Results for 'Cardinal Bellarmine'

160 found
Order:
  1. Thomas Hobbes and Cardinal Bellarmine: Leviathan and 'he ghost of the Roman empire'.Patricia Springborg - 1995 - History of Political Thought 16 (4):503-531.
    As a representative of the papacy Bellarmine was an extremely moderate one. In fact Sixtus V in 1590 had the first volume of his Disputations placed on the Index because it contained so cautious a theory of papal power, denying the Pope temporal hegemony. Bellarmine did not represent all that Hobbes required of him either. On the contrary, he proved the argument of those who championed the temporal powers of the Pope faulty. As a Jesuit he tended to (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  2. Zwischen Trient und Vatikanum II: Der Fall Galilei.Michael Segre - 2003 - Berichte Zur Wissenschaftsgeschichte 26 (2):129-136.
    The Council of Trent and the Second Vatican Council are significant both to Lutheranism and Science. The first inaugurated the Counter Reformation and formulated a decree related to biblical hermeneutics later used as a basis for Galileo's condemnation. The second modernized the Roman Catholic Church and formulated the Pastoral Constitution Gaudium et spes used by Pope John Paul II as a basis for the reconsideration of the condemnation. In both cases, however, the Church of Rome may not have followed the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3.  86
    Belarmino y las disputas «de auxiliis»: Acerca de un manuscrito inédito sobre la ciencia media.David Torrijos Castrillejo - 2022 - Estudios Eclesiásticos 97:181-215.
    To commemorate the 400th anniversary of the death of St. Robert Bellarmine, this article pays attention to his significant contribution to the De Auxiliis controversy. The main milestones of his intervention are considered: Bellarmine’s internal censure of the Concordia by Molina made for Aquaviva, as well as some details of his relationship with Pope Clement VIII. He composed several opuscules on these topics, most of which have already been published. Here we transcribe an unpublished manuscript from the last (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Cardinal Composition.Lisa Vogt & Jonas Werner - forthcoming - Erkenntnis:1-23.
    The thesis of Weak Unrestricted Composition says that every pair of objects has a fusion. This thesis has been argued by Contessa and Smith to be compatible with the world being junky and hence to evade an argument against the necessity of Strong Unrestricted Composition proposed by Bohn. However, neither Weak Unrestricted Composition alone nor the different variants of it that have been proposed in the literature can provide us with a satisfying answer to the special composition question, or so (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. The Cardinal Role of Respect and Self-Respect for Rawls’s and Walzer’s Theories of Justice.Manuel Dr Knoll - 2017 - In Giovanni Giorgini & Elena Irrera (eds.), The Roots of Respect. A Historic-Philosophical Itinerary. De Gruyter. pp. 207–227.
    The cardinal role that notions of respect and self-respect play in Rawls’s A Theory of Justice has already been abundantly examined in the literature. However, it has hardly been noticed that these notions are also central for Michael Walzer’s Spheres of Justice. Respect and self-respect are not only central topics of his chapter on “recognition”, but constitute a central aim of his whole theory of justice. This paper substantiates this thesis and elucidates Walzer’s criticism of Rawls’s that we need (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. A Cardinal Worry for Permissive Metaontology.Simon Hewitt - 2015 - Metaphysica 16 (2):159-166.
    Permissivist metaontology proposes answering customary existence questions in the affirmative. Many of the existence questions addressed by ontologists concern the existence of theoretical entities which admit precise formal specification. This causes trouble for the permissivist, since individually consistent formal theories can make pairwise inconsistent demands on the cardinality of the universe. We deploy a result of Gabriel Uzquiano’s to show that this possibility is realised in the case of two prominent existence debates and propose rejecting permissivism in favour of substantive (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Are Large Cardinal Axioms Restrictive?Neil Barton - manuscript
    The independence phenomenon in set theory, while pervasive, can be partially addressed through the use of large cardinal axioms. A commonly assumed idea is that large cardinal axioms are species of maximality principles. In this paper, I argue that whether or not large cardinal axioms count as maximality principles depends on prior commitments concerning the richness of the subset forming operation. In particular I argue that there is a conception of maximality through absoluteness, on which large (...) axioms are restrictive. I argue, however, that large cardinals are still important axioms of set theory and can play many of their usual foundational roles. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  8. The Cardinal Role of Respect and Self-Respect for Rawls’s and Walzer’s Theories of Justice.Manuel Knoll - 2017 - In Elena Irrera & Giovanni Giorgini (eds.), The Roots of Respect: A Historic-Philosophical Itinerary. De Gruyter. pp. 207-224.
    The cardinal role that notions of respect and self-respect play in Rawls’s A Theory of Justice has already been abundantly examined in the literature. In contrast, it has hardly been noticed that these notions are also central to Michael Walzer’s Spheres of Justice. Respect and self-respect are not only central topics of his chapter “Recognition”, but constitute a central aim of a “complex egalitarian society” and of Walzer’s theory of justice. This paper substantiates this thesis and elucidates Walzer’s criticism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9.  54
    Nota: ¿CUÁL ES EL CARDINAL DEL CONJUNTO DE LOS NÚMEROS REALES?Franklin Galindo - manuscript
    ¿Qué ha pasado con el problema del cardinal del continuo después de Gödel (1938) y Cohen (1964)? Intentos de responder esta pregunta pueden encontrarse en los artículos de José Alfredo Amor (1946-2011), "El Problema del continuo después de Cohen (1964-2004)", de Carlos Di Prisco , "Are we closer to a solution of the continuum problem", y de Joan Bagaria, "Natural axioms of set and the continuum problem" , que se pueden encontrar en la biblioteca digital de mi blog de (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Choice-Based Cardinal Utility. A Tribute to Patrick Suppes.Jean Baccelli & Philippe Mongin - 2016 - Journal of Economic Methodology 23 (3):268-288.
    We reexamine some of the classic problems connected with the use of cardinal utility functions in decision theory, and discuss Patrick Suppes's contributions to this field in light of a reinterpretation we propose for these problems. We analytically decompose the doctrine of ordinalism, which only accepts ordinal utility functions, and distinguish between several doctrines of cardinalism, depending on what components of ordinalism they specifically reject. We identify Suppes's doctrine with the major deviation from ordinalism that conceives of utility functions (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  11.  90
    Cardinality logics, part I: inclusions between languages based on ‘exactly’.Harold Hodes - 1988 - Annals of Pure and Applied Logic 39 (3):199-238.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  12.  85
    Cardinality logics. Part II: Definability in languages based on `exactly'.Harold Hodes - 1988 - Journal of Symbolic Logic 53 (3):765-784.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  13. The Basic Laws of Cardinal Number.Richard Kimberly Heck - 2019 - In Philip A. Ebert & Marcus Rossberg (eds.), Essays on Frege's Basic Laws of Arithmetic. Oxford: Oxford University Press. pp. 1-30.
    An overview of what Frege accomplishes in Part II of Grundgesetze, which contains proofs of axioms for arithmetic and several additional results concerning the finite, the infinite, and the relationship between these notions. One might think of this paper as an extremely compressed form of Part II of my book Reading Frege's Grundgesetze.
    Download  
     
    Export citation  
     
    Bookmark  
  14. A Happy Possibility About Happiness (And Other Subjective) Scales: An Investigation and Tentative Defence of the Cardinality Thesis.Michael Plant - manuscript
    There are long-standing doubts about whether data from subjective scales—for instance, self-reports of happiness—are cardinally comparable. It is unclear how to assess whether these doubts are justified without first addressing two unresolved theoretical questions: how do people interpret subjective scales? Which assumptions are required for cardinal comparability? This paper offers answers to both. It proposes an explanation for scale interpretation derived from philosophy of language and game theory. In short: conversation is a cooperative endeavour governed by various maxims (Grice (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Exclusion Problems and the Cardinality of Logical Space.Tim Button - 2017 - Journal of Philosophical Logic 46 (6):611-623.
    Wittgenstein’s atomist picture, as embodied in his Tractatus, is initially very appealing. However, it faces the famous colour-exclusion problem. In this paper, I shall explain when the atomist picture can be defended in the face of that problem; and, in the light of this, why the atomist picture should be rejected. I outline the atomist picture in Section 1. In Section 2, I present a very simple necessary and sufficient condition for the tenability of the atomist picture. The condition is: (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  16.  3
    Zeno’s Paradoxes. A Cardinal Problem. I. On Zenonian Plurality.Karin Verelst - 2005 - The Baltic International Yearbook of Cognition, Logic and Communication 1.
    It will be shown in this article that an ontological approach for some problems related to the interpretation of Quantum Mechanics (QM) could emerge from a re-evaluation of the main paradox of early Greek thought: the paradox of Being and non-Being, and the solutions presented to it by Plato and Aristotle. More well known are the derivative paradoxes of Zeno: the paradox of motion and the paradox of the One and the Many. They stem from what was perceived by classical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17.  49
    Where Do the Cardinal Numbers Come From?Harold T. Hodes - 1990 - Synthese 84 (3):347-407.
    This paper presents a model-theoretic semantics for discourse "about" natural numbers, one that captures what I call "the mathematical-object picture", but avoids what I can "the mathematical-object theory".
    Download  
     
    Export citation  
     
    Bookmark  
  18. Creationism and cardinality.Daniel Nolan & Alexander Sandgren - 2014 - Analysis 74 (4):615-622.
    Creationism about fictional entities requires a principle connecting what fictions say exist with which fictional entities really exist. The most natural way of spelling out such a principle yields inconsistent verdicts about how many fictional entities are generated by certain inconsistent fictions. Avoiding inconsistency without compromising the attractions of creationism will not be easy.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  19. Generalized Löb’s Theorem. Strong Reflection Principles and Large Cardinal Axioms.Jaykov Foukzon - 2013 - Advances in Pure Mathematics (3):368-373.
    In this article, a possible generalization of the Löb’s theorem is considered. Main result is: let κ be an inaccessible cardinal, then ¬Con( ZFC +∃κ) .
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  20. Inconsistent Countable Set in Second Order ZFC and Nonexistence of the Strongly Inaccessible Cardinals.Jaykov Foukzon - 2015 - British Journal of Mathematics and Computer Science 9 (5):380-393.
    In this article we derived an important example of the inconsistent countable set in second order ZFC (ZFC_2) with the full second-order semantics. Main results: (i) :~Con(ZFC2_); (ii) let k be an inaccessible cardinal, V is an standard model of ZFC (ZFC_2) and H_k is a set of all sets having hereditary size less then k; then : ~Con(ZFC + E(V)(V = Hk)):.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  21. The Nineteenth-Century Thomist from the Far East: Cardinal Zeferino González, OP (1831–1894).Levine Andro Lao - 2021 - Philippiniana Sacra 56 (167):277-306.
    This article reintroduces Fr. Zeferino González, OP (1831-1894) to scholars of Church history, philosophy, and cultural heritage. He was an alumnus of the University of Santo Tomás in Manila, a Cardinal, and a champion of the revival of Catholic Philosophy that led to the promulgation of Leo XIII’s encyclical Aeterni Patris. Specifically, this essay presents, firstly, the Cardinal’s biography in the context of his experience as a missionary in the Far East; secondly, the intellectual tradition in Santo Tomás (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Can an Ancient Argument of Carneades on Cardinal Virtues and Divine Attributes be Used to Disprove the Existence of God?Douglas Walton - 1999 - Philo 2 (2):5-13.
    An ancient argument attributed to the philosopher Carneades is presented that raises critical questions about the concept of an all-virtuous Divine being. The argument is based on the premises that virtue involves overcoming pains and dangers, and that only a being that can suffer or be destroyed is one for whom there are pains and dangers. The conclusion is that an all-virtuous Divine (perfect) being cannot exist. After presenting this argument, reconstructed from sources in Sextus Empiricus and Cicero, this paper (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Generalized Löb’s Theorem.Strong Reflection Principles and Large Cardinal Axioms. Consistency Results in Topology.Jaykov Foukzon - 2015 - Pure and Applied Mathematics Journal (Vol. 4, No. 1-1):1-5.
    Download  
     
    Export citation  
     
    Bookmark  
  24. Relativism, Today and Yesterday.Barbara Herrnstein Smith - 2007 - Common Knowledge 13 (2-3):227-249.
    An analysis of Cardinal Joseph Ratzinger's statements regarding relativism in his 2005 homily to the conclave meeting to elect the new pope in the context of the charge of "relativism" in 20th-century philosophy. Parts of this essay are adapted from Barbara Herrnstein Smith,"Pre-Post-Modern Relativism," in *Scandalous Knowledge: Science, Truth and the Human* (Edinburgh: Edinburgh University Press, 2005; Durham, NC: Duke University Press, 2006), 18 – 45.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  25. The Transition within Virtue Ethics in the context of Benevolence.Prasasti Pandit - 2022 - Philosophia (Philippines) 23 (1):135-151.
    This paper explores the value of benevolence as a cardinal virtue by analyzing the evolving history of virtue ethics from ancient Greek tradition to emotivism and contemporary thoughts. First, I would like to start with a brief idea of virtue ethics. Greek virtue theorists recognize four qualities of moral character, namely, wisdom, temperance, courage, and justice. Christianity recognizes unconditional love as the essence of its theology. Here I will analyze the transition within the doctrine of virtue ethics in the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Countabilism and Maximality Principles.Neil Barton & Sy-David Friedman - manuscript
    It is standard in set theory to assume that Cantor's Theorem establishes that the continuum is an uncountable set. A challenge for this position comes from the observation that through forcing one can collapse any cardinal to the countable and that the continuum can be made arbitrarily large. In this paper, we present a different take on the relationship between Cantor's Theorem and extensions of universes, arguing that they can be seen as showing that every set is countable and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Chance and the Continuum Hypothesis.Daniel Hoek - 2021 - Philosophy and Phenomenological Research 103 (3):639-60.
    This paper presents and defends an argument that the continuum hypothesis is false, based on considerations about objective chance and an old theorem due to Banach and Kuratowski. More specifically, I argue that the probabilistic inductive methods standardly used in science presuppose that every proposition about the outcome of a chancy process has a certain chance between 0 and 1. I also argue in favour of the standard view that chances are countably additive. Since it is possible to randomly pick (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  28. Composition and Relative Counting.Massimiliano Carrara & Giorgio Lando - 2017 - Dialectica 71 (4):489-529.
    According to the so-called strong variant of Composition as Identity (CAI), the Principle of Indiscernibility of Identicals can be extended to composition, by resorting to broadly Fregean relativizations of cardinality ascriptions. In this paper we analyze various ways in which this relativization could be achieved. According to one broad variety of relativization, cardinality ascriptions are about objects, while concepts occupy an additional argument place. It should be possible to paraphrase the cardinality ascriptions in plural logic and, as a consequence, relative (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  29. First-order modal logic in the necessary framework of objects.Peter Fritz - 2016 - Canadian Journal of Philosophy 46 (4-5):584-609.
    I consider the first-order modal logic which counts as valid those sentences which are true on every interpretation of the non-logical constants. Based on the assumptions that it is necessary what individuals there are and that it is necessary which propositions are necessary, Timothy Williamson has tentatively suggested an argument for the claim that this logic is determined by a possible world structure consisting of an infinite set of individuals and an infinite set of worlds. He notes that only the (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  30. There is No Standard Model of ZFC and ZFC_2. Part I.Jaykov Foukzon - 2017 - Journal of Advances in Mathematics and Computer Science 2 (26):1-20.
    In this paper we view the first order set theory ZFC under the canonical frst order semantics and the second order set theory ZFC_2 under the Henkin semantics. Main results are: (i) Let M_st^ZFC be a standard model of ZFC, then ¬Con(ZFC + ∃M_st^ZFC ). (ii) Let M_stZFC_2 be a standard model of ZFC2 with Henkin semantics, then ¬Con(ZFC_2 +∃M_stZFC_2). (iii) Let k be inaccessible cardinal then ¬Con(ZFC + ∃κ). In order to obtain the statements (i) and (ii) examples (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. There is No Standard Model of ZFC and ZFC2. Part II.Jaykov Foukzon & Elena Men’Kova - 2019 - Advanced in Pure Mathematic 9 (9):685-744.
    In this article we proved so-called strong reflection principles corresponding to formal theories Th which has omega-models or nonstandard model with standard part. An posible generalization of Lob’s theorem is considered.Main results are: (i) ConZFC  Mst ZFC, (ii) ConZF  V  L, (iii) ConNF  Mst NF, (iv) ConZFC2, (v) let k be inaccessible cardinal then ConZFC  .
    Download  
     
    Export citation  
     
    Bookmark  
  32. Two Mereological Arguments Against the Possibility of an Omniscient Being.Joshua T. Spencer - 2006 - Philo 9 (1):62-72.
    In this paper I present two new arguments against the possibility of an omniscient being. My new arguments invoke considerations of cardinality and resemble several arguments originally presented by Patrick Grim. Like Grim, I give reasons to believe that there must be more objects in the universe than there are beliefs. However, my arguments will rely on certain mereological claims, namely that Classical Extensional Mereology is necessarily true of the part-whole relation. My first argument is an instance of a problem (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  33. Logic of paradoxes in classical set theories.Boris Čulina - 2013 - Synthese 190 (3):525-547.
    According to Cantor (Mathematische Annalen 21:545–586, 1883 ; Cantor’s letter to Dedekind, 1899 ) a set is any multitude which can be thought of as one (“jedes Viele, welches sich als Eines denken läßt”) without contradiction—a consistent multitude. Other multitudes are inconsistent or paradoxical. Set theoretical paradoxes have common root—lack of understanding why some multitudes are not sets. Why some multitudes of objects of thought cannot themselves be objects of thought? Moreover, it is a logical truth that such multitudes do (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Iterated ultrapowers and Prikry forcing.Patrick Dehornoy - 1978 - Annals of Mathematical Logic 15 (2):109.
    If $U$ is a normal ultrafilter on a measurable cardinal $\kappa$, then the intersection of the $\omega$ first iterated ultrapowers of the universe by $U$ is a Prikry generic extension of the $\omega$th iterated ultrapower.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  35. All Things Must Pass Away.Joshua Spencer - 2012 - Oxford Studies in Metaphysics 7:67.
    Are there any things that are such that any things whatsoever are among them. I argue that there are not. My thesis follows from these three premises: (1) There are two or more things; (2) for any things, there is a unique thing that corresponds to those things; (3) for any two or more things, there are fewer of them than there are pluralities of them.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  36. Size and Function.Bruno Whittle - 2018 - Erkenntnis 83 (4):853-873.
    Are there different sizes of infinity? That is, are there infinite sets of different sizes? This is one of the most natural questions that one can ask about the infinite. But it is of course generally taken to be settled by mathematical results, such as Cantor’s theorem, to the effect that there are infinite sets without bijections between them. These results settle the question, given an almost universally accepted principle relating size to the existence of functions. The principle is: for (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  37. Virtues are excellences.Paul Bloomfield - 2022 - Ratio 35 (1):49-60.
    Ratio, Volume 35, Issue 1, Page 49-60, March 2022.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  38. Epistemic Modality and Hyperintensionality in Mathematics.Hasen Khudairi - 2017 - Dissertation, University of St Andrews
    This book concerns the foundations of epistemic modality. I examine the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality relates to the computational theory of mind; metaphysical modality; the types of mathematical modality; to the epistemic status of large cardinal axioms, undecidable propositions, and abstraction principles in the philosophy of mathematics; to the modal profile of rational intuition; (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Ontological Commitments, Thick and Thin.Harold T. Hodes - 1990 - In George Boolos (ed.), Method, Reason and Language: Essays in Honor of Hilary Putnam. Cambridge University Press. pp. 235-260.
    Discourse carries thin commitment to objects of a certain sort iff it says or implies that there are such objects. It carries a thick commitment to such objects iff an account of what determines truth-values for its sentences say or implies that there are such objects. This paper presents two model-theoretic semantics for mathematical discourse, one reflecting thick commitment to mathematical objects, the other reflecting only a thin commitment to them. According to the latter view, for example, the semantic role (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  40. Remarks on definiteness in warlpiri.Maria Bittner & Ken Hale - 1995 - In Emmon Bach, Eloise Jelinek, Angelika Kratzer & Barbara Partee (eds.), Quantification in Natural Languages. Kluwer Academic Publishers.
    In this paper, we discuss some rather puzzling facts concerning the semantics of Warlpiri expressions of cardinality, i.e. the Warlpiri counterparts of English expressions like one,two, many, how many. The morphosyntactic evidence, discussed in section 1, suggests that the corresponding expressions in Warlpiri are nominal, just like the Warlpiri counterparts of prototypical nouns, eg. child. We also argue that Warlpiri has no articles or any other items of the syntactic category D(eterminer). In section 2, we describe three types of readings— (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  41. Absolutely No Free Lunches!Gordon Belot - forthcoming - Theoretical Computer Science.
    This paper is concerned with learners who aim to learn patterns in infinite binary sequences: shown longer and longer initial segments of a binary sequence, they either attempt to predict whether the next bit will be a 0 or will be a 1 or they issue forecast probabilities for these events. Several variants of this problem are considered. In each case, a no-free-lunch result of the following form is established: the problem of learning is a formidably difficult one, in that (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  42.  87
    What is Logical in First-Order Logic?Boris Čulina - manuscript
    In this article, logical concepts are defined using the internal syntactic and semantic structure of language. For a first-order language, it has been shown that its logical constants are connectives and a certain type of quantifiers for which the universal and existential quantifiers form a functionally complete set of quantifiers. Neither equality nor cardinal quantifiers belong to the logical constants of a first-order language.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  43.  70
    Worlds are Pluralities.Isaac Wilhelm - forthcoming - Australasian Journal of Philosophy:1-11.
    I propose an account of possible worlds. According to the account, possible worlds are pluralities of sentences in an extremely large language. This account avoids a problem, relating to the total number of possible worlds, that other accounts face. And it has several additional benefits.
    Download  
     
    Export citation  
     
    Bookmark  
  44. Testimony and Children’s Acquisition of Number Concepts.Helen De Cruz - 2018 - In Sorin Bangu (ed.), Naturalizing Logico-Mathematical Knowledge. Approaches from Philosophy, Psychology and Cognitive Science. London, UK: pp. 172-186.
    An enduring puzzle in philosophy and developmental psychology is how young children acquire number concepts, in particular the concept of natural number. Most solutions to this problem conceptualize young learners as lone mathematicians who individually reconstruct the successor function and other sophisticated mathematical ideas. In this chapter, I argue for a crucial role of testimony in children’s acquisition of number concepts, both in the transfer of propositional knowledge (e.g., the cardinality concept), and in knowledge-how (e.g., the counting routine).
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  45. Apical amplification—a cellular mechanism of conscious perception?Tomas Marvan, Michal Polák, Talis Bachmann & William A. Phillips - 2021 - Neuroscience of Consciousness 7 (2):1-17.
    We present a theoretical view of the cellular foundations for network-level processes involved in producing our conscious experience. Inputs to apical synapses in layer 1 of a large subset of neocortical cells are summed at an integration zone near the top of their apical trunk. These inputs come from diverse sources and provide a context within which the transmission of information abstracted from sensory input to their basal and perisomatic synapses can be amplified when relevant. We argue that apical amplification (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  46. Uninstantiated Properties and Semi-Platonist Aristotelianism.James Franklin - 2015 - Review of Metaphysics 69 (1):25-45.
    A problem for Aristotelian realist accounts of universals (neither Platonist nor nominalist) is the status of those universals that happen not to be realised in the physical (or any other) world. They perhaps include uninstantiated shades of blue and huge infinite cardinals. Should they be altogether excluded (as in D.M. Armstrong's theory of universals) or accorded some sort of reality? Surely truths about ratios are true even of ratios that are too big to be instantiated - what is the truthmaker (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  47.  67
    On the expressive power of Łukasiewicz square operator.Marcelo E. Coniglio, Francesc Esteva, Tommaso Flaminio & Lluis Godo - forthcoming - Journal of Logic and Computation.
    The aim of the paper is to analyze the expressive power of the square operator of Łukasiewicz logic: ∗x=x⊙x⁠, where ⊙ is the strong Łukasiewicz conjunction. In particular, we aim at understanding and characterizing those cases in which the square operator is enough to construct a finite MV-chain from a finite totally ordered set endowed with an involutive negation. The first of our main results shows that, indeed, the whole structure of MV-chain can be reconstructed from the involution and the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  48.  16
    Simone de Beauvoir’s Existentialist Ethics as a Prophylactic for Ideology Obsession and Ideology Addiction: An Uplifting Philosophy for Philosophical Practice.Guy Du Plessis - 2023 - The 5Th International Conference of Philosophical Counseling and Practice 1 (1):1-11.
    Central to the philosophical practice is the application of philosophers' work by philosophical practitioners to inspire, educate, and guide their clients. For example, in Logic-Based Therapy (LBT), a philosophical practice methodology developed by Elliot Cohen, philosophical practitioners help their clients to find an uplifting philosophy that promotes a guiding virtue that acts as an antidote to unrealistic and often self-defeating conclusions derived from irrational premises. In this essay, I will explore the existential ethics of Simone de Beauvoir, a French existentialist (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Military Virtues for Today.Peter Olsthoorn - 2021 - Ethics and Armed Forces 2021 (2):24-29.
    How can military personnel be prevented from using force unlawfully? A critical examination of typical methods and the suitability of virtue ethics for this task starts with the inadequacies of a purely rules-based approach, and the fact that many armed forces increasingly rely on character development training. The three investigated complexes also raise further questions which require serious consideration – such as about the general teachability of virtues. First, the changing roles and responsibilities of modern armed forces are used to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50.  50
    Random Formula Generators.Ariel Jonathan Roffé & Joaquín Toranzo Calderón - manuscript
    In this article, we provide three generators of propositional formulae for arbitrary languages, which uniformly sample three different formulae spaces. They take the same three parameters as input, namely, a desired depth, a set of atomics and a set of logical constants (with specified arities). The first generator returns formulae of exactly the given depth, using all or some of the propositional letters. The second does the same but samples up-to the given depth. The third generator outputs formulae with exactly (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 160