle’s rule: two affirmatives imply an affirmative) -/- (3) Whenever statements having – and / signs are linked, resulting conclusion carries / sign. (Aristotle’s rule: if one premise is negative, then the conclusion must be negative) -/- (4)Statement having / sign cannot be linked with another statement having / sign to derive any conclusion. (Aristotle’s rule: Two negative premises imply no valid conclusion) Syllogism conclusion by Tranformed Raval’s Notation is in accordance with Aristotle’s rules for the same. It is visually very transparent and conclusions can be deduced at a glance, moreover it solves syllogism problems with any number of statements and it is quickest of all available methods. By new Raval method for solving categorical syllogism, solving categorical syllogism is as simple as pronouncing ABC and it is just continuance of Aristotle work on categorical syllogism. It’s believed that Boole's system could handle multi-term propositions and arguments, whereas Aristotle could handle only two-termed subject-predicate propositions and arguments. For example, it’s claimed that Aristotle's system could not deduce: "No quadrangle that is a square is a rectangle that is a rhombus" from "No square that is a quadrangle is a rhombus that is a rectangle" or from "No rhombus that is a rectangle is a square that is a quadrangle". Above conclusion is reached at a glance with Raval's Notations (Symbolic Aristotle’s syllogism rules). Premise: "No (square that is a quadrangle) is a (rhombus that is a rectangle)" Raval's Representations: S – Q, S – Q / Rh – Re, Rh – Re Premise: "No (rhombus that is a rectangle) is a (square that is a quadrangle)". Raval's Representations: Rh – Re, Rh – Re / S – Q, S - Q Conclusion: "No (quadrangle that is a square) is a (rectangle that is a rhombus)" Raval’s Representations: Q – S, Q – S / Re – Rh, Re – Rh As “ Q – S” follows from “S – Q” and “Re – Rh” from “Rh – Re”. Given conclusion follows from the given premises. Author disregards existential fallacy, as subset of a null set has to be a null set. -/- . (shrink)
Two views continue to be defended today. One is that the account of eudaimonia in EN 10 is inconsistent with claims made about it in other books of the work. The other view is that the account in EN 10 is consistent with other claims made in the other books because Aristotle presents one account of perfect eudaimonia by portraying it as consisting solely in contemplative activity. I call this view the intellectualist interpretation. I then argue that neither view (...) is correct because although Aristotle’s position is consistent, he does not hold that the perfect eudaimonia for a human being involves nothing but excellent theoretical activity. His philosopher possesses and exercises the moral excellences and practical wisdom and so some portion of his happiness consists in these activities as well as contemplative activity. (shrink)
Prior Analytics by the Greek philosopher Aristotle (384 – 322 BCE) and Laws of Thought by the English mathematician George Boole (1815 – 1864) are the two most important surviving original logical works from before the advent of modern logic. This article has a single goal: to compare Aristotle’s system with the system that Boole constructed over twenty-two centuries later intending to extend and perfect what Aristotle had started. This comparison merits an article itself. Accordingly, this article does not (...) discuss many other historically and philosophically important aspects of Boole’s book, e.g. his confused attempt to apply differential calculus to logic, his misguided effort to make his system of ‘class logic’ serve as a kind of ‘truth-functional logic’, his now almost forgotten foray into probability theory, or his blindness to the fact that a truth-functional combination of equations that follows from a given truth-functional combination of equations need not follow truth-functionally. One of the main conclusions is that Boole’s contribution widened logic and changed its nature to such an extent that he fully deserves to share with Aristotle the status of being a founding figure in logic. By setting forth in clear and systematic fashion the basic methods for establishing validity and for establishing invalidity, Aristotle became the founder of logic as formal epistemology. By making the first unmistakable steps toward opening logic to the study of ‘laws of thought’—tautologies and laws such as excluded middle and non-contradiction—Boole became the founder of logic as formal ontology. (shrink)
Demonstrative logic, the study of demonstration as opposed to persuasion, is the subject of Aristotle's two-volume Analytics. Many examples are geometrical. Demonstration produces knowledge (of the truth of propositions). Persuasion merely produces opinion. Aristotle presented a general truth-and-consequence conception of demonstration meant to apply to all demonstrations. According to him, a demonstration, which normally proves a conclusion not previously known to be true, is an extended argumentation beginning with premises known to be truths and containing a chain of reasoning showing (...) by deductively evident steps that its conclusion is a consequence of its premises. In particular, a demonstration is a deduction whose premises are known to be true. Aristotle's general theory of demonstration required a prior general theory of deduction presented in the Prior Analytics. His general immediate-deduction-chaining conception of deduction was meant to apply to all deductions. According to him, any deduction that is not immediately evident is an extended argumentation that involves a chaining of intermediate immediately evident steps that shows its final conclusion to follow logically from its premises. To illustrate his general theory of deduction, he presented an ingeniously simple and mathematically precise special case traditionally known as the categorical syllogistic. (shrink)
This paper intends to explain key differences between Aristotle’s understanding of the relationships between nous, epistêmê, and the art of syllogistic reasoning(both analytic and dialectical) and the corresponding modern conceptions of intuition, knowledge, and reason. By uncovering paradoxa that Aristotle’s understanding of syllogistic reasoning presents in relation to modern philosophical conceptions of logic and science, I highlight problems of a shift in modern philosophy—a shift that occurs most dramatically in the seventeenth century—toward a project of construction, a pervasive desire for (...) rational certainty, and a general insistence on the reducibility of the sciences. The major motivation of this analysis is my intention to show that modern attempts to reduce science/epistêmê to a single science/method of inquiry occlude dialectical and ethico-political dimensions of “reason” and, hence, also impoverish philosophy’s critical capacities. (shrink)
Malink’s interpretation is designed to validate Aristotle’s claims of validity and invalidity of syllogistic-style arguments, as well as his conversion claims. The remaining sorts of claims in Aristotle's text are allowed to fall out as they may. Thus, not all of Aristotle’s examples turn out correct: on some occasions, Aristotle claims that a given pair of terms yields a true (false) sentence of a given type although, under Malink’s interpretation, the sentence in question is false (true). Similarly, some of Aristotle’s (...) claims of invalidity of nonsyllogistic-style arguments come out false. For example, under Malink’s interpretation, ‘A applies to all B’ and ‘B necessarily applies to all C’ entail ‘A necessarily applies to some B’, contrary to what Aristotle says. (shrink)
How does Aristotle think about sentences like ‘Every x is y’ in the Prior Analytics? A recently popular answer conceives of these sentences as expressing a mereological relationship between x and y: the sentence is true just in case x is, in some sense, a part of y. I argue that the motivations for this interpretation have so far not been compelling. I provide a new justification for the mereological interpretation. First, I prove a very general algebraic soundness and completeness (...) result that unifies the most important soundness and completeness results to date. Then I argue that this result vindicates the mereological interpretation. In contrast to previous interpretations, this argument shows how Aristotle’s conception of predication in mereological terms can do important logical work. (shrink)
The paper shows that for any invalid polysyllogism there is a procedure for constructing a model with a domain with exactly three members and an interpretation that assigns non-empty, non-universal subsets of the domain to terms such that the model invalidates the polysyllogism.
This paper (1) criticizes Patzig's explanation of Aristotle's reason for calling his first figure syllogisms perfect syllogisms, i.e. the transitivity relation: it can only be used for Barbara, not for the other three moods. The paper offers (2) an alternative interpretation: It is only in the case of the (perfect) first figure moods that we can move from the subject term of the minor premiss, taken to be a predicate of an individual, to the predicate term of the (...) major premiss. This contention is supported (i) by Aristotle's wording of the dictum de omni et nullo and (ii) by Aristotle's use of a formula which puts the minor term in the first position when he first states Barbara and Celarent. (shrink)
In these pages the author intends to examine the idea, quite widespread among Aristotle’s recent scholars, that the method of metaphysics were mainly dialectical. This problem is investigated in Aquinas, who decidedly denies that metaphysics uses dialectics because it just provides probability. Metaphysics, unlike dialectics, is not only based on the being of reason but also on the natural being. Therefore, it does not simply constitute a rational game about quiddities, but it studies things in their real actuality and must (...) therefore be supported by evidence. Although Aquinas agrees with Aristotle in affirming that not every science enjoys the same certainty, this fact is due to different reasons. First, all things do not possess the same stability and constancy. Secondly, there is not always a perfect match between the studied matter and the human faculty to ascertain. This match between the object and the subject is the most decisive factor for the certainty of sciences. (shrink)
ABSTRACT: Alexander of Aphrodisias’ commentaries on Aristotle’s Organon are valuable sources for both Stoic and early Peripatetic logic, and have often been used as such – in particular for early Peripatetic hypothetical syllogistic and Stoic propositional logic. By contrast, this paper explores the role Alexander himself played in the development and transmission of those theories. There are three areas in particular where he seems to have made a difference: First, he drew a connection between certain passages from Aristotle’s Topics and (...) Prior Analytics and the Stoic indemonstrable arguments, and, based on this connection, appropriated at least four kinds of Stoic indemonstrables as Aristotelian. Second, he developed and made use of a specifically Peripatetic terminology in which to describe and discuss those arguments – which facilitated the integration of the indemonstrables into Peripatetic logic. Third, he made some progress towards a solution to the problem of what place and interpretation the Stoic third indemonstrables should be given in a Peripatetic and Platonist setting. Overall, the picture emerges that Alexander persistently (if not always consistently) presented passages from Aristotle’s logical œuvre in a light that makes it appear as if Aristotle was in the possession of a Peripatetic correlate to the Stoic theory of indemonstrables. (shrink)
As noted in 1962 by Timothy Smiley, if Aristotle’s logic is faithfully translated into modern symbolic logic, the fit is exact. If categorical sentences are translated into many-sorted logic MSL according to Smiley’s method or the two other methods presented here, an argument with arbitrarily many premises is valid according to Aristotle’s system if and only if its translation is valid according to modern standard many-sorted logic. As William Parry observed in 1973, this result can be proved using my 1972 (...) proof of the completeness of Aristotle’s syllogistic. (shrink)
Aristotle in Analytica Posteriora presented a notion of proof as a special case of syllogism. In the present paper the remarks of Aristotle on the subject are used as an inspiration for developing formal systems of demonstrative syllogistic, which are supposed to formalize syllogisms that are proofs. We build our systems in the style of J. Łukasiewicz as theories based on classical propositional logic. The difference between our systems and systems of syllogistic known from the literature lays in the (...) interpretation of general positive sentences in which the same name occurs twice (of the form SaS). As a basic assumption of demonstrative syllogistic we accept a negation of such a sentence. We present three systems which differ in the interpretation of specific positive sentences in which the same name occurs twice (of the form SiS). The theories are defined as axiomatic systems. For all of them rejected axiomatizations are also supplied. For two of them a set theoretical model is also defined. (shrink)
This presentation of Aristotle's natural deduction system supplements earlier presentations and gives more historical evidence. Some fine-tunings resulted from conversations with Timothy Smiley, Charles Kahn, Josiah Gould, John Kearns,John Glanvillle, and William Parry.The criticism of Aristotle's theory of propositions found at the end of this 1974 presentation was retracted in Corcoran's 2009 HPL article "Aristotle's demonstrative logic".
JUNE 2015 UPDATE: A BIBLIOGRAPHY: JOHN CORCORAN’S PUBLICATIONS ON ARISTOTLE 1972–2015 By John Corcoran -/- This presentation includes a complete bibliography of John Corcoran’s publications relevant to his research on Aristotle’s logic. Sections I, II, III, and IV list 21 articles, 44 abstracts, 3 books, and 11 reviews. It starts with two watershed articles published in 1972: the Philosophy & Phenomenological Research article from Corcoran’s Philadelphia period that antedates his Aristotle studies and the Journal of Symbolic Logic article from his (...) Buffalo period first reporting his original results; it ends with works published in 2015. A few of the items are annotated as listed or with endnotes connecting them with other work and pointing out passages that in-retrospect are seen to be misleading and in a few places erroneous. In addition, Section V, “Discussions”, is a nearly complete secondary bibliography of works describing, interpreting, extending, improving, supporting, and criticizing Corcoran’s work: 8 items published in the 1970s, 23 in the 1980s, 42 in the 1990s, 56 in the 2000s, and 69 in the current decade. The secondary bibliography is also annotated as listed or with endnotes: some simply quoting from the cited item, but several answering criticisms and identifying errors. Section VI, “Alternatives”, lists recent works on Aristotle’s logic oblivious of Corcoran’s research and, more generally, of the Lukasiewicz-initiated tradition. As is evident from Section VII, “Acknowledgements”, Corcoran’s publications benefited from consultation with other scholars, most notably Timothy Smiley, Michael Scanlan, Roberto Torretti, and Kevin Tracy. All of Corcoran’s Greek translations were done in collaboration with two or more classicists. Corcoran never published a sentence without discussing it with his colleagues and students. -/- REQUEST: Please send errors, omissions, and suggestions. I am especially interested in citations made in non-English publications. Also, let me know of passages I should comment on. (shrink)
This presentation includes a complete bibliography of John Corcoran’s publications relevant on Aristotle’s logic. The Sections I, II, III, and IV list respectively 23 articles, 44 abstracts, 3 books, and 11 reviews. Section I starts with two watershed articles published in 1972: the Philosophy & Phenomenological Research article—from Corcoran’s Philadelphia period that antedates his discovery of Aristotle’s natural deduction system—and the Journal of Symbolic Logic article—from his Buffalo period first reporting his original results. It ends with works published in 2015. (...) Some items are annotated as listed or with endnotes connecting them with other work and pointing out passages that, in retrospect, are seen to be misleading and in a few places erroneous. In addition, Section V, “Discussions”, is a nearly complete secondary bibliography of works describing, interpreting, extending, improving, supporting, and criticizing Corcoran’s work: 10 items published in the 1970s, 24 in the 1980s, 42 in the 1990s, 60 in the 2000s, and 70 in the current decade. The secondary bibliography is also annotated as listed or with endnotes: some simply quoting from the cited item, but several answering criticisms and identifying errors. Section VI, “Alternatives”, lists recent works on Aristotle’s logic oblivious of Corcoran’s research and, more generally in some cases, even of the Łukasiewicz-initiated tradition. As is evident from Section VII, “Acknowledgements”, Corcoran’s publications benefited from consultation with other scholars, most notably George Boger, Charles Kahn, John Mulhern, Mary Mulhern, Anthony Preus, Timothy Smiley, Michael Scanlan, Roberto Torretti, and Kevin Tracy. All of Corcoran’s Greek translations were done in collaboration with two or more classicists. Corcoran never published a sentence without discussing it with his colleagues and students. (shrink)
This review places this translation and commentary on Book A of Prior Analytics in historical, logical, and philosophical perspective. In particular, it details the author’s positions on current controversies. The author of this translation and commentary is a prolific and respected scholar, a leading figure in a large and still rapidly growing area of scholarship: Prior Analytics studies PAS. PAS treats many aspects of Aristotle’s Prior Analytics: historical context, previous writings that influenced it, preservation and transmission of its manuscripts, editions (...) of its manuscripts, interpretations, commentaries, translations, and its influence on subsequent logic, philosophy, and mathematics. All this attention is warranted because Prior Analytics marks the origin of logic: the field that, among other things, asks of a given proposition whether it follows from a given set of propositions; and, if it follows, how we determine that it follows; and, if it does not follow, how we determine that it does not follow. This translation and commentary is not suitable for use in an undergraduate course. It has too many quirks that the teacher would want to warn against. A copy editor should have dealt with these things and with other matters such as incorrect punctuation and improper end-of-line divisions. The prose is heavily laden with glaring clichés. The one-page preface contains “longer than I care to remember”, “more than I can possibly list here”, “first and foremost”, and “last and by no means least”—a sentence later is devoted to thanking the “incredibly meticulous and helpful copy-editor”. A few pages later the translator reveals the need “to find a path between the Scylla … and the Charybdis …”. Moreover, the index is far from meeting the needs of undergraduate students. The attention to scholarly detail is not what one hoped for from Oxford University Press. At 26b10-15, this translation reads “let swan and white be chosen as white things” for what Smith correctly translates “let swan and snow be selected from among those white things”. At 41b16, “angles AB and CD” should read “angles AC and BD”. Despite this book’s flaws, it will be found useful if not indispensable for those currently engaged in Prior Analytics studies. The alternatives suggested to Robin Smith’s translation choices are often worth consideration. It is to be emphasized, however, that this book is unsuitable for those entering Prior Analytics studies. (shrink)
In recent decades, it has been argued that the modern concept of forgiveness is absent from Aristotle’s conception of συγγνώμη as it appears in his Rhetoric and Nicomachean Ethics. In this paper, I argue that Aristotle’s view is more modern than it might appear. I defend the idea that Aristotle’s treatment of συγγνώμη, when seen in conjunction with his theory of ethical decision, involuntary action, and character alteration, commits him to a cognitive and emotional theory of forgiveness that is both (...) well-grounded and thoroughly modern. I go on to claim that Aristotle’s view of συγγνώμη helps to solve at least four controversial problems about the nature of forgiveness raised by modern philosophers: how one can forgive a wrong without condoning it, whether forgiveness is a duty, whether moral luck requires us to forgive more widely, and whether forgiveness ought to be unconditional. (shrink)
This presentation includes a complete bibliography of John Corcoran’s publications devoted at least in part to Aristotle’s logic. Sections I–IV list 20 articles, 43 abstracts, 3 books, and 10 reviews. It starts with two watershed articles published in 1972: the Philosophy & Phenomenological Research article that antedates Corcoran’s Aristotle’s studies and the Journal of Symbolic Logic article first reporting his original results; it ends with works published in 2015. A few of the items are annotated with endnotes connecting them with (...) other work. In addition, Section V “Discussions” is a nearly complete secondary bibliography of works describing, interpreting, extending, improving, supporting, and criticizing Corcoran’s work: 8 items published in the 1970s, 22 in the 1980s, 39 in the 1990s, 56 in the 2000s, and 65 in the current decade. The secondary bibliography is annotated with endnotes: some simply quoting from the cited item, but several answering criticisms and identifying errors. As is evident from the Acknowledgements sections, all of Corcoran’s publications benefited from correspondence with other scholars, most notably Timothy Smiley, Michael Scanlan, and Kevin Tracy. All of Corcoran’s Greek translations were done in consultation with two or more classicists. Corcoran never published a sentence without discussing it with his colleagues and students. REQUEST: Please send errors, omissions, and suggestions. I am especially interested in citations made in non-English publications. (shrink)
In ancient philosophy, there is no discipline called “logic” in the contemporary sense of “the study of formally valid arguments.” Rather, once a subfield of philosophy comes to be called “logic,” namely in Hellenistic philosophy, the field includes (among other things) epistemology, normative epistemology, philosophy of language, the theory of truth, and what we call logic today. This entry aims to examine ancient theorizing that makes contact with the contemporary conception. Thus, we will here emphasize the theories of the “ (...) class='Hi'>syllogism” in the Aristotelian and Stoic traditions. However, because the context in which these theories were developed and discussed were deeply epistemological in nature, we will also include references to the areas of epistemological theorizing that bear directly on theories of the syllogism, particularly concerning “demonstration.” Similarly, we will include literature that discusses the principles governing logic and the components that make up arguments, which are topics that might now fall under the headings of philosophy of logic or non-classical logic. This includes discussions of problems and paradoxes that connect to contemporary logic and which historically spurred developments of logical method. For example, there is great interest among ancient philosophers in the question of whether all statements have truth-values. Relevant themes here include future contingents, paradoxes of vagueness, and semantic paradoxes like the liar. We also include discussion of the paradoxes of the infinite for similar reasons, since solutions have introduced sophisticated tools of logical analysis and there are a range of related, modern philosophical concerns about the application of some logical principles in infinite domains. Our criterion excludes, however, many of the themes that Hellenistic philosophers consider part of logic, in particular, it excludes epistemology and metaphysical questions about truth. Ancient philosophers do not write treatises “On Logic,” where the topic would be what today counts as logic. Instead, arguments and theories that count as “logic” by our criterion are found in a wide range of texts. For the most part, our entry follows chronology, tracing ancient logic from its beginnings to Late Antiquity. However, some themes are discussed in several eras of ancient logic; ancient logicians engage closely with each other’s views. Accordingly, relevant publications address several authors and periods in conjunction. These contributions are listed in three thematic sections at the end of our entry. (shrink)
In 'Metaphysics IX.6' (1048b 18-35) Aristotle presents a test to distinguish between "kinesis" and "energeia," based on relations between the perfective and the imperfective aspect of the verb. This passage has been interpreted as drawing a linguistic distinction between classes of verbs (e.g., stative verbs) by means of a linguistic criterion (Ackrill, Graham). But such an interpretation is in conflict with the text. Aristotle's test must, therefore, be understood as a metaphysical criterion between items in the world (rather than lingual (...) items) by means of a metaphysical criterion, exploiting properties of these items. These items are events, and 'Metaphysics IX.6' exhibits Aristotle's awareness to certain topics discussed in modern event ontology. (shrink)
The premise-fact confusion in Aristotle’s PRIOR ANALYTICS. -/- The premise-fact fallacy is talking about premises when the facts are what matters or talking about facts when the premises are what matters. It is not useful to put too fine a point on this pencil. -/- In one form it is thinking that the truth-values of premises are relevant to what their consequences in fact are, or relevant to determining what their consequences are. Thus, e.g., someone commits the premise-fact fallacy if (...) they think that a proposition has different consequences were it true than it would have if false. C. I. Lewis said that confusing logical consequence with material consequence leads to this fallacy. See Corcoran’s 1973 “Meanings of implication” [available on Academia. edu]. -/- The premise-fact confusion occurs in a written passage that implies the premise-fact fallacy or that suggests that the writer isn’t clear about the issues involved in the premise-fact fallacy. Here are some examples. -/- E1: If Abe is Ben and Ben swims, then it would follow that Abe swims. -/- Comment: The truth is that from “Abe is Ben and Ben swims”, the proposition “Abe swims” follows. Whether in fact Abe is Ben and Ben swims is irrelevant to whether “Abe swims” follows from “Abe is Ben and Ben swims”. -/- E1 suggests that maybe “Abe swims” wouldn’t follow from “Abe is Ben and Ben swims” if the latter were false. -/- E2: The truth of “Abe is Ben and Ben swims” implies that Abe swims. -/- E3: Indirect deduction requires assuming something false. -/- Comment: If the premises of an indirect deduction are true the conclusion is true and thus the “reductio” assumption is false. But deduction, whether direct or indirect, does not require true premises. In fact, indirect deduction is often used to determine that the premises are not all true. -/- Anyway, the one-page paper accompanying this abstract reports one of dozens of premise-fact errors in PRIOR ANALYTICS. In the session, people can add their own examples and comment on them. For example, is the one at 25b32 the first? What is the next premise-fact error after 25b32? Which translators or commentators discuss this? -/- . (shrink)
Aristotle's General Definition of the Syllogism may be taken as consisting of two parts: the Inferential Conditions and the Final Clause. Although this distinction is well known, traditional interpretations neglect the Final Clause and its influence on syllogistic. Instead, the aforementioned tradition focuses on the Inferential Conditions only. We intend to show that this neglect has severe consequences not just on syllogistic but on the whole exegesis of Aristotle's Prior Analytics I. Due to these consequences, our objective is to (...) analyse the General Definition's Final Clause and its consequences on syllogistic. We propose a reading of the Final Clause as an additional criterion for distinguishing some arguments as properly syllogistic ones and as a main theme which connects all parts of the Prior Analytics I into one coherent piece of work. (shrink)
Redictio ad absurdum is an important part of Aristotle’s syllogistic. It is connected with direct proof and they are complementary methods. All moods of Aristotle are provable by direct methods and redictio ad absurdum. In this paper, I have studied on the bases and principles of redictio ad absurdum, I showed how to prove by redictio ad absurdum, and how to prove Aristotle by redictio ad absurdum. By redictio ad absurdum, all forms of Aristotle’s method proved in the first figure (...) can be reduced to the perfect forms. (shrink)
This interesting and imaginative monograph is based on the author’s PhD dissertation supervised by Saul Kripke. It is dedicated to Timothy Smiley, whose interpretation of PRIOR ANALYTICS informs its approach. As suggested by its title, this short work demonstrates conclusively that Aristotle’s syllogistic is a suitable vehicle for fruitful discussion of contemporary issues in logical theory. Aristotle’s syllogistic is represented by Corcoran’s 1972 reconstruction. The review studies Lear’s treatment of Aristotle’s logic, his appreciation of the Corcoran-Smiley paradigm, and his understanding (...) of modern logical theory. In the process Corcoran and Scanlan present new, previously unpublished results. Corcoran regards this review as an important contribution to contemporary study of PRIOR ANALYTICS: both the book and the review deserve to be better known. (shrink)
Why does Aristotle not use the copulative wording for categorical propositions, but instead the clumsier terminological formulations (e. g. the B belongs to every A) in his syllogistic? The proposed explanations by Alexander, Lukasiewicz and Patzig: Aristotle wants to make clear the difference between subject and predicate, seems to be insufficient. In quantified categorical propositions, this difference is always sufficiently clear by the use of the pronouns going with the subject expressions. Aristotle opts for the terminological wording because in premiss (...) pairs of figures two and three he can thus suppress the middle term in one of the premisses and connect the major and minor term, using connecting particles. This renders the syllogisms more transparent. Had he used the copulative wording instead, he would have run into difficulties, in particular with o-propositions among the premisses (i. e. in Baroco and Bocardo) because in these cases the pronoun expressing the quantification would have to go with the subject term, the negation with the predicate. (shrink)
Since the time of Aristotle's students, interpreters have considered Prior Analytics to be a treatise about deductive reasoning, more generally, about methods of determining the validity and invalidity of premise-conclusion arguments. People studied Prior Analytics in order to learn more about deductive reasoning and to improve their own reasoning skills. These interpreters understood Aristotle to be focusing on two epistemic processes: first, the process of establishing knowledge that a conclusion follows necessarily from a set of premises (that is, on the (...) epistemic process of extracting information implicit in explicitly given information) and, second, the process of establishing knowledge that a conclusion does not follow. Despite the overwhelming tendency to interpret the syllogistic as formal epistemology, it was not until the early 1970s that it occurred to anyone to think that Aristotle may have developed a theory of deductive reasoning with a well worked-out system of deductions comparable in rigor and precision with systems such as propositional logic or equational logic familiar from mathematical logic. When modern logicians in the 1920s and 1930s first turned their attention to the problem of understanding Aristotle's contribution to logic in modern terms, they were guided both by the Frege-Russell conception of logic as formal ontology and at the same time by a desire to protect Aristotle from possible charges of psychologism. They thought they saw Aristotle applying the informal axiomatic method to formal ontology, not as making the first steps into formal epistemology. They did not notice Aristotle's description of deductive reasoning. Ironically, the formal axiomatic method (in which one explicitly presents not merely the substantive axioms but also the deductive processes used to derive theorems from the axioms) is incipient in Aristotle's presentation. Partly in opposition to the axiomatic, ontically-oriented approach to Aristotle's logic and partly as a result of attempting to increase the degree of fit between interpretation and text, logicians in the 1970s working independently came to remarkably similar conclusions to the effect that Aristotle indeed had produced the first system of formal deductions. They concluded that Aristotle had analyzed the process of deduction and that his achievement included a semantically complete system of natural deductions including both direct and indirect deductions. Where the interpretations of the 1920s and 1930s attribute to Aristotle a system of propositions organized deductively, the interpretations of the 1970s attribute to Aristotle a system of deductions, or extended deductive discourses, organized epistemically. The logicians of the 1920s and 1930s take Aristotle to be deducing laws of logic from axiomatic origins; the logicians of the 1970s take Aristotle to be describing the process of deduction and in particular to be describing deductions themselves, both those deductions that are proofs based on axiomatic premises and those deductions that, though deductively cogent, do not establish the truth of the conclusion but only that the conclusion is implied by the premise-set. Thus, two very different and opposed interpretations had emerged, interestingly both products of modern logicians equipped with the theoretical apparatus of mathematical logic. The issue at stake between these two interpretations is the historical question of Aristotle's place in the history of logic and of his orientation in philosophy of logic. This paper affirms Aristotle's place as the founder of logic taken as formal epistemology, including the study of deductive reasoning. A by-product of this study of Aristotle's accomplishments in logic is a clarification of a distinction implicit in discourses among logicians--that between logic as formal ontology and logic as formal epistemology. (shrink)
Parry discusses an extension of Aristotle's syllogistic that uses four nontraditional quantifiers. We show that his conjectured decision procedure for validity for the extended syllogistic is correct even if syllogisms have more than two premises. And we axiomatize this extension of the syllogistic.
Articles by Ian Mueller, Ronald Zirin, Norman Kretzmann, John Corcoran, John Mulhern, Mary Mulhern,Josiah Gould, and others. Topics: Aristotle's Syllogistic, Stoic Logic, Modern Research in Ancient Logic.
Aristotle's syllogistic theory, as developed in his Prior Analytics, is often regarded as the birth of logic in Western philosophy. Over the past century, scholars have tried to identify important precursors to this theory. I argue that Platonic division, a method which aims to give accounts of essences of natural kinds by progressively narrowing down from a genus, influenced Aristotle's logical theory in a number of crucial respects. To see exactly how, I analyze the method of division as it was (...) originally conceived by Plato and received by Aristotle. I argue that, while Plato allowed that some divisions fail to rigorously investigate the essence, he began a program continued by Aristotle (and others in antiquity and the middle ages) of seeking norms for division that would apply in any domain whatsoever. This idea of a rigorous, general method was taken up and developed by Aristotle in his syllogistic. Aristotle also used Plato's conception of predication as parthood in his semantics for syllogistic propositions. As part of my argument, I prove that a semantics based on Platonic divisional structures is sound and complete for the deduction system used in the literature to model Aristotle's syllogistic. (shrink)
ABSTRACT: For the Stoics, a syllogism is a formally valid argument; the primary function of their syllogistic is to establish such formal validity. Stoic syllogistic is a system of formal logic that relies on two types of argumental rules: (i) 5 rules (the accounts of the indemonstrables) which determine whether any given argument is an indemonstrable argument, i.e. an elementary syllogism the validity of which is not in need of further demonstration; (ii) one unary and three binary argumental (...) rules which establish the formal validity of non-indemonstrable arguments by analysing them in one or more steps into one or more indemonstrable arguments (cut type rules and antilogism). The function of these rules is to reduce given non-indemonstrable arguments to indemonstrable syllogisms. Moreover, the Stoic method of deduction differs from standard modern ones in that the direction is reversed (similar to tableau methods). The Stoic system may hence be called an argumental reductive system of deduction. In this paper, a reconstruction of this system of logic is presented, and similarities to relevance logic are pointed out. (shrink)
I argue that these inconsistencies in wording and practice reflect the existence of two distinct Aristotelian views of inquiry, one peculiar to the Posterior Analytics and the other put forward in the Physics and practiced in the Physics and in other treatises. Although the two views overlap to some degree (e.g. both regard a rudimentary understanding of the subject as an essential first stage), the view of the syllogism as the workhorse of scientific investigation and the related view of (...) inquiry as a search for the ‘missing middle terms’ turn out to be ideas peculiar to the Analytics. Conversely, the techniques of analysis and differentiation highlighted in the Physics account receive only cursory attention in the Analytics. However, when we consider the character of Aristotle’s own inquiries, on both scientific and philosophical topics, it becomes clear that it is the Physics rather than the Posterior Analytics that gives us Aristotle’s considered view the path to knowledge. (shrink)
In previous articles, it has been shown that the deductive system developed by Aristotle in his "second logic" is a natural deduction system and not an axiomatic system as previously had been thought. It was also stated that Aristotle's logic is self-sufficient in two senses: First, that it presupposed no other logical concepts, not even those of propositional logic; second, that it is (strongly) complete in the sense that every valid argument expressible in the language of the system is deducible (...) by means of a formal deduction in the system. Review of the system makes the first point obvious. The purpose of the present article is to prove the second. Strong completeness is demonstrated for the Aristotelian system. (shrink)
The word pro-tasis is etymologically a near equivalent of pre-mise, pro-position, and ante-cedent—all having positional, relational connotations now totally absent in contemporary use of proposition. Taking protasis for premise, Aristotle’s statement (24a16) -/- A protasis is a sentence affirming or denying something of something…. -/- is not a definition of premise—intensionally: the relational feature is absent. Likewise, it is not a general definition of proposition—extensionally: it is too narrow. This paper explores recent literature on these issues.
Aristotle’s philosophy is considered with respect to one central concept of his philosophy, viz. opposition. Far from being a mere side-effect of syllogistic, it is argued in the present paper that opposition helps to articulate ontology and logic through an account of what can be or cannot be in a systematic and structural way. The paper is divided into three main parts. In Section I, the notion of Being is scrutinized through Aristotle’s theory of categories. In Section II, the notion (...) of Non-Being is connected to Aristotle’s theory of oppositions. In Section III, the notion of essence is revisited in order to bring about a holist theory of meaning by individuating through opposite properties. In conclusion, the legacy of Aristotle is depicted as balanced between a powerful reflection around Being and a restrictive ontology of substance. (shrink)
The article re-examines the Aristotelian backdrop of Arendt’s notion of action. On the one hand, Backman takes up Arendt’s critique of the hierarchy of human activities in Aristotle, according to which Aristotle subordinates action (praxis) to production (poiesis) and contemplation (theoria). Backman argues that this is not the case since Aristotle conceives theoria as the most perfect form of praxis. On the other hand, Backman stresses that Arendt’s notion of action is in fact very different from Aristotle’s praxis, to (...) the extent that Arendt thinks of action as an external to the means-ends scheme, whereas Aristotle ultimately remains caught in this scheme proper to poiesis in thinking of praxis as its own end. According to Backman, Arendt’s concept of action can therefore be understood as a critique, rather than as a rehabilitation, of Aristotelian praxis. (shrink)
The purpose of this paper is to give an account and a rational reconstruction of the heuristic advice provided by Aristotle in the Topics and Prior Analytics in regard to the difficulty or ease of strategic planning in the context of a dialectical dialogue. The general idea is that a Questioner can foresee what his refutational syllogism would have to look like given the character of the thesis defended by the Answerer, and therefore plan accordingly. A rational reconstruction of (...) this advice will be attempted from three perspectives: strategic planning based on the acceptability of Answerer’s thesis, strategic planning based on the predicational form of the thesis, strategic planning based on the logical form of the thesis. In addition, we will provide an illustration of the potential of this heuristic advice as we apply it to the interpretation of a fragment from Plato, presuming that, in a similar way, a reading of this kind might be more generally applicable in the interpretation of the Platonic dialogues. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.