OBJETIVO A gestação nos mamíferos domésticos é um processo fisiológico que implica mudanças físicas, metabólicas e hormonais na fêmea, que culminam com o nascimento de um novo indivíduo. Desta forma, a compreensão de tais mudanças e como estas favorecem um ambiente ideal de desenvolvimento embrionário inicial, até a placentação e a fisiologia envolvidas durante esses processos é fundamental na tomada de decisões quanto à saúde reprodutiva da fêmea, na seleção de futuras matrizes e até mesmo para a saúde fetal e (...) sanidade do novo animal. Neste capítulo, o estudante compreenderá de forma clara, concisa, didática e objetiva, as adaptações maternas e fetais para o estabelecimento da gestação após a fecundação, o desenvolvimento desta e também identificará as diferenças existentes entre as espécies de interesse zootécnico. INTRODUÇÃO O estabelecimento da gestação nos mamíferos domésticos inclui três etapas fundamentais: o reconhecimento materno da gestação ou prenhez (RMP), a implantação e a placentação. Dentro da fisiologia da reprodução nos mamíferos, a implantação e a placenta- ção constituem processos essenciais na nutrição do embrião e do feto e, portanto, para seu desenvolvimento; devido a isso, são etapas críticas para a produção animal já que possuem um efeito direto sobre a eficiência reprodutiva. Nos bovinos leiteiros, por exemplo, estima-se uma taxa de fertilização perto de 95%, embora apenas 55% desses zigotos se desenvolvam e cheguem ao parto, o qual representa uma perda de gestações perto de 35%. Entre 70% e 80% das mortes embrionárias ocorrem durante as três semanas seguintes à ovulação, o que coincide com o período no qual se estabelecem os processos de implantação e placentação supracitados. O desenvolvimento embrionário precoce depende da sincronia de eventos entre o oviduto-útero e o embrião. Foi determinado que a presença do embrião pode modificar as secreções ovidutais e uterinas durante as fases iniciais de desenvolvimento. O ambiente endócrino materno (predominância de progesterona) também modula as características das secreções ovidutais e uterinas para assegurar a sobrevivência embrionária no caso da fertilização ter sido bem sucedida. Se este último ocorrer, então o embrião deverá indicar à mãe a sua existência para que sejam mantidas as condições adequadas ao seu desenvolvimento. Como supracitado, o embrião em seu curso pelo oviduto requer certas secreções para sobreviver e desenvolver-se, no entanto, graças à fertilização in vitro, têm-se dispensado a importância das secreções ovidutais, já que se observou que um embrião é capaz de se desenvolver em condições laboratoriais fora do aparelho reprodutor materno durante as suas fases iniciais, e consegue estabelecer uma gestação normal que chega a termo após a sua reintrodução no útero. Em estágios mais tardios de desenvolvimento o embrião necessita necessariamente do meio uterino para sobreviver e continuar o seu crescimento. No bovino, por exemplo, o embrião só é capaz de alongar-se estando dentro do útero, indicando a presença de fatores específicos necessários para que o embrião se desenvolva de maneira normal. Um meio endócrino no qual predomina a progesterona materna durante a gestação induz a secreção do histiotrofo (ou leite uterino) que permite a nutrição e a sobrevivência do embrião antes da implantação e da formação da placenta, através do qual obterá a maioria do fornecimento e intercâmbio necessários para continuar o seu desenvolvimento intra-uterino. SEGMENTAÇÃO E DESENVOLVIMENTO EMBRIONÁRIO PRECOCE O desenvolvimento embrionário precoce, conhecido como período de pré- -implantação, é essencial; inclui processos de divisão e diferenciação celular que são realizadas no início com uma elevada sincronização para garantir o desenvolvimento correto do indivíduo dentro do útero. Esta fase envolve a passagem do zigoto (unicelular), a embrião (multicelular) e, por fim, em concepto (quando se distingue o embrião com suas membranas extraembrionárias). O desenvolvimento precoce é o estágio mais dinâmico e vulnerável na formação de um indivíduo. Investigações recentes demonstraram que alterações nesta etapa podem modificar características produtivas ou reprodutivas durante a vida adulta. É por isso que é necessário conhecer as etapas fisiologicamente normais envolvidas neste processo (figura 1). Em fases mais tardias de desenvolvimento, o embrião se converterá em um feto com todos os sistemas e tecidos diferenciados observados num animal adulto. Após a fertilização, o zigoto resultante é capaz de dar origem a um novo organismo completo, de modo que se considera como uma célula totipotencial. O desenvolvimento embrionário começa e se consegue graças a uma série de divisões mitóticas conhecidas como segmentação ou clivagem (cleavage, em inglês). A primeira divisão mitótica dá origem a duas células filhas idênticas (figura 1), e ocorre por volta das 20 às 30 horas depois da fertilização, com divisões subsequentes a cada 12 a 24 h, dependendo da espécie. As células resultantes destas divisões são conhecidas como blastômeros. A orientação da divisão inicial que dá origem aos dois primeiros blastô- meros, parece ser guiada pela posição dos corpos polares. As divisões iniciais das células embrionárias são sincrônicas, no entanto, conforme o desenvolvimento se torna assincrônicas. Assim, a divisão mitótica inicial dá origem a um embrião de duas células (dois blastômeros), a segunda a um embrião de quatro células, a terceira a um de oito células e a quarta a um com 16 células, onde passa a ser chamado de mórula. Estas divisões são realizadas sem o aumento do volume do citoplasma, para que seja restabelecida uma proporção celular mais adequada à das células somáticas, já que o ovócito é a célula mais grande do organismo (um ovócito mede entre 100 e 150 μm do ovócito, enquanto uma célula somática mede de 10 a 20 μm); e porque o embrião ainda está contido dentro da zona pelúcida (figura 1). Um dos pontos críticos durante o desenvolvimento embrionário precoce é a ativação do genoma embrionário. Durante as etapas iniciais após a fertilização, as proteínas e RNAs “herdados” do ovócito são responsáveis pelo metabolismo e desenvolvimento inicial do embrião. É apenas até o estágio de quatro (ratos) ou oito blastômeros (espécies domésticas e humanas) em que o embrião começa a sintetizar o seu próprio RNAm (mensageiro) e as proteínas específicas necessárias para controlar o seu crescimento e metabolismo. A qualidade do ovócito que é fertilizado, consequente- mente, tem um grande impacto sobre a sobrevivência inicial do embrião. Quando o embrião atinge uma média de 16 a 32 células é conhecido como mórula (tabela 1) (do latim morus: mora), e nesta fase o embrião começa a compactar-se, o que ocorre porque começam a estabelecer-se diferentes uniões celulares, de acordo com a relação espacial entre os blastômeros. As células centrais desenvolvem-se incluindo entre elas junções comunicantes, conhecidas também como junções GAP, enquanto as que se encontram na periferia estabelecem uniões estreitas, dando origem a duas subpopulações distintas de blastômeros: periféricos e centrais. Cabe mencionar que os blastômeros que compõem a mórula ainda são células capazes de dar origem a um novo indivíduo completo, ou seja, são totipotenciais. À medida que a mórula continua a dividir-se e a crescer, as células localizadas na periferia começam a liberar sódio para os espaços intercelulares, criando uma diferença na pressão osmótica seguida pela entrada de água ao embrião. O líquido se acumula e provoca a separação das células, distinguindo ainda mais as duas subpopulações de células mencionadas (periféricas e centrais) e forma-se uma cavidade cheia de líquido. Esta cavidade é conhecida como blastocele; com a sua formação o embrião entra em fase de blastocisto (figura 1, tabela 1). Da subpopulação celular da periferia se origina do trofoblasto (trofoectoderma) que formará a maioria das membranas extraembrionárias (placenta), e da subpopulação central é estabelecida a massa celular interna ou embrioblasto, que dará origem ao embrião propriamente dito, ou seja, ao feto. Ao continuar a multiplicação e crescimento do trofoblasto à medida que o blastocisto se desenvolve, as células da massa interna se diferenciam novamente em dois segmentos distintos: a endoderme primitiva ou hipoblasto e o epiblasto (figura 1), em que todos os tecidos do organismo (saco vitelino) são originados e as células germinativas primordiais. Uma vez formado, o epiblasto continua a dividir-se e a diferenciar-se para dar origem às três placas ou camadas germinativas conhecidas como endoderme, mesoderme e ectoderme. Este processo é conhecido como gastrulação, e durante este diferem-se no embrião as porções craniais, caudais, dorsais e ventrais, processo conhecido como polaridade do embrião, que orienta o desenvolvimento dos diversos tecidos e órgãos do indivíduo. À medida que o blastocisto continua crescendo e diferenciando-se, vai-se acumulando mais líquido no blastocele, com o que a pressão interna aumenta e a zona pelúcida começa a ficar mais fina. Este fato, juntamente com a ação de proteases produzidas pelo embrião, leva à ruptura da zona pelúcida e à saída do blastocisto (eclosão), pelo que, uma vez liberado, o embrião é conhecido como blastocisto eclodido. O trofoblasto embrionário entra, então, em contato direto com o endométrio, o que é considerado como o início da implantação. IMPLANTAÇÃO O trofoblasto embrionário, também conhecido como trofoectoderma, dá origem à maioria das membranas fetais ou placenta fetal. O processo no qual o trofoblasto se une ao endométrio materno é conhecido como implantação; para isso ocorre uma série de processos altamente sincronizados envolvendo secreções embrionárias e maternas, e interações físicas, durante um período limitado conhecido como janela de receptividade. A implantação é considerada um processo gradual que genericamente se divide em cinco fases, algumas das quais podem sobrepor-se parcialmente e diferir segundo a espécie: 1. Eclosão do blastocisto da zona pelúcida (figura 2); -/- 2. Pré-contato e orientação do blastocisto. É o contato inicial entre as células do trofoblasto e do epitélio endometrial, bem como a orientação da massa celular interna e do trofoectoderma, que assume especial importância em espécies cuja implantação é invasiva, como em roedores e primatas; 3. Aposição - refere-se ao posicionamento do blastocisto numa determinada área e de uma forma específica no útero. Começa a interdigitação das vilosidades coriônicas com o epitélio luminal do endométrio. 4. Adesão - requer sistemas de sinalização que envolvem glicoproteínas de adesão, como integrinas, selectinas e galectinas, com os seus ligantes, tanto no epitélio luminal como no epitélio trofoectoderma. 5. Invasão endometrial - este termo se relaciona ao tipo de placentação e é pertinente sobretudo para aquelas espécies onde existe uma fusão entre células do trofoblasto e do epitélio do endométrio durante a formação da placenta, ou que as células trofoblásticas penetrem as camadas endometriais e até modifiquem as células do endométrio que as rodeiam. Existem três tipos de implantação ou nidação. Na nidação central ou não invasiva, a vesícula embrionária ocupa uma posição central na luz do útero e, na sua relação com a mucosa uterina, unicamente através das vilosidades coriônicas (projeções das células trofoblásticas dentro das quais crescem capilares do feto), há adesão mas não invasão da mucosa. Este tipo ocorre nos ungulados domésticos, mas não em carnívoros. Na nidação excêntrica a vesícula embrionária está inserida num canal profundo da mucosa, parcialmente isolada da luz principal, e se apresenta na rata, cadela e gata. A nidação intersticial é própria dos primatas, rato e cobaia, e nesta produz-se a destruição do epitélio e do tecido conjuntivo do útero, de modo que a vesícula embrionária se afunda na própria lâmina mucosa e se desenvolve em um espaço intersticial. Até o momento da implantação, a nutrição do embrião é histotrófica, sendo as substâncias necessárias absorvidas através do trofoblasto, como foi mencionado anteriormente. A partir deste momento, o trofoblasto começa o desenvolvimento de uma série de membranas extraembrionárias que permitirão finalmente a troca de nutrientes e metabólitos entre o sangue materno e o do embrião, constituindo a placenta. Um fato necessário na implantação é a perda de receptores para progesterona no epitélio luminal do endométrio, e pré-sensibilização do mesmo pelos estrógenos. Apesar de parecer um efeito contraditório, este requisito permite o desaparecimento de uma camada de mucina e outros compostos proteicos, que revestem o endométrio e que atuam como uma película antiaderente que inicialmente não permite a aposição e adesão do embrião. O desaparecimento desta camada ocorre durante a janela de receptividade, seja em toda a superfície do endométrio (ruminantes, suínos e roedores) ou nas zonas específicas onde o blastocisto será implantado (humano e coelho). Por esta razão, a interação física entre o embrião e o endométrio desempenha um papel importante na implantação. Uma vez que a camada de glicoproteínas desaparecer, é possível a aposição do trofoectoderma embrionário e das células epiteliais do endométrio, iniciando assim a implantação propriamente dita através da intercomunicação entre os dois tecidos. A implantação pode ser considerada como a fixação do embrião ao útero a partir do ponto de vista físico e funcional. No entanto, como se trata de um processo progressivo e gradual, em que algumas das suas fases podem ser parcialmente sobrepostas, não existe consenso sobre o período em que se inicia e termina. Na borrega, por exemplo, estima-se que ocorra entre o dia 10 e o dia 22, enquanto na vaca entre os dias 11 e 40 pós-ovulação. Nas espécies polítocas, isto é, fêmeas que parem várias crias como as porcas, os blastocistos se distribuem ao longo dos cornos uterinos como resultado de movimentos musculares da parede uterina, aparentemente regulados por prostaglandinas e outros fatores secretados pelo útero. Por exemplo, nas porcas, os blastocistos se movem livremente entre os cornos, e a distribuição dos embriões ao implantar-se é mais uniforme do que poderia ser esperado se ocorresse meramente ao acaso. Tem observado que a deficiência na produção de ácido lisofosfatídico 3 (LPA3) e/ou seu receptor, ocasiona uma falha na distribuição dos embriões no útero. Por outro lado, não há evidência de que um blastocisto implantado exerça alguma influência inibitória sobre a implantação de outro blastocisto próximo a ele. Como supracitado, o processo de implantação inclui uma complexa interação entre o embrião e o útero, e cada um deles provê de estímulos essenciais para favorecer a progressão do outro, apresentando-se diferenças em tempos e particularidades dentro das diferentes espécies. -/- Porca O período de adesão situa-se entre os dias 12 e 24 após a fertilização. Ao redor do dia sete, o blastocisto é eclodido, porque o trofoblasto está em contato direto com o epitélio uterino e começa a proliferar com rapidez. O endoderme se forma e o blastocisto muda de uma pequena vesícula esférica para um tubo muito alongado que chega a medir cerca de um metro em poucos dias, ele que lhe proporciona uma superfície muito ampla para a absorção de nutrientes. Cadela Os embriões migram entre os dois cornos uterinos do dia 12 ao 17 após a fertilização, distribuindo-se de maneira uniforme. Estes embriões aderem ao endométrio entre os dias 16 e 18, e alcançam sua implantação final entre o dia 17 e 20 da gestação. Cabe ressaltar que nos caninos o período de pré-implantação é o mais longo das espécies domésticas, o que ocorre porque a cadela ovula ovócitos imaturos (ovócitos primários) que precisam amadurecer por dois a três dias, para formar ovócitos secundários, antes que a fertilização seja possível. Por isso, o zigoto canino chega à junção útero-tubárica entre o sétimo e o décimo dia após o pico pré-ovulatório de LH (a ovulação ocorre, em média, dois dias após o pico de LH), entrando no útero em estágio de mórula ou blastocisto em torno dos dias 10 a 12 depois do referido pico. Ovelha O desenvolvimento precoce do blastocisto é muito semelhante ao da porca. Observa-se certo grau de adesão desde o dia 10 da gestação, mas o alongamento do embrião é menos extenso do que em suínos e tem início entre o dia 11 e 12. Para a terceira semana o embrião ovino chega a medir até 30 cm de comprimento. O processo de implantação é concluído aproximadamente entre a quarta e quinta semana de gestação (figura 3). Vaca O processo de implantação é semelhante ao da borrega, mas tem início mais tarde. A zona pelúcida se perde por volta do dia 9 a 10 (blastocisto eclodido) e o embrião começa a alongar-se ao redor do dia 12 a 14, atingindo um comprimento de cerca de 60 mm para o dia 16, embora possa haver uma grande variação individual. A partir do dia 33, o córion é formado e existe uma adesão inicial que inclui dois ou quatro cotilédones, que se interdigitam rapidamente com o tecido materno de modo que o embrião começa a nutrir-se através deles. Égua O blastocisto atinge um diâmetro de cinco centímetros aos dois meses e pratica- mente não se alonga. Entre os dias seis e sete após a ovulação, o embrião começa a revestir-se de uma camada glicoproteica que se forma entre o trofoectoderma e a zona pelúcida e que contém e mantém o embrião esférico depois de ter eclodido. Esta cápsula é uma estrutura única nos equinos (cápsula embrionária), afina-se no dia 18 e se perde entre os dias 21 e 23 de gestação. Na décima semana as microvilosidades do córion se interdigitam com a mucosa da parede uterina e na semana 14 é completada a implantação. Espécies não domésticas Em algumas espécies como os marsupiais, os ursos, focas, doninhas e alguns tipos de cervídeos, pode interromper-se temporariamente o desenvolvimento do embrião in utero e adiar a sua implantação, como estratégia evolutiva para favorecer o nascimento das crias em condições ambientais favoráveis para a sua sobrevivência. Esta estratégia é conhecida como diapausa e pode ser uma condição obrigatória ou facultativa para cada gestação, dependendo da espécie. Os mecanismos que a desencadeiam e a concluem não estão totalmente explicados e são espécie-específica. RECONHECIMENTO MATERNO DA GESTAÇÃO (RMG/RMP) O estabelecimento da gestação em mamíferos domésticos requer a presença de um corpo lúteo CL funcional que produz progesterona em quantidades adequadas para manter o desenvolvimento embrionário inicial e permitir mudanças necessárias durante o período de peri-implantação. Para que o corpo lúteo seja mantido e a fêmea seja impedida de reiniciar um novo ciclo estral, o embrião deve sinalizar sua presença para a mãe. O sinal para o reconhecimento materno da gestação (RMG) provém então do embrião e podem ser de dois tipos: luteotrópico ou anti-luteolítico. No primeiro, a(s) substância(s) produzida(s) pelo embrião que atua(am) sobre o corpo lúteo para manter sua funcionalidade, por exemplo a gonadotrofina coriônica humana (hCG) e a prolactina em roedores. O segundo tipo de sinal previne ativamente a luteólise, e é o mecanismo presente nas espécies domésticas em que o embrião produz substâncias como o interferon-τ (IFN-τ) em ruminantes ou os estrógenos em suínos. Ruminantes Como supracitado, o IFN-τ é responsável pela sinalização para o reconhecimen- to materno da gestação neste grupo que engloba cabras, ovelhas e vacas (figura 4). É um fator produzido pelas células do trofoblasto do embrião, e pode ser detectado a partir dos dias 11 a 12 em ovinos e de 14 a 15 em bovinos. Uma vez secretado, o IFN-τ impede a lise do corpo lúteo (efeito anti-luteolítico) por meio do bloqueio indireto da síntese de prostaglandina F2 alfa (PGF2α). No trabalho acerca do ciclo estral foi explicado que a luteólise requer a presença de receptores de ocitocina (OTR) no endométrio, que ao unir-se ao seu ligante, a ocitocina (proveniente inicialmente do hipotálamo e posteriormente de origem lútea), estimulam a produção de PGF2α e estabelecem um feedback positivo, que culminará na destruição do CL. Para que os OTRs sejam sintetizados, é necessária uma estimulação prévia do endométrio com estradiol, que ocorre através da ligação com seus receptores (ER-1). O mecanismo pelo qual o IFN-τ impede a lise do corpo lúteo é bloqueando, direta ou indiretamente, a síntese de OTR e, consequentemente, a produção pulsátil de PGF2α. Suínos No caso dos suínos, considera-se que o sinal embrionário para o reconhecimento materno da gestação são os estrógenos, produzidos pelos embriões em torno do dia 11 a 12 pós-ovulação. O endométrio suíno produz PGF2α que, quando não há gestação, é secretado na circulação uterina (secreção endócrina), de onde é transportada em direção ao CL para causar luteólise. Se há embriões no útero produzindo suficiente quantidades de estradiol, isso redireciona a secreção de PGF2α para o lúmen uterino (secreção exócrina), evitando que seja liberado para a circulação e, portanto, é sequestrado impedindo que chegue ao corpo lúteo (figura 5). É importante enfatizar que a produção de PGF2α não é inibida, mas sua secreção é redirecionada. Este mecanismo é conhecido como teoria endócrino-exócrina. Vale ressaltar que para o sinal de reconhecimento materno da gestação na porca ser eficiente, é necessário a presença de pelo menos quatro embriões, dois em cada corno, uma vez que se não houver dois embriões, um em cada corno, ocorre luteólise e reinicia a atividade cíclica. Embora os estrógenos sejam identificados como o sinal de reconhecimento materno nesta espécie, o embrião suíno também produz outros fatores, como a PGE2 e o ácido lisofosfatídico, considerado necessário para o estabelecimento adequado da gestação. A PGE2 ocasiona uma redução na produção de PGF2α em favor da PGE2 no endométrio e favorece a contração do miométrio para permitir a migração de embriões. O ácido lisofosfatídico, juntamente com seu receptor, é um fator crítico que favorece a migração intra-uterina, e permite uma distribuição adequada dos embriões ao longo dos cornos. Outras substâncias produzidas pelo embrião suíno são o IFN-delta (IFN-δ) e IFN-gama (IFN-γ), que não possuem ação anti-luteolítica, mas poderiam intervir no processo de implantação. Equinos Na égua é essencial que o embrião, ainda rodeado pela sua cápsula embrionária, migre de 12 a 14 vezes por dia através do útero, entre os dias 12 e 14 após ovulação, a fim de distribuir o fator de reconhecimento materno (figura 6). Embora seja sabido que existe, este último ainda não foi identificado, mas foi estabelecido que é da natureza proteica e seu principal efeito é a inibição da produção endometrial de PGF₂α, mediante a redução na formação do receptores de ocitocina; desta forma, evita-se o início do sinal luteolítico. É interessante notar que nesta espécie a ocitocina não é de origem lútea e sim endometrial. Primatas Ao contrário das espécies domésticas mencionadas, o mecanismo de ação do sinal de reconhecimento materno em primatas é luteotrópico. No humano, o embrião produz gonadotrofina coriônica humana (hCG) após o início da implantação (dias 6 a 8). A hCG estende a vida funcional do CL por meio de sua ligação a receptores lúteos para LH, estimulando assim a liberação de progesterona. Este efeito permite a “sobrevivência” do CL pelo menos até o momento em que a produção de progesterona é transferida para a placenta para levar a gestação a termo. Carnívoros Na cadela não é necessário o reconhecimento da gestação, já que normalmente o corpo lúteo tem uma vida média maior que a duração da gestação. Como na égua, a migração dos embriões através do útero antes da implantação pode favorecer o reconhecimento materno. Adicionalmente, tem sido descrito que durante o período antes da implantação (< 10 dias depois da ovulação), há um aumento na expressão de genes relacionados com a imunomodulação local (IFN-γ, IL-4 e CD8+), que não estão presentes em cadelas durante o diestro. A produção de IFN-γ por parte do embrião canino, como em outras espécies, pode estar envolvida na implantação ou o reconheci- mento da gestação, mas até o momento não foi demonstrado de forma inequívoca. Na gata doméstica, o fator que favorece o reconhecimento materno da gestação ainda não foi descrito. Temos que lembrar que seja qual for o mecanismo envolvido, a produção do sinal embrionário de reconhecimento materno da gestação é importante, já que a contínua presença de progesterona na circulação materna, faz possível que ocorra o desenvolvimento precoce do embrião e eventualmente a implantação, com a formação do órgão temporal mais importante para o desenvolvimento fetal: a placenta. Resumindo, o sinal enviado pelo embrião deve ser dado antes do útero começar a secretar PGF2a, hormônio que causa a destruição do corpo lúteo produtor da progesterona necessária para a gestação. O embrião deve secretar algumas substâncias (denominadas EPF: Early Pregnant Factors/fatores de gestação precoce) que capte o endométrio materno e sirva para evitar a ação luteolítica da PGF2a. Na porca, em vez de ser evitada a secreção de PGF2a, o referido hormônio é “sequestrado na luz do útero” e, desta forma, passa a secretar-se em forma exócrina, sem ter efeito sobre o corpo lúteo. No bovino, o reconhecimento materno da gestação é o processo fisiológico no qual o embrião, por meio de sinais moleculares como a secreção de interferon-τ (IFN-τ), anuncia sua presença no trato reprodutivo materno a fim de evitar que seja desencadeado o mecanismo luteolítico exercido pela PGF2a sobre o corpo lúteo. PLACENTAÇÃO Nos mamíferos domésticos, o processo de implantação é gradual e prolongado, e ocorre paralelamente a processos como a gastrulação e a formação de membranas extra- embrionárias: saco vitelino, âmnio, alantóides e córion. A formação das membranas extraembrionárias nos mamíferos eutérios, ou seja, aqueles que formam uma placenta completa, é um processo indispensável que permite ao embrião aderir-se ou implantar-se ao endométrio materno. As quatro membranas extraembrionárias mencionadas são formadas a partir do trofoblasto, mesoderme e endoderme embrionários. O saco vitelino fornece nutrientes no desenvolvimento inicial do embrião e se converte em vestigial quando a gestação progride; tem origem no endoderma primitivo, estrutura que junta com o trofoblasto e o mesoderma, formam o córion e âmnions. O âmnion contém o líquido amniótico que está em contato direto com o embrião e é a membrana mais interna; ademais, protege o feto, proporciona lubrificação para o parto e serve como um depósito para urina e resíduos fetais. O córion, por outro lado, é a membrana mais externa do embrião e, portanto, é a que entra em contato direto com o endométrio uterino materno; se fixa ao útero, absorve nutrientes do útero, permite a troca gasosa materno/fetal e produz hormônios. O alantóide se origina de uma evaginação do intestino primitivo e é de onde surge o sistema vascular da placenta fetal; a fusão com o córion (placenta cotiledonária), carrega os vasos sanguíneos do cordão umbilical, que liga o feto com o alantóide e é um reservatório de nutrientes e resíduos. Conforme o embrião se desenvolve, o saco vitelino regride e o alantóide se enche de líquido, pelo que este último se funde com o córion para formar o corioalantóides, que se torna a membrana mais externa e, portanto, a porção fetal do placenta. A placenta é um órgão temporário que representa uma interface através da qual realiza a troca bidirecional de nutrientes, gases, hormônios e outras substâncias entre a mãe e o feto. A unidade funcional da placenta são as vilosidades corioalantóicas, as quais são projeções pequenas dos corioalantóides que se interdigitam com o endométrio uterino, cuja superfície de absorção permite essa troca. A placenta é um órgão endócrino capaz de produzir uma gama de hormônios que ajudam a controlar o ambiente uterino, favorecendo o desenvolvimento do feto, além disso possui um papel importante no momento do parto. Nas diferentes espécies a placenta tem características particulares, pelo qual existem várias classificações, de acordo com a sua posição uterina, a distribuição das vilosidades corioalantóicas e a sua histologia. Posição uterina Refere-se à posição do concepto em relação ao lúmen uterino (figura 7). Central: O concepto ao ser implantado permanece em contato com o lúmen do útero. A maioria das espécies domésticas de importância veterinária estão dentro desta classificação. Excêntrica: O concepto penetra parcialmente o endométrio materno, mas mantém um certo contato com o lúmen uterino. Os roedores (ratos e ratos) e a coelha possuem este tipo de placentação. Intersticial: O embrião invade o endométrio, perde contato com o lúmen uterino, e ao crescer o lúmen uterino se oblitera. Os humanos e a maioria dos primatas mostram este tipo de placenta. Distribuição das vilosidades As vilosidades que formam a interface materno-fetal podem estar distribuídas de maneira diferente ao longo da superfície dos corioalantóides, pelo qual a placenta pode ser classificada como (figura 8): Difusa: Neste tipo de placenta as vilosidades estão distribuídas ao comprimento de toda a superfície do córion (corioalantóides) de maneira uniforme. As placentas de suínos e equinos se enquadram nesta classificação, embora, nesta última espécie, as vilosidades formem estruturas mais ramificadas, que são chamadas microcotilédones (figura 10). Zonal: Esta placenta se apresenta nos carnívoros domésticos, tanto caninos como felinos. As vilosidades que determinam a zona de troca de nutrientes e resíduos, e de ligação com o endométrio são delimitadas de forma a formar uma cintura central em torno do feto (figura 9). Distingue-se também uma segunda região chamada paraplacenta, que se localiza em ambos lados deste “cinto”, e do qual a função não é inteiramente conhecida, embora sabe-se que desempenha um papel importante na troca de ferro da mãe para o feto. As extremidades laterais dos corioalantóides nestas placentas não possuem vilosidades por isso não se ligam ao endométrio. Uma terceira região é a zona transparente nas extremidades distais do córion que tem pouca vascularização. Esta zona pode estar envolvida na absorção de materiais diretamente do lúmen uterino (figura 11). Cotiledonária: É o tipo de placentação que se encontra presente nos ruminantes (ovinos, caprinos e bovinos). As vilosidades coriônicas nestas espécies são agrupadas em pequenas áreas do córion chamadas cotilédones, que se interdigitam e fundem-se parcialmente com locais delimitados no endométrio chamados carúnculas, formando, em conjunto, estruturas conhecidas como placentomas. Cabe destacar que as carúnculas carecem de glândulas endometriais, que só estão presentes nas porções inter-carun- culares do endométrio. Os placentomas, por sua vez, são altamente vascularizados e são remodelados com o progresso da gestação, ramificando-se para aumentar a superfície de troca e o fluxo sanguíneo para aumentar os requisitos do feto em crescimento. Nas zonas inter-carunculares, a placenta é ligada ao endométrio por meio de sistemas de adesão superficial que envolvem glicoproteínas. Acredita-se que a adesão do concepto com o endométrio (carúnculas) é estabelecida em torno de 30 dias em ovinos e 40 dias em bovinos. (figuras 13 a 17). Discoidal: Nestas placentas, as vilosidades agrupam-se numa área circular ou oval, formando uma estrutura discoidal. Este tipo de placenta é encontrada principal- mente em coelhas, roedores e primatas, incluindo os humanos. Histologicamente Esta classificação considera o número de camadas de tecido que compõem a placenta e que separam a circulação materna da circulação fetal (tabela 3). O número máximo é de seis camadas, três do lado fetal (córion, tecido intersticial e endotélio do vaso sanguíneo) e três do lado materno (epitélio endometrial, tecido intersticial e endotélio vascular) (figura 19 e tabela 3). O modo de distinguir e nomear os diferentes tipos de placenta nesta classificação é usando como prefixo a camada materna que está em contato com o córion fetal. As diferentes placentas baseados em sua histologia são as seguintes (figura 19): Epiteliocorial: É o menos íntimo entre os tipos de placentas (figura 20). Estas placentas conservam intactas as seis camadas de tecido, portanto que mantêm as circulações materna e fetal mais separadas, e consideradas como as mais impermeáveis. Este tipo de placenta está presente na porca e égua. Lembre-se de que as placentas da porca e da égua são diferentes e as vilosidades ocupam uma grande proporção da área de superfície do córion (figura 19 A). Também apresenta-se nos ruminantes, no entanto, as placentas dos ruminantes apresentam algumas características particulares que as colocam como um subgrupo e se chamam sinepiteliocorial ou sindesmocorial (figura 19 B). Na vaca, este tipo apresenta-se nos primeiros 2-3 meses de gestação. Além da característica de erosão parcial do epitélio endometrial, um tipo de célula único é encontrado na placenta de ruminantes. Essas células são chamadas células gigantes binucleadas. Como o nome indica, elas são caracterizadas como bastante grandes e com dois núcleos. Na placenta dos ruminantes, algumas células do epitélio coriônico conhecidas como células binucleadas, se fundem com algumas células do epitélio endometrial, criando inicialmente células gigantes trinucleadas e mais tarde placas ou sincícios multinucleados. Estes sincícios têm em consequência uma origem tanto fetal como materna, que criam lugares delimitados nos quais em vez de existir intacta uma camada de epitélio coriônico e outra de epitélio endometrial, encontra-se uma só camada que combina as duas origens. As células gigantes binucleadas migram e mudam seu número ao longo da gestação em forma dinâmica. Este tipo celular é importante porque secretam uma variedade de hormônios. Células gigantes binucleadas aparecem por volta do dia 14 na ovelha e entre os dias 18 e 20 na vaca. Endoteliocorial: 5 camadas. Neste tipo de placentação o córion fetal está em contato direto com o endotélio vascular do endométrio graças à erosão do epitélio e do tecido conectivo endometrial (tecido intersticial) durante a implantação (figura 19 C). De modo que o intercâmbio de substâncias e resíduos só requer atravessar quatro camadas de tecidos. Este tipo de placenta é presente principalmente em cães e felinos. Nota-se nas figuras 19 C e 21 que este tipo de placenta é mais íntimo do que a placenta epiteliocorial porque o epitélio endometrial não existe mais. Hemocorial: 3 camadas (figura 22). Aqui o epitélio coriônico está intacto e entra em contato direto com o sangue materno em regiões onde formam reservatórios de sangue semelhantes a poços (figura 19 D). O intercâmbio de substâncias e resíduos entre a mãe e o feto é mais direto uma vez que é necessário atravessar apenas três camadas para chegar até à circulação fetal. Algumas espécies de primatas, incluindo o ser humano e os roedores possuem este tipo de placentação. MEMBRANAS EXTRAEMBRIONÁRIAS EM AVES Ao mesmo tempo que se estabelece o corpo embrionário e os esboços de cada um dos órgãos começam a gerar-se, torna-se imperioso garantir a sobrevivência do embrião. Tenha-se em conta que nas aves todo o necessário para o desenvolvimento é encontrado no ovo pelo que deve-se reforçar a eficácia das estruturas criadas para garantir o objetivo a que se destina. O exterior é fornecido apenas com o O2; emite CO2 e vapor de água no exterior (perda de 15% da água durante a incubação inicial). Além disso, o neonato não é imaturo, como nos anfíbios, mas está em um estádio maduro juvenil. Como indicado, são quatro as problemáticas a que deve fazer frente o embrião: prover-se de um meio que garanta o desenvolvimento volumétrico, amortecendo os movimentos físicos excessivos que possam traumatizá-lo e evitar a dessecação; assegurar que os nutrientes (vitelo e albúmen) sejam incorporados de forma correta no interior do embrião; assegurar o intercâmbio de gases; e eliminar substâncias tóxicas derivadas do metabolismo proteico. Para atender estas necessidades são desenvolvidas uma série de membranas extrambrionárias que se vão expandindo progressivamente pelo interior do ovo. A dureza da casca e sua relativa impermeabilidade protege-o igualmente da intempérie terrestre. -/- Figura 23: Evolução das membranas extraembrionárias de galinha (3 e 10 dias de incubação). -/- Saco vitelino: o saco vitelino é a primeira membrana extraembrionária em formação. Aparece como consequência direta da gastrulação: as camadas germinativas que se formam ao nível do disco embrionário expandem-se progressivamente contornando o vitelo. Assim, as células provenientes da área opaca (equivalente ao trofoblasto dos mamíferos) migram sobre o vitelo, terminando quase por cobrir, o mesmo ocorre com o endoderma mais internamente, formando-se assim um saco bilaminar. Posteriormente, o mesoderma se interpõe entre ambos, progredindo igualmente no sentido distal, rodeando o endoderma e aderindo-se ao mesmo e ao equivalente de trofoblasto. Ao estabelecer-se o celoma, o saco é constituído pelo endoderma e folha esplâncnica do mesoderma lateral. Este mesoderma vai progredindo no sentido distal e se vasculariza profunda- mente; os vasos distais se anastomosam formando um anel vascular denominado seio terminal, que marca o limite do mesoderma em expansão. Assim, sobre o vitelo é distinguível um área distal não vascularizada (área vitelina) e uma área proximal vascularizada (área vasculosa) que vai ficando progressivamente maior. Ao sexto dia de incubação mais da metade da superfície do vitelo foi envolvido pelo mesoderma. Os nutrientes do vitelo são absorvidos e desdobrados a componentes mais simples por enzimas produzidas pelo endoderma, sendo incorporados aos vasos vitelinos que os veicularão até o coração, que os impulsionará a todo o embrião. Durante a fase embrionária (até ao sexto dia de incubação), o oxigênio do exterior chega até a área vasculosa por difusão, incorporando-se daqui ao embrião; além disso, durante a primeira semana, as alterações na composição e volume do vitelo fazem que se disponha flutuando sobre o albúmen, o que faz com que a área vasculosa fique em contato com a casca, favorecendo-se assim a respiração. O intestino primitivo se instaura a partir das porções mais proximais do saco vitelino à vez que o corpo é fechado (2º-3º dia). O saco vitelino vai regredindo à medida que se vão esgotando os nutrientes do vitelo que aloja. Pouco antes do nascimento é incorporado à cavidade corporal como divertículo vitelino que fica unido ao jejuno; o divertículo vitelino persiste até seis dias após o nascimento, constituindo uma fonte adicional de nutrientes. -/- Figura 24: Feto de galinho ao fim, perto de ser eclodido. -/- mnios: no segundo dia (-30 horas) de incubação se formam as dobras amnióticas na somatopleura extraembrionária, perto do disco embrionário. Progridem dorsalmente, terminando por convergir e fundir-se cerca de 72 horas de incubação, coincidindo com o fechamento corporal, assim sendo constituído o âmnios, que terminará perdendo todo o contato com o córion. A cavidade amniótica que limita está cheia de um líquido seroso que garante que o embrião seja desenvolvido em um meio aquoso; este líquido é secretado pelo âmnios, mas também composto por substâncias formadas pelos rins, cavidade oral e aparelho respiratório. Córion: após a formação do celoma e o estabelecimento e fusão das dobras amnióticas, a parte da somatopleura extraembrionária que fica mais periférica constitui o córion (também denominado serosa nas aves); permanece formada pela área opaca expandida e mesoderma somático. Progressivamente vai aderindo-se à membrana testácea interna deslocando o albúmen; sobre o dia 12 termina por cobrir toda a superfície interna da casca. Intervém na troca gasosa com o meio ambiente através dos poros da casca e na captação do cálcio desta. Alantóides: o alantóide inicia a sua formação no dia 3 de incubação. Cresce rapidamente, ocupando o espaço exocelômico, terminando por cobrir o âmnios e saco vitelino. Progressivamente, entre os dias 4 a 10, sua parte mais externa se funde com o córion, formando-se o alantocórion, membrana trilaminar que cobrirá a superfície interna da casca, aderindo-se à membrana testácea interna, cujo mesoderma (esplâncnico) se vasculariza intensamente. A partir do dia 7 substitui completamente a área vasculosa como órgão respiratório, sendo garantido o aumento gradual das necessidades de troca gasosa na fase fetal do desenvolvimento (desde o dia 8), de rápido crescimento. A capacidade de capilarização desta membrana é muito maior do que a do saco vitelino. Na cavidade alantóica acumula-se a urina produzida pelos rins, afastando os produtos tóxicos do embrião; a membrana também age sobre este fluido intervindo na manutenção do equilíbrio hídrico e mineral do embrião. -/- Figura 25: Formação do saco vitelino. Limite entre a área vascular e avascular. Seio terminal. -/- O albúmen perde água rapidamente e torna-se menos volumoso e mais viscoso, terminando por desaparecer progressivamente. A ligação do alantocórion à membrana testácea interna faz com que seja marginalizado para uma posição periférica, no polo agudo do ovo. Aqui, o alantocórion que o rodeia constitui o saco do albúmen. O albúmen é a principal fonte de água e proteínas. A água é incorporada ao vitelo, o que, ao tornar-se mais volumoso, provoca que, entre os dias 3 e 4, se rompa a membrana vitelina; apenas restos mortais devem permanecer entre o saco vitelino e o albúmen. Dentro do saco vitelino, a água se acumula principalmente sob o embrião -fluido subembrionário-; este fluido atinge o seu volume máximo (15 ml) no dia 6. As proteínas serão incorporadas principalmente a partir de no dia 12, seja através do saco vitelino, do saco do albúmen ou por ingestão de líquido amniótico, dada a comunicação seroamniótica que se estabelece. Na galinha, a eclosão ocorre aos 21 dias de incubação. REFERÊNCIAS BIBLIOGRÁFICAS -/- Anotações de aulas de Embriologia Básica, Prof. Dr. Edson João da Silva, UFRPE, 2021. BAZER, Fuller W. et al. Novel pathways for implantation and establishment and maintenance of pregnancy in mammals. MHR: Basic science of reproductive medicine, v. 16, n. 3, p. 135-152, 2009. CARTER, Anthony M. Evolution of placental function in mammals: the molecular basis of gas and nutrient transfer, hormone secretion, and immune responses. Physiological Reviews, 2012. CARTER, A. M.; ENDERS, A. C. Placentation in mammals: Definitive placenta, yolk sac, and paraplacenta. Theriogenology, v. 86, n. 1, p. 278-287, 2016. CONSTANTINESCU, G.M.; SCHATTEN, H. Comparative reproductive biology. Carlton: Blackwell Publishing, 2007. 402p. Avicultura: Formação do Ovo. Desenvolvimento Embrionário e Diferenciação Sexual nos Animais Domésticos. Disponível em:. Acesso em: Dezembro de 2021. Diferenciação e Determinação Sexual dos Animais. Fisiologia do Ciclo Estral dos Animais Domésticos. Emanuel Isaque Cordeiro da Silva, 2021. Manejo na Avicultura: Postura, Iluminação e Incubação dos Ovos. Transporte de Gametas, Fertilização e Segmentação. FERRER‐VAQUER, Anna; HADJANTONAKIS, Anna‐Katerina. Birth defects associated with perturbations in preimplantation, gastrulation, and axis extension: from conjoined twinning to caudal dysgenesis. Wiley Interdisciplinary Reviews: Developmental Biology, v. 2, n. 4, p. 427-442, 2013. GALINA, Carlos; VALENCIA, Javier. Reproducción de los animales domésticos. 2006. GEISERT, Rodney D.; SPENCER, Thomas E. Placentation in Mammals. Springer, 2021. GINTHER, O. J. Reproductive Biology of The mare: Basic and Applied Aspects. 2. ed. Cross Plains, Wisconsin: Equiservices, 1992. GUILLOMOT, Michel. Cellular interactions during implantation in domestic ruminants. Journal of Reproduction and Fertility-Supplements only, n. 49, p. 39-52, 1995. KLEIN, C.; TROEDSSON, M. H. T. Maternal recognition of pregnancy in the horse: a mystery still to be solved. Reproduction, Fertility and Development, v. 23, n. 8, p. 952-963, 2011. MIGLINO, Maria Angelica et al. The carnivore pregnancy: the development of the embryo and fetal membranes. Theriogenology, v. 66, n. 6-7, p. 1699-1702, 2006. MOFFETT, Ashley; LOKE, Charlie. Immunology of placentation in eutherian mammals. Nature Reviews Immunology, v. 6, n. 8, p. 584-594, 2006. PRETZER, S. D. Canine embryonic and fetal development: A review. Theriogenology, v. 70, n. 3, p. 300-303, 2008. SENGER, Phillip L. et al. Pathways to pregnancy and parturition. Current Conceptions, Inc., 1615 NE Eastgate Blvd., 2012. SOZEN, Berna; CAN, Alp; DEMIR, Necdet. Cell fate regulation during preimplantation development: a view of adhesion-linked molecular interactions. Developmental biology, v. 395, n. 1, p. 73-83, 2014. SPENCER, Thomas E. et al. Pregnancy recognition and conceptus implantation in domestic ruminants: roles of progesterone, interferons and endogenous retroviruses. Reproduction, fertility and development, v. 19, n. 1, p. 65-78, 2006. VERSTEGEN-ONCLIN, K.; VERSTEGEN, J. Endocrinology of pregnancy in the dog: a review. Theriogenology, v. 70, n. 3, p. 291-299, 2008. WOODING, Peter; BURTON, Graham. Comparative placentation: structures, functions and evolution. Springer Science & Business Media, 2008. FIXAÇÃO DO ASSUNTO -/- 1. Defina e diferencie os processos de desenvolvimento embrionário precoce, alonga- mento e gastrulação. -/- 2. O que é implantação? Caracterize as fases do processo de implantação. -/- 3. Qual a importância do acúmulo de líquido no interior do blastocele? Qual a importân- cia da eclosão do blastocisto? -/- 4. Caracterize os três tipos de implantação e, depois, explique e diferencie os meios de implantação nas fêmeas domésticas. -/- 5. Defina e caracterize os meios de reconhecimento materno da gestação (RMG) nos animais domésticos. -/- 6. O que diferencia o RMG em ruminantes e suínos? -/- 7. Qual o papel do estradiol no RMG em porcas? O que ocorre quando a porca não fica gestante? -/- 8. Explique o RMG em cães e gatos. -/- 9. Defina placentação e sua importância para a reprodução dos animais domésticos. -/- 10. Quais são as classificações da placentação? Classifique a placentação das fêmeas domésticas. -/- 11. Caracterize e diferencie o processo de placentação em fêmeas domésticas. -/- 12. Observe a figura e responda o que se pede:. (shrink)
FISIOLOGIA DO CICLO ESTRAL DOS ANIMAIS -/- Departamento de Zootecnia – UFRPE Embrapa Semiárido e IPA -/- • _____OBJETIVO -/- O cio ou estro é a fase reprodutiva dos animais, onde as fêmeas apresentam receptividade sexual seguida de ovulação. Para tanto, é necessário entender a fisiologia do estro para a realização do manejo reprodutivo dos animais. Em geral, as fêmeas manifestam comportamentos fora do comum quando estão ciclando, tais comportamentos devem ser observados para que não percam o pico de ovulação (...) e, consequentemente, para que não perca o momento de monta ou inseminação para emprenhar o animal. Neste trabalho, o estudante compreenderá o ciclo estral identificando as diferenças entre as espécies domésticas, para considerá-las na manipulação do mesmo. -/- • _____INTRODUÇÃO -/- As fêmeas dos mamíferos domésticos apresentam, em sua vida reprodutiva, even-tos recorrentes conhecidos como ciclos estrais que se caracterizam por uma série de alte-rações ovarianas, genitais, endócrinas e comportamentais. Esses ciclos são o fundamento da reprodução e possuem a finalidade de que ocorra a ovulação de forma sincronizada com o acasalamento para conduzir a uma gestação. A compreensão deste é de suma im-portância para alcançar uma boa eficiência produtiva nas propriedades pecuárias; consi-derando que a oportunidade de gestar os animais se limita a períodos, em geral, muito curtos, que ocorrem em cada ciclo. Assim que as fêmeas atingem a puberdade, em bovinos entre 11 e 19 meses, inicia-se a apresentação dos ciclos estrais, o que geralmente indica o início da receptividade sexual, também chamada de "estro" ou "cio", por ser a fase mais fácil de reconhecer devido ao qual a fêmea busca, atrai e aceita a montaria do macho. Todavia, para uma melhor eficiência reprodutiva, as fêmeas que apresentarem o primeiro cio não devem ser colocadas à disposição do macho ou da IA, uma vez que ela ainda não possui o aporte e a condição corporal ideal para conseguir gestar; logo para serem colocadas à reprodução devem estar ao terceiro estro ou possuir entre 60 a 70% do seu peso vivo adulto. Depois da receptividade ocorre um período em que a fêmea não atrai nem aceita o macho. Assim, um ciclo estral é definido como o período entre um estro e o seguinte. Quando durante o ciclo estral ocorre uma cópula fértil, as fêmeas passam a uma fase de anestro fisiológico, causado pela gestação, em que cessa o ciclo estral e passam a não apresentarem atividade sexual. Nas espécies sazonais (cabras, éguas e ovelhas), a manifestação dos ciclos estrais também é limitada pela época do ano em que as fêmeas apresentam um anestro sazonal. Essas espécies sazonais ou estacionais apresentam cio durante a época em que os dias apresentam a presença de luz por mais tempo; isto é, dias mais longos. Deve-se considerar que a ciclicidade feminina pode ser alterada por eventos patológicos como processos infecciosos, persistência do corpo lúteo, desnutrição e estresse, entre outros. -/- • _____CONTROLE ENDÓCRINO DO CICLO ESTRAL -/- As mudanças ovarianas, genitais e comportamentais que ocorrem ao longo dos ciclos estrais são controladas pelo sistema endócrino e são o resultado de uma complexa interação entre hipotálamo, hipófise, ovário e útero. Vários hormônios participam desse processo, dos quais serão descritos a importância e a participação dos mais relevantes (figura 1). -/- Figura 1: Interação hormonal do eixo hipotálamo-hipófise-gonodal. No lado esquerdo, com linhas contínuas, os principais hormônios são exemplificados quando há um folículo pré-ovulatório. No lado direito, com linhas pontilhadas, os hormônios envolvidos são mostrados quando a estrutura ovariana predominante é o corpo lúteo. Fonte: RANGEL, 2018. A Kisspeptina é um peptídeo hipotalâmico que tem sido denominado regulador central, pois os neurônios que a produzem recebem informações do meio ambiente e do próprio corpo, o que indica o momento ideal para a reprodução. Além de modular a secreção de GnRH durante o ciclo estral, esse hormônio controla tanto o início da puberdade quanto da estacionalidade reprodutiva. Além disso, é inibido durante a lactação, bloqueando a atividade reprodutiva das fêmeas nessa fase. Os neurônios produtores de Kisspeptina possuem receptores de estradiol, que os regulam para modular a liberação tônica e cíclica de GnRH, controlando assim a secreção de gonadotrofina; além disso, foi sugerida a participação de outros hormônios neurotransmissores e neuropeptídios na modulação da secreção de GnRH. Entre eles estão os estimuladores: norepinefrina, serotonina, aminoácidos excitatórios (principal-mente glutamato) e neurotensina. Atuando como inibidores: GABA e opioides endógenos (principalmente o β-endorfina). O GnRH é um neuropeptídio hipotalâmico que estimula a produção e liberação de LH, de forma que um pulso de LH é sempre precedido por um pulso de GnRH. Os estrogênios foliculares têm, por outro lado, um efeito de feedback positivo com o LH, aumentando a produção de GnRH pelo centro cíclico e a formação de seus receptores nos gonadotrópicos da hipófise. Como resultado, a maturação dos folículos ovarianos é alcançada e os picos pré-ovulatórios de estradiol e LH são alcançados. No centro tônico da secreção de GnRH, os estrogênios inibem a liberação desse hormônio quando os animais estão na vida pré-púbere ou nos estágios de anestro, e a sensibilidade a esse feedback negativo diminui durante os estágios reprodutivos. No sentido estrito, a liberação de FSH pelos gonadotrópicos hipofisários não requer a presença do GnRH, que participa antecipadamente do estímulo de sua síntese; o FSH é considerado, então, um hormônio secretado constitutivamente, ou seja, constantemente, a menos que haja um estímulo inibitório. Este estímulo inibitório existe graças aos estrogênios e à inibina, que são produzidos pelos folículos em desenvolvi-mento, especialmente pelo folículo dominante. A progesterona é um hormônio esteroide produzido pelo corpo lúteo (CL) que inibe a secreção de LH. Isso é realizado tanto indiretamente por meio da inibição da secreção de GnRH no nível hipotalâmico, quanto por ação direta no nível da hipófise, uma vez que bloqueia a formação de receptores de GnRH nos gonadotropos. Assim, diminui a frequência dos pulsos de LH, que é mantida em níveis basais capazes de participar da formação e manutenção do corpo lúteo, mas incapaz de causar ovulação. Na vaca, o papel do LH na manutenção do corpo lúteo é controverso, uma vez que alguns autores propõem que apenas o hormônio do crescimento participe para esse fim, pois a administração de inibidores de GnRH quando há corpo lúteo funcional não afeta a secreção de progesterona. Se a fertilização não for alcançada com sucesso, eventualmente o corpo lúteo deve ser destruído por apoptose (processo conhecido como luteólise), para permitir a ocorrência de um novo ciclo estral. Nesse caso, os hormônios participantes são a ocitocina, produzida inicialmente no nível central e posteriormente pelo CL; e a prostaglandina F2alfa (PGF2α), secretada pelo endométrio uterino ao final do diestro; entre ambos os hormônios estabelecerão um mecanismo de feedback positivo até que se complete a luteólise. -/- • _____FREQUÊNCIA DE APRESENTAÇÃO DOS CICLOS ESTRAIS -/- As espécies são classificadas de acordo com a frequência com que apresentam seus ciclos estrais em um dos três grupos existentes (figura 2). -/- Figura 2: classificação das espécies domésticas de acordo com a frequência de apresentação de seus ciclos estrais ao longo do ano. Fonte: RANGEL, 2018. -/- Tabela 1: tipo e duração do ciclo estral de diferentes espécies Monoéstricas -/- São as espécies que apresentam um único ciclo estral, uma ou duas vezes ao ano, que culmina com um período de anestro, que faz parte do mesmo ciclo. Em geral, a fase de receptividade sexual dessas espécies é muito longa para garantir a fecundação. Dentro desta classificação está a família Canidae, que inclui cães domésticos, lobos e raposas. Os cães domésticos são capazes de se reproduzir em qualquer época do ano, portanto, não são considerados sazonais; apesar disso, observou-se que o estro tende a ocorrer com mais frequência no final do inverno ou início da primavera. Como exceção, a raça de cães Basenji é considerada sazonal, pois eles sempre têm seus ciclos férteis no outono. -/- Poliéstricas estacionais ou sazonais -/- São espécies que para garantir que seus filhotes nasçam na época do ano mais favorável à sua sobrevivência, apresentam uma série de ciclos estrais durante uma estação limitada do ano (figura 3). No final desta estação, os animais entram em anestro sazonal, que termina com o início da próxima estação reprodutiva. Dentro deste grupo estão as espécies que se reproduzem nas épocas do ano em que está aumentando a quantidade de horas-luz por dia ou fotoperíodo crescente (primavera-verão), como equinos e gatos; o último mostra a atividade ovariana entre janeiro e setembro (ou até outubro) nas zonas temperadas. Há outro grupo de espécies que se reproduzem em períodos de fotoperíodo decrescente (outono-inverno), entre as quais estão ovinos e caprinos. -/- Figura 3: classificação das espécies domésticas, de acordo com a estacionalidade de sua reprodutiva. Fonte: RANGEL, 2018. Poliéstricas contínuas -/- As espécies deste grupo são caracterizadas por ciclos estrais durante todo o ano. Dentro desta classificação estão bovinos e suínos. -/- • _____ETAPAS DO CICLO ESTRAL -/- Do ponto de vista das estruturas ovarianas predominantes, o ciclo estral se divide em duas fases: a fase folicular, na qual os folículos ovarianos se desenvolvem e amadurecem, além da ovulação; nas espécies poliéstricas, esta fase começa com a regressão do corpo lúteo do ciclo anterior. A outra é conhecida como fase lútea e refere-se às etapas do ciclo em que o corpo lúteo se forma e tem sua maior funcionalidade. Cada uma dessas fases pode ser dividida em etapas de proestro e estro (fase folicular); e metaestro e diestro (fase lútea) (figura 4). Algumas espécies, adicionalmente, podem apresentar períodos de anestro e interestro, como parte de seus ciclos estrais (figura 4). -/- Figura 4: etapas dos ciclos estrais dos animais domésticos. Fonte: RANGEL, 2018. -/- Fase folicular -/- É identificada porque os hormônios ovarianos predominantes são os estrogênios (produzidos pelos folículos em crescimento), que desencadeiam o comportamento sexual e fazem com que o aparelho reprodutor passe por algumas adaptações para atrair o macho, preparar-se para a cópula e facilitar o transporte dos gametas. O proestro começa quando as concentrações de progesterona do ciclo anterior baixem para níveis basais devido à regressão do CL; e termina quando o comportamento de receptividade sexual começa. É caracterizado pelo crescimento do folículo dominante da última onda folicular do ciclo anterior; portanto, sua duração depende do grau de desenvolvimento em que o folículo se encontra no momento da luteólise. Nesse estágio, aumenta-se a produção de estradiol e inibina secretada pelo folículo ou folículos que iniciaram seu desenvolvimento durante o final do período de diestro. As concentrações de FSH diminuem no início do proestro; entretanto, eles começam a aumentar à medida que o estro se aproxima. O LH, devido ao efeito do estradiol, passa a aumentar sua frequência de secreção e diminuir a amplitude de seus pulsos, o que acentua a produção de andrógenos pelas células da teca e a capacidade de aromatização das células da granulosa, com o consequente aumento na produção de estradiol. O aumento do estradiol desencadeia a apresentação comportamental do estro que também é conhecido como estágio de cio, calor ou receptividade sexual, uma vez que representa o único período em que a fêmea procura ativamente o macho e aceita a montagem e a cópula. O comportamento sexual pode variar em intensidade entre diferentes espécies. Durante a fase de estro, o(s) folículo(s) em desenvolvimento no ovário adquirem sua maturidade e tamanho pré-ovulatório (figura 5), atingindo as concentrações máximas de estradiol. Um feedback positivo é então exercido entre o estradiol, GnRH e LH, para que ocorra o pico de LH pré-ovulatório que será responsável pela ovulação. -/- Figura 5: folículos ovarianos de porcas. Esquerda: pequenos folículos, estágio de proestro. À direita: folículos pré-ovulatórios, estágio de estro. Fonte: RANGEL, 2018. -/- O estro é a fase do ciclo em que ocorre a ovulação em espécies domésticas, com exceção dos bovinos que ovulam durante o metaestro inicial. A ovulação, por outro lado, manifesta-se espontaneamente na maioria das espécies domésticas, com exceção dos felinos, leporídeos e camelídeos, nos quais a cópula deve ocorrer para induzi-la, por isso são conhecidos como espécies de ovulação induzida (figura 6). Nessas espécies, a cópula provoca um reflexo nervoso que atua no nível hipotalâmico para induzir a liberação de GnRH e, portanto, o pico pré-ovulatório de LH. Existem outras espécies em que a cópula não estimula a ovulação, mas é necessária para induzir a formação do CL (figura 6). Dentro dessas espécies estão ratos e camundongos. -/- Figura 6: classificação das espécies domésticas, segundo a espontaneidade da ovulação e a formação do corpo lúteo. Fonte: RANGEL, 2018. -/- Em caninos, deve-se considerar que, embora tradicionalmente se diga que a ovulação ocorre dois dias após o início do estro, ela pode ocorrer mais tarde, em alguns casos ocorrendo próximo ao final do estro. Em geral, durante a fase folicular, o útero tem maior suprimento e as glândulas endometriais entram em fase proliferativa, aumentando seu tamanho. Isso faz com que o útero fique mais tônico, ou seja, mais firme, exceto no caso de éguas e carnívoros nos quais os estrogênios fazem com que o útero se encontre com edema e sem tonalidade, enquanto a cérvix aparece relaxada durante o estro. Além disso, o aumento do suprimento de sangue causa hiperemia e congestão do epitélio vaginal e vulvar (figura 7). Para permitir a passagem do esperma, a cérvix se abre e a produção de um muco cervical muito fluido, cristalino e abundante é aumentada; o útero e o oviduto aumentam suas contrações. Nessa última ação participam as prostaglandinas contidas no plasma seminal (PGF₂α e PGE). Na vagina, o número de camadas de células do epitélio começa a aumentar e as células da superfície tornam-se cornificadas. No caso da cadela, a situação hormonal durante a fase folicular é completamente diferente do resto das espécies domésticas (figura 8), uma vez que há altas concentrações de estrógenos durante o proestro, que atingem seu nível máximo 24 a 48 h antes de seu término; ao mesmo tempo, os folículos iniciam sua luteinização, antes de serem ovulados. Essa situação provoca a liberação de progesterona, que começa a aumentar suas concen-trações; à medida que aumenta, as concentrações de estradiol começam a cair. Assim, o estro começa quando os níveis de progesterona atingem uma concentração de cerca de 1 ng/ml. O pico de LH ocorre durante a transição do proestro para o estro e a ovulação ocorre 48 a 60 horas depois; processo que pode se estender de 24 a 96 h. Os níveis de progesterona aumentam após o início do estro, de modo que antes da ovulação estão entre 2 e 4 ng/ml, enquanto as concentrações entre 5 e 10 ng/ml estão relacionadas ao tempo de ovulação. Uma vez que as concentrações de estradiol caem abaixo de 15 pg/ml, o estro é encerrado (figura 8). -/- Figura 7: comparação da aparência vulvar em porcas. O círculo azul indica a vulva de uma porca que não está em estro, enquanto um círculo vermelho mostra uma vulva apresentando hiperemia e edema característicos da fase de estro. Fonte: Acervo pessoal do autor. -/- As altas concentrações de estradiol no proestro são responsáveis pela atração da fêmea pelo macho a partir desta fase, porém, não apresentará comportamento receptivo até o início da fase de estro. Deve-se levar em consideração que algumas cadelas podem não aceitar o macho, apesar de estarem endócrinamente na fase de estro, o que pode ser atribuído às condições de manejo, aos comportamentos adquiridos ou às características hierárquicas, ou ainda a distúrbios relacionados a endocrinologia da reprodução (anorma-lidades hormonais e/ou baixas concentrações de hormônios). No caso das éguas, não há menção à fase de proestro e os eventos que ocorreriam nessa fase estão englobados no estro, que tradicionalmente será denominado fase folicular ou simplesmente estro (figura 9). -/- Figura 8: Endocrinologia do ciclo estral da cadela. Fonte: RANGEL, 2018. -/- Figura 9: duração das etapas do ciclo estral das éguas. A ovulação ocorre nos últimos 2 dias da fase de estro. Fonte: RANGEL, 2018. -/- Fase lútea -/- Durante essa fase, o esteroide ovariano predominante é a progesterona, cujo objetivo é manter a gravidez se a fertilização for bem-sucedida. Para isso, os estrogênios pré-ovulatórios favorecem a formação de receptores de progesterona uterina, então a presença da progesterona faz com que as glândulas endometriais entrem em sua fase secretora e iniciem a produção de histiotrofo ou leite uterino, para nutrir o produto que poderia estar potencialmente presente. Já na fase lútea, ocorre redução das concentrações de estrogênio, o que causa diminuição do tônus uterino, hiperemia e edema vulvar. Por fim, a cérvix se fecha e o muco cervical torna-se espesso, pegajoso, opaco e menos abundante, de modo a isolar o útero por fora, evitando a entrada de microrganismos que poderiam comprometer a possível gravidez. O metaestro começa quando a fêmea deixa de aceitar a montaria do macho e termina quando há um CL funcional bem estabelecido. Este estágio corresponde ao período de transição entre a dominância estrogênica e o aumento das concentrações de progesterona. Nesse estágio, as concentrações de FSH são aumentadas pela queda repentina de estradiol e inibina após a ovulação, o que permite o recrutamento da primeira onda folicular. Nesta fase, o ovário contém o corpo hemorrágico, a partir do qual se desenvolverá o CL (figura 10). O corpo hemorrágico tem meia-vida muito curta, pois as células que compõem suas paredes iniciam sua luteinização imediatamente após ou mesmo antes da ovulação. -/- Figura 10: ovários bovinos. Corpo hemorrágico (CH); folículos (F) e corpo lúteo (CL). -/- O diestro, por sua vez, constitui a etapa mais longa do ciclo estral e é caracterizado por um CL que se encontra em sua atividade secretora máxima. Somente no final dessa fase, e se não houver fecundação, o CL sofre luteólise; caso contrário, o CL é mantido de forma a preservar a gestação, prolongando um estado fisiológico semelhante ao do diestro. A imagem 11 esquematiza o ciclo estral da vaca, eventos ovarianos e endócrinos, bem como a duração das etapas do ciclo estral. Nessa fase, a progesterona atinge suas concentrações máximas e exerce efeito negativo na liberação de LH, pois inibe a formação de receptores de GnRH nos gonadotropos hipofisários, bem como a secreção de GnRH pelo hipotálamo. Além disso, observam-se aumentos repetidos da secreção de FSH com o consequente aumento do desenvolvimento folicular e das concentrações plasmáticas de estradiol e inibina. No entanto, os folículos que começam seu desenvolvimento, não conseguem completar sua maturação e sofrem regressão (ondas foliculares). A égua é a única fêmea doméstica que pode ovular naturalmente durante a fase lútea, com uma incidência de ovulação de 10-25% nesta fase. Figura 11: etapas, estruturas ovarianas e endocrinologia do ciclo estral da vaca. Fonte: RANGEL, 2018. -/- No final do diestro, os estrogênios sensibilizam o endométrio, de modo que as células epiteliais formam os receptores de ocitocina. Após uma primeira secreção de ocitocina da neurohipófise e secreções subsequentes originadas do corpo lúteo, um mecanismo de feedback positivo é iniciado para a secreção de PGF2α. O papel da PGF2α é destruir o CL quando não houver fertilização. Deve-se considerar que para o útero ser capaz de produzir PGF2α deve haver um período prévio de exposição à progesterona, durante o qual aumenta o conteúdo de precursores das prostaglandinas no endométrio, como o ácido araquidônico (ácido graxo C20H32O2). O anestro é considerado como um período de inatividade reprodutiva, mesmo quando continua havendo atividade hormonal e desenvolvimento folicular, uma vez que o estímulo é insuficiente para que ocorra a maturação folicular e a ovulação. Ao longo desta fase não haverá alterações comportamentais ou morfológicas nas fêmeas. Nas espécies estacionais ou sazonais, o anestro é muito importante, pois limita a estação reprodutiva de forma que os partos ocorram na época do ano que pode ser mais favorável para a sobrevivência dos filhotes. Em espécies poliéstricas contínuas, o anestro aparecerá em casos de processos fisiológicos como gestação ou amamentação, ou devido a condições patológicas que interrompem a ciclicidade. Em caninos, o anestro é considerado mais uma fase do ciclo estral (figura 12), e é o estágio de transição entre o diestro de um ciclo e o proestro do próximo; na verdade, o anestro é a fase mais longa do ciclo nessa espécie, pois pode durar de 4 a 10 meses, dependendo do indivíduo. Em algumas espécies de animais domésticos, o anestro pode ocorrer pós-parto. O interestro é uma fase de repouso entre as ondas foliculares e é característica do ciclo estral de espécies cuja ovulação é induzida, como os felinos e camelídeos, por exemplo, a lhama e a alpaca. Ao longo desta fase, não há comportamento sexual. Sua apresentação se deve ao fato de a monta não ter ocorrido ou de não ter sido capaz de induzir a ovulação, de modo que os folículos ovarianos regridem, dando origem a um novo recrutamento folicular. No caso dos felinos, foi relatado que até 50% das cópulas simples são insuficientes para causar ovulação. -/- Figura 12: etapas do ciclo estral da cadela. A ovulação ocorre dois dias após o início do cio. Fonte: RANGEL, 2018. -/- • _DURAÇÃO DOS CICLOS ESTRAIS E PARTICULARIDADES POR ESPÉCIE -/- As variações na duração do ciclo estral e as fases presentes entre as diferentes espécies domésticas são indicadas na tabela 2. Em particular, existe uma grande variação entre os indivíduos dependendo da duração das fases do ciclo estral em caninos e felinos, sendo difícil precisar sua duração, já que no caso da cadela o anestro é parte integrante do ciclo; na gata, a duração do ciclo anovulatório é diferente daquele em que ocorreu a ovulação. Assim, em um ciclo anovulatório, a gata pode manifestar períodos de estro de sete dias em média, seguidos de 2 a 19 dias sem estro (período denominado interestro), que são continuados com outro período de estro. Quando ocorre a ovulação e não é fértil, surge uma fase lútea de 35 a 37 dias e às vezes demora mais 35 dias para o animal apresentar um novo estro. Em cadelas, não há estágio de metaestro propriamente dito, pois a ovulação ocorre no início do estro, de forma que, ao término do comportamento sexual, os corpos lúteos já estão formados. Da mesma forma, as gatas não apresentam este estágio, portanto, se ocorrer ovulação, a fase de estro é imediatamente seguida pela fase diestro (figura 13). Figura 13: etapas e endocrinologia do ciclo estral da gata. Fonte: RANGEL, 2018. -/- Tabela 2: Duração do ciclo estral e suas fases nas diferentes espécies domésticas Espécie Ciclo (dias) Proestro (dias) Estro Metaestro (dias) Diestro (dias) Interestro (dias) Anestro Bovina 21 (17-24) 2 a 3 8-18 h 3 a 5 12 a 14 - Pós-parto (vacas de leite) Lactacional (vacas de corte) Ovina 17 (13-19) 2 24-36 h 2 a 3 12 - Estacional Caprina 21 2 a 3 36 h (24-48) 3 a 5 8 a 15 - Estacional Suína 21 (17-25) 2 24-72 h 2 14 - Lactacional Equina 21 (15-26) - 4-7 d - 14 a 15 - Estacional Canina - 9 (3-20) 9 d (3-20) - 63 ± 5 em gestantes 70 a 80 em vazias - 4 a 10 meses Felina - 1 a 2 7 d (2-19) - 35 a 37 8 (2-19) Estacional (30-90 d) Onde: d = dias. h = horas. -/- O ciclo estral das éguas é dividido apenas em duas fases, folicular e lútea; às vezes também conhecido como estro e diestro, respectivamente (figura 14). No caso de bovinos, a ovulação ocorre durante a fase de metaestro, entre quatro e 16 horas após o término do estro, ou de 30 a 36 horas após o início do estro (figura 15). Uma vez que a ovulação ocorre, e como consequência da queda repentina nas concentrações de estradiol, algumas vacas podem ter uma secreção vulvar sanguinolenta (figura 16). -/- Figura 14: endocrinologia do ciclo estral da égua. Fonte: RANGEL, 2018. -/- Figura 15: duração das etapas do ciclo estral das vacas. A ovulação ocorre no metaestro ou de 4 a 16 horas depois do término do cio. Fonte: RANGEL, 2018. -/- Figura 16: secreção vulvar sanguinolenta em vaca no estágio de metaestro • ___DESENVOLVIMENTO FOLICULAR -/- Embora o desenvolvimento folicular que leva à ovulação ocorra na fase folicular do ciclo estral e desempenhe um papel essencial no controle do ciclo, durante a fase lútea também ocorre o desenvolvimento folicular, mas os folículos não conseguem realizar sua maturação final e ovulação; mesmo em animais pré-púberes e em animais em anestro, há crescimento folicular. Por isso o desenvolvimento folicular é considerado um processo constante e dinâmico. As fêmeas têm certo número de folículos e ovócitos desde o nascimento, que em geral excede consideravelmente o número de oócitos que serão ovulados ao longo de suas vidas. Aproximadamente 90% dos folículos ovarianos começam a crescer, mas não ovulam e regridem, fato conhecido como atresia folicular. Estima-se que a atresia ocorra em qualquer época de desenvolvimento, mas é mais comum nos estágios dependentes de gonadotrofinas. A razão pela qual as ondas foliculares se desenvolvem durante a fase lútea, culminando na atresia, é que a progesterona produzida pelo corpo lúteo inibe a pulsação de LH. Assim, os folículos dominantes não obtêm suprimento suficiente desse hormônio para completar seu crescimento e ovular, causando sua regressão. Quando os folículos sofrem atresia, cessa a produção de estradiol e inibina, retomando a secreção de FSH, iniciando um novo recrutamento folicular. No final do período de diestro, quando as concentrações de progesterona começam a diminuir devido à luteólise, os estrogênios foliculares estimulam a secreção de LH, que fornece suporte suficiente para o crescimento e maturação dos folículos até que a ovulação seja desencadeada. -/- • ___OVULAÇÃO -/- A ovulação ocorre graças a um processo de remodelação, adelgaçamento e ruptura da parede folicular ao nível do estigma, que é uma área de tecido desprovida de vascularização, que se forma na superfície do folículo ovulatório (figura 17). Nas espécies domésticas, o folículo pode se desenvolver e ovular em qualquer parte da superfície do ovário, com exceção dos equinos, nos quais, devido à conformação anatômica característica do ovário desta espécie, a ovulação sempre ocorre ao nível da fossa de ovulação. O pico de LH que precede a ovulação estimula a síntese e a liberação local de PGE₂ e PGF₂α, bem como o início da produção de progesterona pelas células foliculares. Junto com o pico pré-ovulatório de LH, ocorre aumento da quantidade de fluido folicular, graças ao aumento da permeabilidade vascular da teca (ação estimulada em conjunto com a PGE₂) e ao aumento do suprimento sanguíneo no período pré-ovulatório; entretanto, a pressão intrafolicular não aumenta porque a parede do folículo está distendida. -/- Figura 17: ruptura do estigma folicular durante o processo de ovulação. Fonte: Internet. -/- A ovulação começa com um enfraquecimento da parede folicular, porque a PGF₂α causa a liberação de enzimas lisossomais das células da granulosa do folículo pré-ovulatório. O aumento local da progesterona faz com que as células da teca interna sintetizem colagenase, uma enzima que cliva as cadeias de colágeno do tecido conjuntivo, enfraquecendo a túnica albugínea que constitui a parede folicular. À medida que a parede enfraquece, forma o estigma - projeção avascular - na região apical, o que indica que a ovulação está se aproximando. O estigma é o local onde o folículo se rompe, permitindo a liberação do oócito, que sai envolto pelas células da coroa irradiada e acompanhado pelo fluido contido no antro folicular. -/- • ___CORPO LÚTEO -/- Após a ovulação, as células que permanecem na cavidade folicular desenvolvem um CL, que é considerado uma glândula temporária; sua função essencial é a produção hormonal e só está presente durante o diestro, na gestação e em algumas patologias como a piometra. A luteinização, ou formação do CL, é mediada principalmente pelo LH; no entanto, outros hormônios também estão envolvidos, como o hormônio do crescimento (GH). Assim, o tratamento com GH em animais hipofisectomizados foi encontrado para restaurar a função normal do CL; enquanto em espécies como roedores e caninos, a formação do CL é induzida e mantida pela prolactina, hormônio que não participa com essa finalidade no caso dos ruminantes. Durante a luteinização, os remanescentes das células da granulosa se diferenciam em grandes células lúteas, que são capazes de secretar progesterona continuamente (basal), e possuem grânulos secretores responsáveis pela produção e liberação de ocitocina e relaxina, esta última durante a gestação de algumas espécies. Enquanto as células da teca formam as pequenas células lúteas, que não secretam ocitocina e produzem progesterona em resposta ao LH (tônico). O corpo lúteo é, finalmente, constituído de células luteais grandes e pequenas, fibroblastos, células mioides, células endoteliais e células do sistema imunológico. Outro fator importante para o processo de luteinização é a formação de uma rede vascular, essencial para aumentar o fluxo sanguíneo para o CL. A referida formação vascular é mediada principalmente por dois fatores, fator de crescimento de fibroblastos (FGF), que no estágio inicial do desenvolvimento lúteo estimula a proliferação de células endoteliais pela ação de LH, e fator de crescimento endotélio-vascular (VEGF) que promove a invasão de células endoteliais para a camada de células da granulosa e a organização e manutenção da microvasculatura do CL. A luteólise é um processo essencial para retomar a ciclicidade das fêmeas. Sucede ao final do diestro quando não ocorre a fecundação e consiste na desintegração funcional e estrutural do CL. O primeiro refere-se à queda nas concentrações de progesterona, enquanto o segundo abrange a regressão anatômica da estrutura lútea e a recuperação do tamanho normal do ovário. A desintegração funcional, com a consequente queda nas concentrações de progesterona, ocorre antes que a regressão estrutural seja observada. Caso ocorra a gestação, a vida do CL é prolongada, visto que existem mecanismos que o resgatam de sua regressão. Durante o diestro, a progesterona produzida pelo CL bloqueia inicialmente a ação do estradiol e da ocitocina. Para esse último, causa uma redução no número de receptores de ocitocina endometrial, modificando sua estrutura. Desta forma, não é possível estabelecer um feedback positivo entre a ocitocina e a PGF₂α, que será responsável pela luteólise. No entanto, à medida que o diestro progride, a progesterona esgota seus próprios receptores, de modo que, no final desse estágio, ela perde a capacidade de inibir os receptores de ocitocina. O estradiol ativa, então, o centro de geração de pulso de ocitocina no hipotálamo e começa a induzir o endométrio tanto a formação de seus próprios receptores como os da ocitocina. A ocitocina e o estradiol trabalham juntos para aumentar a atividade e a concentração das enzimas envolvidas na síntese de PGF2α: a fosfolipase (enzima responsável pela liberação de ácido araquidônico de fosfolipídios da membrana celular) e a prostaglandina sintetase (enzima responsável pela transformação do ácido araquidônico em prostaglandina). Dessa forma, a ocitocina hipotalâmica, liberada de forma pulsátil pela neurohipófise, estimula inicialmente a síntese e secreção de PGF2α através do endométrio. A PGF2α possui receptores em grandes células do CL, que aumentam seu número à medida que o ciclo estral progride. Assim, quando a PGF2α endometrial atinge o ovário provoca a liberação de ocitocina lútea, desencadeando um mecanismo local de feedback positivo, que agindo no endométrio aumenta a secreção de PGF2α. Este circuito continua até que se alcance uma frequência de pulsos de PGF2α de aproximadamente cinco pulsos em 24 h, uma frequência que é capaz de desencadear a luteólise. Em equinos, o CL não produz ocitocina; no entanto, as células endometriais os produzem, então a secreção por PGF2α depende do estímulo da ocitocina que vem desta última fonte e da hipófise. Ressalte-se que o CL deve atingir certo grau de maturidade para que possa ser receptivo à ação da PGF2α. Isso é conseguido através da formação de receptores para a PGF2α e desenvolvendo a capacidade de expressar a prostaglandina sintetase, de modo que o CL requer para produzir PGF2α na forma autócrina para atingir a lise. As células endoteliais e as células imunes, típicas do CL, também intervêm no processo de luteólise estrutural. As células endoteliais secretam proteína quimiotática de monócitos (MCP-1), para recrutar macrófagos que migram através do epitélio vascular que foi sensibilizado pela PGF2α. Os macrófagos ativados secretam o fator necrose tumoral alfa (TNFα) que atua sobre as células do corpo lúteo causando apoptose celular. A PGF2α também participa da luteólise funcional, inibindo a síntese de progesterona e reduzindo a síntese e fosforilação da proteína responsável pelo transporte de colesterol para a mitocôndria (StAR). Além disso, a PGF2α induz a produção de endotelina-1 (ET1) pelas células endoteliais encontradas no corpo lúteo, as quais contribuem para uma redução na síntese de progesterona. -/- • ___FATORES QUE AFETAM O CICLO ESTRAL -/- A apresentação dos ciclos estrais é natural e impreterível; no entanto pode ser afetada por fatores ambientais como o fotoperíodo, e fatores específicos do indivíduo como a sociabilidade e amamentação, além dos fatores de manejo como a nutrição e, consequentemente, o ECC das fêmeas e a endocrinologia (hormônios). Todos esses fatores serão explicados a seguir. -/- Fotoperíodo -/- O fotoperíodo é determinado pelo número de horas de luz do dia ao longo do ano e é considerado um dos fatores ambientais mais consistentes e repetíveis. A quantidade diária de horas-luz tem maior efeito nas espécies sazonais para determinar o início da atividade reprodutiva. No entanto, em espécies poliéstricas contínuas, variações anuais na ciclicidade também podem ser observadas, um exemplo disso é a acentuada sazonalidade nos nascimentos de búfalos e zebuínos. Da mesma forma, o momento em que uma bezerra ou leitão nasce afeta a idade em que atinge a puberdade, e a explicação para isso é que o fotoperíodo a que estão expostos impacta seu desenvolvimento. Assim, observou-se que uma maior quantidade de horas de luz do dia (suplementação de quatro horas por dia por cerca de dois meses) pode adiantar o início da puberdade em novilhas. -/- Amamentação -/- Em espécies como suínos e bovinos de corte, o anestro pós-parto é mantido pelo estímulo que a prole exerce sobre a mãe no momento da amamentação. Dessa forma, sob esses estímulos a fêmea deixará de apresentar cio enquanto estiver alimentando as crias (figura 18). Na ação de amamentação, pensa-se que participa o reconhecimento filial, onde intervêm a visão, o olfato e a audição. A verdade é que a participação de estímulos táteis é questionável, visto que foram realizados estudos nos quais a denervação da glândula mamária não antecipou o reinício da ciclicidade em fêmeas que amamentavam seus filhotes. O mecanismo pelo qual a amamentação afeta a atividade reprodutiva está relacionado a um aumento da sensibilidade do hipotálamo ao efeito inibitório do estradiol. Nisso intervêm os fatores como os opioides (endorfinas, encefalinas e dinorfinas) e os glicocorticoides. -/- Figura 18: na esquerda porca amamentando seus filhotes e a direita vaca com o bezerro no pé. -/- Nutrição -/- A função reprodutiva depende da existência de um consumo de energia superior ao necessário para manter as funções fisiológicas essenciais do corpo e as funções de produção, como termorregulação, locomoção, crescimento, manutenção celular ou lactação. Considera-se que o efeito da nutrição na atividade reprodutiva é maior nas fêmeas do que nos machos, devido a uma maior demanda de energia exigida pelas fêmeas para manter uma gestação do começo ao fim (figura 19). Quando o consumo de energia é insuficiente, a função reprodutiva é bloqueada para não comprometer as funções vitais. Desta forma, os animais pré-púberes que sofreram deficiências nutricionais durante o seu crescimento apresentam um atraso no início da sua atividade reprodutiva. Assim, existem sinais metabólicos ao nível do sistema nervoso central, como o IGF-I e a leptina, que indicam ao organismo o grau de desenvolvimento somático do indivíduo. Animais adultos que já iniciaram sua atividade reprodutiva também podem ser afetados pela nutrição, de forma que sua ciclicidade pode ser interrompida por perdas de peso corporal igual ou superior a 20%. Da mesma forma, o reinício da atividade ovariana pós-parto é retardado quando as fêmeas estão submetidas a dietas deficientes em proteínas, energia, minerais etc. -/- Figura 19: comparação das condições corporais em vacas leiteiras. À esquerda: uma vaca com uma condição corporal adequada, que está ciclando normalmente. À direita: vaca em péssimo estado corporal e, portanto, em anestro. -/- As deficiências nutricionais de energia e proteína não afetam diretamente os níveis circulantes de FSH em animais intactos, mas o efeito da desnutrição pode ser mascarado por feedback negativo dos hormônios ováricos sobre a secreção de FSH, uma vez que os animais ovariectomizados com uma boa condição corporal têm maiores concentrações de FSH que os de condição corporal pobre. Em contraste, a secreção de LH é altamente sensível a deficiências nutricionais e a mudanças na condição corporal. O diâmetro do folículo dominante é reduzido quando os animais estão a perder peso, o que se correlaciona com uma diminuição na produção de estradiol, o que diminui a secreção de LH e consequentemente é evitada a maturação folicular terminal e a ovulação, o que os animais entrarem em anestro. No pós-parto, a ciclicidade se recupera quando as concentrações basal e média de LH, bem como a sua frequência de secreção aumenta para exceder o nadir do balanço energético (este último é atingido quando o fornecimento de energia está no ponto mínimo e está excedido pelas exigências de mantença do organismo). O ECC possui relação direta com as taxas reprodutivas dos animais. Em bovinos um ECC ideal é entre 3,5 e 4,5 para o período reprodutivo. Com relação do ECC sobre o estro, estima-se que num rebanho de 100 vacas com ECC 2,5 cerca de 47 entram em cio, e dessas apenas 27 conseguem conceber. Por outro lado, no mesmo rebanho de 100 vacas, mas com ECC igual a 3, cerca de 62 vacas entram em cio normalmente e dessas 40 conseguem engravidar. Já com um ECC 3,5, 68 vacas entram em estro normalmente e dessas 46 conseguem engravidar. -/- Efeitos independentes de gonadotropinas -/- A importância das gonadotropinas no crescimento e maturação folicular já foi revisada neste trabalho; também deve ser mencionado que, além das gonadotropinas, existem outros fatores que podem intervir na regulação do desenvolvimento folicular e da ciclicidade. Um exemplo do anterior é o flushing: manejo nutricional que consiste na suplementação de uma fonte energética de rápida absorção, em que o aumento do número de folículos em desenvolvimento tem inicialmente um controle independente do eixo hipotálamo-hipófise-gonodal e é mediado por fatores que participam do controle do metabolismo energético do animal, que estão intimamente relacionados às mudanças nutricionais. Esses fatores incluem insulina, fator de crescimento semelhante à insulina I (IGF-I) e hormônio do crescimento (GH). O IGF-I é secretado principalmente pelo fígado em resposta à estimulação do GH e é creditado na regulação de muitas das ações do GH, portanto, quando o GH é administrado, as concentrações de insulina e IGF-I estão aumentadas e um aumento no número de folículos ovarianos é observado em suínos, bovinos, caprinos e ovinos. O IGF-I, da mesma forma, modula a secreção de GH por um efeito de feedback negativo, de modo que no início do pós-parto, quando o animal está em balanço energético negativo, as concentrações de insulina e IGF-I diminuem, enquanto as de GH aumentam. A insulina e o IGF-I estimulam a proliferação e esteroidogênese das células da granulosa e da teca no folículo. Outro fator que interfere na manifestação da atividade reprodutiva é a quantidade de gordura corporal. -/- Fatores sociais (sociabilidade) -/- Existem diferentes interações sociais que são capazes de modificar o início da atividade reprodutiva durante o período de transição para a puberdade ou para a estação reprodutiva, ou ainda de sincronização e manifestação dos ciclos estrais. Entre os fatores sociais o efeito fêmea-fêmea foi bem documentado em pequenos ruminantes, onde a introdução de fêmeas ciclando (em cio) a um grupo de fêmeas em anestro estacional adianta a estação reprodutiva induzindo e sincronizando a ovulação. Quando as porcas pré-púberes, por outro lado, são alojadas em pequenos grupos de dois ou três animais, o início da puberdade é retardado em comparação com indivíduos alojados em grupos maiores. A bioestimulação das fêmeas através do contato com um macho é conhecida como efeito macho (figura 20). Foi determinado que imediatamente após a introdução do macho se inicia o desenvolvimento e maturação folicular como uma resposta a um aumento na secreção de LH. Esse efeito será explicado em próximos trabalhos de minha autoria. -/- Estresse -/- Em vários estudos, foi demonstrado que o estresse pode bloquear a ciclicidade, devido ao aumento nas concentrações de corticosteroides ou opioides que causam redução na resposta da hipófise ao GnRH. Alojamentos inadequados, um ambiente social adverso e deficiências no manejo são considerados condições estressantes. -/- Figura 20: efeito do macho sobre as fêmeas (suínos). -/- REFERÊNCIAS BIBLIOGRÁFICAS -/- AURICH, Christine. Reproductive cycles of horses. Animal reproduction science, v. 124, n. 3-4, p. 220-228, 2011. AISEN, Eduardo G. Reprodução ovina e caprina. MedVet, 2008. BARTLEWSKI, Pawel M.; BABY, Tanya E.; GIFFIN, Jennifer L. Reproductive cycles in sheep. Animal reproduction science, v. 124, n. 3-4, p. 259-268, 2011. BEARDEN, Henry Joe et al. Reproducción animal aplicada. México: Manual Moderno, 1982. CHRISTIANSEN, I. J. Reprodução no cão e no gato. São Paulo: Manole, 1988. CONCANNON, Patrick W. Reproductive cycles of the domestic bitch. Animal reproduction science, v. 124, n. 3-4, p. 200-210, 2011. COLAZO, Marcos Germán; MAPLETOFT, Reuben. Fisiología del ciclo estral bovino. Ciencia Veterinaria, v. 16, n. 2, p. 31-46, 2017. CUPPS, Perry T. (Ed.). Reproduction in domestic animals. Elsevier, 1991. . Fisiologia Clínica do Ciclo Estral de Vacas Leiteiras: Desenvolvimento Folicular, Corpo Lúteo e Etapas do Estro. . Fisiologia do Estro e do Serviço na Reprodução Bovina. DERIVAUX, Jules; BARNABÉ, Renato Campanarut. Reprodução dos animais domésticos. Acribia, 1980. DUKES, Henry Hugh; SWENSON, Melvin J.; REECE, William O. Dukes fisiologia dos animais domésticos. Editora Guanabara Koogan, 1996. FATET, Alice; PELLICER-RUBIO, Maria-Teresa; LEBOEUF, Bernard. Reproductive cycle of goats. Animal reproduction science, v. 124, n. 3-4, p. 211-219, 2011. FERREIRA, A. de M. Reprodução da fêmea bovina: fisiologia aplicada e problemas mais comuns (causas e tratamentos). Juiz de Fora: Minas Gerais–Brasil, p. 422, 2010. FORDE, N. et al. Oestrous cycles in Bos taurus cattle. Animal reproduction science, v. 124, n. 3-4, p. 163-169, 2011. HAFEZ, Elsayed Saad Eldin; HAFEZ, Bahaa. Reprodução animal. São Paulo: Manole, 2004. HIDALGO, Galina et al. Reproducción de animales domésticos. México: Limusa, 2008. HOPPER, Richard M. (Ed.). Bovine reproduction. John Wiley & Sons, 2014. MCKINNON, Angus O. et al. (Ed.). Equine reproduction. John Wiley & Sons, 2011. MEIDAN, R. et al. Intraovarian regulation of luteolysis. JOURNAL OF REPRODUCTION AND FERTILITY-SUPPLEMENT-, p. 217-228, 1999. NETT, T. M. et al. Pituitary receptors for GnRH and estradiol, and pituitary content of gonadotropins in beef cows. I. Changes during the estrous cycle. Domestic Animal Endocrinology, v. 4, n. 2, p. 123-132, 1987. NISWENDER, Gordon D. et al. Mechanisms controlling the function and life span of the corpus luteum. Physiological reviews, v. 80, n. 1, p. 1-29, 2000. NORMAN, Anthony W.; LITWACK, Gerald. Hormones. Academic Press, 1997. PATTERSON, David J. et al. Control of estrus and ovulation in beef heifers. Veterinary Clinics: Food Animal Practice, v. 29, n. 3, p. 591-617, 2013. PLANT, Tony M.; ZELEZNIK, Anthony J. (Ed.). Knobil and Neill's physiology of reproduction. New York: Academic Press, 2014. RANGEL, L. Ciclo estral. In. PORTA, L. R.; MEDRANO, J. H. H. Fisiología reproductiva de los animales domésticos. Cidade do México: FMVZ-UNAM, 2018. REKAWIECKI, R. et al. Regulation of progesterone synthesis and action in bovine corpus luteum. J Physiol Pharmacol, v. 59, n. suppl 9, p. 75-89, 2008. REYNOLDS, L. P.; REDMER, D. A. Growth and development of the corpus luteum. JOURNAL OF REPRODUCTION AND FERTILITY-SUPPLEMENT-, p. 181-191, 1999. RIPPE, Christian A. El ciclo estral. In: Dairy Cattle Reproduction Conference. 2009. p. 111-116. SANGHA, G. K.; SHARMA, R. K.; GURAYA, S. S. Biology of corpus luteum in small ruminants. Small Ruminant Research, v. 43, n. 1, p. 53-64, 2002. SARTORI, R.; BARROS, C. M. Reproductive cycles in Bos indicus cattle. Animal Reproduction Science, v. 124, n. 3-4, p. 244-250, 2011. SENGER, Phillip L. et al. Pathways to pregnancy and parturition. Current Conceptions, Inc., 1615 NE Eastgate Blvd., 1997. SMITH, Matthew J.; JENNES, Lothar. Neural signals that regulate GnRH neurones directly during the oestrous cycle. Reproduction (Cambridge, England), v. 122, n. 1, p. 1-10, 2001. SOEDE, N. M.; LANGENDIJK, P.; KEMP, B. Reproductive cycles in pigs. Animal reproduction science, v. 124, n. 3-4, p. 251-258, 2011. WEBB, R. et al. Mechanisms regulating follicular development and selection of the dominant follicle. REPRODUCTION-CAMBRIDGE-SUPPLEMENT-, p. 71-90, 2003. WHITTEMORE, Colin et al. The science and practice of pig production. Blackwell Science Ltd, 1998. -/- FIXAÇÃO DO ASSUNTO -/- 1. Disserte sobre o papel do eixo hipotálamo-hipófise-gonadal sobre o ciclo estral dos animais domésticos. -/- 2. Qual a importância do controle endócrino para a apresentação do estro? -/- 3. De acordo com a frequência do ciclo estral, como se classificam as vacas, porcas, éguas, gatas, cadelas, cabras e ovelhas? -/- 4. Defina e diferencia monoéstricas e poliéstricas. -/- 5. Um produtor possui fêmeas em primeiro cio, e deseja introduzi-las na vida reprodutiva. Explique por que não é ideal utilizar fêmeas em primeiro cio na vida reprodutiva? -/- 6. Quais são as etapas do ciclo estral? -/- 7. Defina e diferencia fase folicular e fase lútea. -/- 8. Defina e diferencie os tipos de ovulação e formação do corpo lúteo nas espécies domésticas? -/- 9. Quais os eventos ocorrem durante as fases proestro, estro, metaestro, diestro e inter-estro. -/- 10. Explique por que a égua possui ciclo diferente da vaca? -/- 11. Disserte e diferencie a endocrinologia do ciclo estral da cadela, da égua, da gata e da vaca? -/- 12. Fale sobre o desenvolvimento folicular durante o ciclo estral. -/- 13. Disserte sobre a ovulação das fêmeas domésticas. -/- 14. Defina e diferencie luteinização e luteólise. -/- 15. Disserte sobre os principais fatores que afetam a apresentação e manifestação do ciclo estral. -/- 16. Qual o papel da nutrição e do ECC sobre o ciclo estral? -/- 17. Defina e diferencie efeito fêmea-fêmea e efeito macho sobre a apresentação do estro nas fêmeas. -/- 18. Um produtor de ruminantes possui um rebanho de 10 bezerras, 10 cabritas e 10 cordeiras, todas com 1 mês de idade. Elabore um projeto reprodutivo para que essas fêmeas tenham seu primeiro parto após ciclos estrais normais e sem complicações. -/- Leve em consideração os fatores de idade ao primeiro cio ou a puberdade que é diferente entre as espécies, bem como aos fatores que podem afetar a manifestação do cio. (shrink)
INTRODUÇÃO -/- A produção bovina no Brasil é fundamentalmente em condições de pastoreio, isto é, à pasto. Dado que as pastagens e as forragens não suprem as exigências minerais dos bovinos, principalmente na seca, a suplementação mineral desses animais torna-se uma prática essencial e obrigatória para obtenção de êxito na produção de carne e leite. Negligenciar os requerimentos minerais dos bovinos pode levar ao aparecimento de alterações metabólicas diretamente relacionadas com o desempenho produtivo do rebanho, além de complicações mínimas ou (...) expressivas sobre o sistema reprodutivo e a fertilidade dos animais. Os requisitos minerais dependem do nível de produção e de cada categoria animal, logo, as práticas e atividades destinadas ao aumento na produção de carne e a taxa de crescimento dos animais exigem maior atenção à suplementação mineral. A formulação de suplementos minerais permite corrigir os desequilíbrios e deficiências desses elementos nas dietas dos animais criados para engorda à pasto. Sendo assim, para formular um suplemento mineral adequado é necessário, acima de tudo, conhecer as deficiências e os desequilíbrios minerais na região, as exigências nutricionais dos animais em função do seu estado produtivo e sua condição metabólica, além da condição mineral do alimento base (gramíneas, forragens, leguminosas etc.) e a composição das fontes minerais e sua biodisponibilidade. A finalidade deste trabalho é fornecer ao leitor a informação necessária para formular um suplemento mineral, considerando o aporte da dieta base, os requerimentos minerais dos animais e as fontes de minerais disponíveis no mercado. -/- 1. OS MINERAIS E SUAS FUNÇÕES -/- Dentro da nutrição animal, os minerais cumprem diferentes e essenciais funções dentro do organismo, logo desempenham um papel de destaque entre os nutrientes. As quantidades exigidas de cada mineral variam em função da espécie, idade e estado fisiológico, isto é, estado produtivo. Na produção animal, é dada ênfase a energia e a proteína como sendo nutrientes imprescindíveis para o bom desempenho e crescimento do animal, no entanto, há os defensores de que os minerais são mais importantes quando consideram o fósforo como elemento constituinte das proteínas, da ATP e de diversas enzimas. Dado que os alimentos não possuem o aporte de minerais requeridos pelos animais, a suplementação é uma prática de manejo indispensável. Em sistema de criação intensiva, esse manejo é fácil uma vez que se conhece a dieta e a quantidade de alimentos que o animal ingere, logo se conhece a composição mineral do alimento e o cálculo é feito para fornecer o défice de mineral do alimento, por exemplo, o grão de milho seco moído na dieta fornece 0,05% de cálcio, dada que a exigência de Ca para bovinos de corte é de 0,25%, é necessário suplementar um composto que forneça os 0,2% de défice da dieta. Por sua vez, em sistema de criação extensiva, a suplementação mineral não é uma tarefa fácil, uma vez que não se conhece a composição nem a quantidade dos alimentos que os animais comem no período de um dia, no entanto é feita uma estimativa da ingestão dos alimentos disponíveis à pasto para se calcular a quantidade a ser suplementada. Dentro da nutrição animal, é comum dividir-se os minerais em macro e micro, de acordo com a exigência do animal. Os macrominerais ocorrem em concentração superior a 100 mg/kg e costumam ser expressos em porcentagem. Já os microminerais são os elementos que o animal exige em menor quantidade, sendo inferior a 80 mg/kg. O fato de um mineral ocorrer em maior quantidade no corpo do animal não significa menor grau de importância. Para que um mineral seja considerado essencial foi estabelecida quatro condições primordiais de funções no organismo, logo esses minerai precisam: -/- Estar presente nos tecidos dos animais em concentrações constantes; A deficiência deve causar a presença de anormalidades fisiológicas e/ou estruturais, desde que a dieta possua todos os outros elementos em concentrações ideais e não tóxicas. Um exemplo seria o raquitismo com a falta demasiada de Ca; A adição desse mineral essencial deve reverter o quadro da anormalidade; As anormalidades que foram induzidas pela deficiência de um dado elemento deverá ser acompanhada de alterações bioquímicas que são revertidas ou prevenidas quando a deficiência cessa. • MACROMINERAIS -/- Os macrominerais que os bovinos de corte requerem incluem o cálcio, magnésio, fósforo, potássio, sódio, cloro e enxofre. Geralmente esses minerais acumulam-se mais nos ossos do que outra parte do corpo. a) Cálcio e fósforo (Ca e P) O cálcio e o fósforo são os principais componentes minerais do esqueleto. Cerca de 99% do Ca total do corpo e 80% do P total do corpo são armazenados nos ossos. Os estoques esqueléticos de Ca e P são usados para atender a inadequações dietéticas de curto prazo. Deficiências de longo prazo de qualquer um pode causar ossos enfraquecidos e, com isso, os ossos podem até quebrar. -/- Segundo a literatura, a presença Ca é de extrema importância para as funções: Formação dos ossos e dentes; Regulação dos batimentos cardíacos e irritabilidade dos nervos; Coagulação do sangue e do leite; Produção de leite (lactação); Ativação de enzimas como a lípase pancreática e fosfatase ácida; -/- O P, por sua vez é imprescindível para as funções: Formação dos ossos e dentes; Produção de leite (lactação); Regulação do mecanismo ácido-base; Metabolismo dos nutrientes (carboidratos, proteínas, lipídeos, vitaminas) Constituição de enzimas como a pepsina e xantina oxidase; Constituição das proteínas. -/- O Ca e o P também desempenham papéis importantes em outras funções corporais. Uma diminuição em um ou ambos pode causar uma diminuição no ganho de peso e/ou uma diminuição na eficiência do ganho. Durante a lactação, quantidades baixas de ambos reduzirão a produção de leite. Uma vaca leiteira de alta produtividade requer três vezes mais Ca do que uma vaca não-lactante. Uma deficiência de P pode atrasar a puberdade nas novilhas e pode atrasar o regresso do cio das vacas adultas no pós-parto. Os bovinos também precisam de quantidades corretas de Ca para que os sistemas nervoso e muscular funcionem corretamente. O uso adequado de Ca e P é afetado não só pela quantidade de cada mineral ingerido, mas também pela sua proporção. A relação Ca:P ideal é de cerca de 1,5:1, com uma faixa de 1:1 a 4:1 sendo satisfatória. Em algumas rações de alta concentração, razões superiores a 2:1 têm sido bem sucedidas; essa é uma característica da relação sinérgica entre o Ca e o P, em que um auxilia na absorção do outro. Deve-se estar atento a relação citada, uma vez que uma relação para bovinos superior a 4:1 pode causar a presença de cálculos renais. A maioria das gramíneas possuem uma quantidade satisfatória de Ca. Leguminosas como alfafa, amendoim, e feno de soja são boas fontes de Ca, mas a silagem de milho e sorgo são más fontes de Ca. Em geral, a maioria dos concentrados são fontes relativamente pobres em Ca. Uma exceção é a polpa cítrica, que é relativamente alta em concentração de cálcio (1,9%). O milho, os subprodutos do milho e os grãos de sorgo têm um teor de cálcio particularmente baixo, e os bovinos alimentados com cereais ou dietas à base de silagem de milho necessitam de suplementação desse mineral. A maioria das forragens é pobre em P, particularmente no final da estação de crescimento. O gado é mais propenso a possuir deficiência em P durante o inverno, quando, muitas vezes, sobrevivem alimentados com forragens secas. Os concentrados contêm concentrações moderadas a elevadas de P. Os suplementos proteicos, como a farinha de sementes de algodão e a farinha de soja, contêm concentrações moderadas, ao passo que muitos dos alimentos derivados, como os grãos de destiladores, de glúten de milho e a farinha de trigo, apresentam concentrações elevadas de P. A deficiência tanto de Ca quanto de P pode causar raquitismo em animais jovens e osteomalácia, isto é, perda da massa óssea em animais adultos. A deficiência em conjunto de ambos causa retardo no crescimento e piora na conversão ou eficiência alimentar, todavia a deficiência do P é mais severa já que o mesmo é constituinte das proteínas. Como os solos do Brasil são deficientes em P, as pastagens são pobres em fornecer o elemento, sendo a suplementação o melhor método de prevenção da deficiência e até do botulismo quando os animais ingerem ossos na busca pelo mineral. Apesar desses minerais não serem considerados tóxicos, a presença de excesso de um pode prejudicar a utilização do outro. O excesso de Ca é mais comum que o de P, de acordo com a ocorrência do Ca e o alto custo do P. Segundo o NRC, 2005 os níveis máximos para bovinos são de 1,5% para o Ca e de 0,7% para o P. Já na dieta as exigências requeridas para bovinos de corte é de 0,2 a 0,3% de Ca e de 0,19 a 0,25% de P (NRC, 2016). Já para bovinos leiteiros na dieta o Ca deve estar presente entre 0,4 e 0,6% e o P entre 0,2 a 0,4% (NRC, 2004) dependendo do nível de produção leiteira da vaca. As melhores fontes de Ca e P são o milho, farelo de soja, farelo de trigo e o farelo de algodão. b) Sódio e cloro (Na e Cl) O Na está presente na ordem de 0,15% do corpo animal. Já que sua função é mais fisiológica que nutricional sua deficiência é comum. Uma das principais funções deste elemento está associada a manutenção da pressão osmótica e sobre o equilíbrio ácido-base além de participar da absorção de carboidratos. Ainda assim, aumenta a retenção de líquidos e, em fêmeas primíparas, um problema comum é o edema de úbere em função do baixo desenvolvimento circulatório, tendo como principal meio de prevenção e/ou tratamento a diminuição do mineral na dieta. O Na também é um componente da saliva dos ruminantes que auxilia na manutenção do pH ruminal para uma boa digestão. O Cl é fundamental na regulação da pressão osmótica, do transporte de CO2 e O2 pelo sangue, e no equilíbrio ácido-base. Além disso, é constituinte do ácido clorídrico que é secretado pelo abomaso e cumpre um papel determinante na digestão das proteínas. O sódio e o cloro (sal) proporcionam a função adequada dos sistemas nervoso e muscular. Ajudam a regular o pH do corpo e a quantidade de água retida no mesmo. Uma deficiência destes elementos provoca perda de apetite e ganhos de peso ineficientes ou perda de peso corporal. O Na é geralmente deficiente em dietas, mas os níveis de Cl são geralmente adequados. Ambos os minerais estão presentes em tecidos moles e fluidos e há muito pouco armazenamento desses elementos, de modo que uma fonte diária e constante deve ser fornecida. Geralmente, os ruminantes necessitam de 0,1% de Na presente na ração. As necessidades diárias de Na para animais em crescimento e fêmeas gestantes não lactantes é de 1,5 g/100 kg de PV. A temperatura ambiente também influencia sobre a exigência do animal, de modo que quando a temperatura está entre 25 e 30 ºC é adicionado 0,1 g/100 kg de PV para mantença, já em temperaturas superiores a 30 ºC é requerido um adicional de 0,5 g/100 kg de PV também para mantença. Para crescimento o animal entre 150 e 600 kg de PV exige cerca de 1,4 g/kg de ganho de peso. Os bovinos exigem cerca de 0,1% de sódio em sua dieta diária. A deficiência de Na afeta o apetite, ganho de peso, armazenamento de energia e a síntese de proteína e gordura. Logo, os principais sintomas se manifestam no consumo de terra, urina, diminuição do apetite, perda de peso e pelagem opaca. Os ruminantes são os mais afetados, uma vez que o capim apresenta uma concentração baixa e deficiente de Na em sua composição. A intoxicação por Na pode ser agravada pela deficiência de K. No entanto, a intoxicação pode ser evitada desde que haja água em abundância e disponível aos animais à vontade. O nível máximo tolerável de sal na dieta do bovino deve ser de 4,5%. Para os bovinos a ingestão de 0,40 g/100 kg de PV já diminui a ingestão de alimentos. Para o Cl os requerimentos se resumem basicamente através do Na, uma vez que o animal é suplementado através do NaCl. Uma maneira prática de atender às exigências de Cl é o fornecimento da mesma quantidade de Na, ou seja, uma relação 1:1. Logo, como os bovinos requerem 0,1% de Na para o Cl seriam as mesmas. Detalhadamente, para a mantença o bovino exige 2,25 g/100 kg de PV e de 1 g/100 kg de PV para crescimento em animais entre 150 e 600 kg, já para o último terço da gestação o ideal é o animal ingerir 1 g/dia de Cl. A deficiência de Cl dá-se pela carência de Na, uma vez que a suplementação é conjunta. No entanto, os principais sintomas da deficiência é a perda de peso, anorexia, letargia, polidipsia e poliúria. Em temperaturas maiores, as perdas de Cl pela sudorese são maiores que as perdas de Na. O excesso de Cl na dieta causa alterações no equilíbrio ácido-base. A intoxicação ocorre pelo consumo elevado de NaCl possuindo, com isso, os mesmos sintomas do Na. O animal consumirá voluntariamente mais sal quando a forragem é jovem e suculenta (com 88% de absorção) do que quando amadurecida. O gado alimentado com silagem consumirá mais sal do que os alimentados com feno, e o consumo é maior em bovinos alimentados com dietas de altas fibras (volumosos) do que naqueles com dietas de alta concentração (rações). A principal fonte de Na e Cl é o cloreto de sódio (NaCl) com 39% de Na e 60% de Cl possuindo uma absorção aparente de 100%. Como regra geral, o gado consome 0,005 a 0,010% do seu peso corporal de sal diariamente. Por exemplo, uma vaca adulta pesando 550 kg deve consumir cerca de 27,5 gramas de sal/dia (550 kg x 0,00005 = 27,5 gramas). c) Magnésio (Mg) O magnésio é essencial para o funcionamento adequado de enzimas e do sistema nervoso e para o metabolismo eficiente dos carboidratos. Está presente na proporção de 0,05% do corpo do animal, sendo que 80% destes estão presentes nos ossos e o restante nos tecidos moles (o tecido muscular possui mais Mg do que Ca). O Mg é utilizado como solução tamponante do rúmen se utilizado na ordem de 6 a 10 kg por tonelada de ração. As principais funções do Mg no organismo são a formação do esqueleto (ossos e dentes); transferência dos impulsos nervosos; como ativador de enzimas como as hexoquinases e atpases e participa da digestão da celulose no rúmen. Os principais sintomas da deficiência de Mg são a queda da pressão sanguínea, hiperirritabilidade, incoordenação motora, convulsão e, em casos mais graves, a morte. Uma deficiência de Mg é incomum, exceto para vacas pastando gramíneas em crescimento ou pequenas pastagens de grãos durante o final do inverno e início da primavera, o que pode causar tetania dos pastos (doença rara no Brasil), uma desordem metabólica grave e às vezes fatal. Uma alta taxa de nitrogênio e fertilização de potássio no solo contribui para a manifestação e/ou agravação do quadro de tetania das pastagens (TP). O excesso de K inibe a absorção de Mg tanto na forragem como nos animais (relação de antagonismo). A TP geralmente ocorre após um longo período frio combinado com altos níveis de nitrogênio e fertilização do pasto com K. As vacas em lactação são particularmente suscetíveis a TP. A TP geralmente pode ser evitada alimentando os bovinos com uma mistura mineral contendo óxido de magnésio. Uma mistura mineral contendo 10 a 14% de Mg consumido a 110 gramas por dia deve fornecer Mg adequado. A ingestão adequada de sal também é importante para a prevenção da TP. Deve-se evitar usar blocos duros para complementar o sal quando o gado está em risco de TP; logo, o mais indicado é o fornecimento de sal em uma forma solta para permitir o consumo adequado de sal e de forma à vontade. Quando a TP não é um risco, os blocos podem ser usados para complementar os minerais. Os animais com tetania respondem quase imediatamente a uma infusão intravenosa de gluconato de cálcio e magnésio. Os bovinos de corte requerem cerca de 1 a 2 g de Mg/kg de alimento. Na formulação de 1 tonelada de ração o elemento deverá compor entre 6 a 10 kg do total. Caso haja deficiência, é mais fácil fornecer o Mg como suplemento mineral na ordem de 15 g/vaca/dia e para o tratamento da deficiência é necessária a injeção subcutânea de 200 a 300 ml de sulfato ou lactato de Mg a 20%. O nível máximo de inclusão do Mg na dieta é de 0,6% (NRC, 2005). O criador pode suplementar o animal junto com o bicarbonato de sódio na ordem de 270 g de bicarbonato e 180 g de óxido de Mg/vaca/dia. No organismo animal, apenas 16% do elemento é absorvido. Mesmo o milho, pobre em minerais, fornece 1,2 g/kg do mineral, quantidade suficiente para os bovinos de corte. As principais fontes de Mg são os farelos de trigo, algodão e de soja, o milho, a farinha de carne e ossos, o sulfato e o carbonato de Mg (com 44% de coeficiente de absorção) e o óxido de Mg (entre 28 e 49% de coeficiente de absorção). Figura 1: bloco de sal rosa do Himalaia para bovinos e equinos. d) Potássio (K) O K é o terceiro mineral mais abundante do corpo e é um dos elementos primordiais para o animal, no entanto sua ingestão deverá ser diária, uma vez que não há depósito do mesmo no organismo animal. As principais funções do K são sobre o equilíbrio ácido-base através da neutralização dos ácidos; na pressão osmótica; no balanço iônico com outros elementos; na transmissão nervosa; como freio para os batimentos cardíacos; na prevenção da tetania quando há excesso de Ca ou a deficiência de K; além de participar da síntese proteica, do metabolismo de carboidratos, da formação de glicogênio, da quebra da glicose e na quantidade de água retida no corpo. A temperatura ambiente é um dos fatores que interfere na quantidade de K a ser exigida pelo gado. Estudos do NRC, 2001 demonstram que a uma temperatura entre 25 e 30 ºC é necessária a adição de 0,04 g de K para cada 100 kg de PV para mantença; temperaturas superiores a 30 ºC exigem a adição de 0,4 g de K para cada 100 kg de PV para mantença. As gramíneas, particularmente no início do crescimento, contêm quantidades adequadas de K para o gado em pastoreio e a suplementação é raramente necessária. No entanto, o K pode, ocasionalmente, ser encontrado em baixas concentrações em forragens estocadas ou feno que recebeu água da chuva antes do enfardamento, uma vez que o K é solúvel e vai lixiviar a partir da forragem. Uma deficiência de K é difícil de ocorrer em condições de pastejo, no entanto, quando se fornece uma dieta rica em concentrado como as usadas em sistema de confinamento, uma deficiência pode ocorrer; o consumo elevado de sal (NaCl) e condições estressantes também podem ocasionar uma deficiência. Os sinais de deficiência são de difícil percepção, no entanto, incluem um retardo no crescimento (carência no metabolismo proteico), fraqueza muscular, paralisia, redução do consumo de alimentos, perda de peso, queda de pelo e consumo de terra na tentativa de suprir o mineral no organismo. A intoxicação é rara, no entanto, o nível máximo permitido é de 2% da dieta dos bovinos de corte. O excesso de K é excretado na urina. Em geral os grãos possuem uma menor concentração do elemento do que as forragens. As forragens geralmente possuem níveis superiores a 1% em sua composição com uma absorção de 85%, o que as torna a melhor fonte de K para o gado que exige 0,65% de K na dieta. Outras fontes de K são o cloreto e o sulfato do mesmo com uma absorção superior a 90%. e) Enxofre (S) O enxofre é uma parte dos aminoácidos sulfurados essenciais como a metionina, cistina, cisteína, homocisteína e taurina que compõem as proteínas. Como o rúmen sintetiza os aminoácidos sulfurados, a suplementação para bovinos de corte pode ser através de fontes de S inorgânicas. As principais funções do S limitam-se a constituição de compostos orgânicos essenciais para o organismo, podemos citar compostos da cartilagem, do trato gastrintestinal e reprodutivo e da queratina presente nos chifres, cascos, pele e pelos. Também atua como pontes dissulfeto sobre enzimas como a glutationa peroxidase (do metabolismo oxidativo) e ainda sobre o equilíbrio iônico usado para a formulação de dieta aniônica para vacas no pré-parto. Uma deficiência de enxofre na dieta de bovinos de corte não é provável que ocorra em condições normais de alimentação, porém é bastante comum. Um dos sintomas da deficiência do mineral é o baixo desenvolvimento e crescimento do animal já que o mesmo é primordial para a síntese proteica. Outros sintomas da carência estão relacionados com a formação inadequada dos compostos que são constituídos pelo elemento e que estão presentes nos chifres, pelos, cascos e pele. Por sua vez, é mais provável que o elemento esteja presente em excesso, o que pode interferir no metabolismo do cobre, resultando em uma deficiência de Cu (relação de antagonismo). Além disso, o excesso de S pode reduzir a ingestão de alimentos e causar uma condição de lesão cerebral conhecida como polioencefalomalacia (PEM). O excesso de S causa intoxicação que é comum em bovinos de corte já que sua dieta é suplementada com o elemento. O nível considerado tóxico é de 0,3% em dietas com alto concentrado e de 0,5% em dietas com alta forragem. Os bovinos de corte requerem a presença de enxofre na dieta na razão entre 0,08 e 0,16% (NRC, 2016). A principal fonte de S seria a flor de enxofre ou enxofre elemental que possui 96% do mineral, mas com menor biodisponibilidade. Outras fontes de S são o ventilado com 70% de S e os compostos misturados, isto é, que não possuem somente S como o sulfato de magnésio com 13%, sulfato de P com 18% e sulfato de sódio com 35% de S. Certos subprodutos, como os grãos de destiladores e o glúten de milho, contêm concentrações mais elevadas de S, que devem ser tidas em conta no equilíbrio da ração. O S é frequentemente adicionado indiretamente à mistura mineral através de formas de sulfato dos microminerais. • MICROMINERAIS Os bovinos de corte requerem cerca de 10 microminerais. Sete dos 10 microminerais estabeleceram requisitos, incluindo ferro, manganês, cobre, zinco, selênio, cobalto e iodo. Os microminerais cromo, molibdênio e níquel não têm uma exigência estabelecida e não são, normalmente, adicionados a misturas minerais na dieta dos bovinos de corte. Apenas três dos microminerais (cobre, zinco e selênio) são susceptíveis de ser deficientes em dietas de bovinos à pasto. Além disso, os microminerais acumulam-se mais no fígado que em qualquer outra parte do corpo, com exceção de manganês que se acumula mais nos ossos que no fígado. a) Cobalto (Co) O cobalto funciona como um componente da vitamina B12, que é sintetizada no rúmen pelas bactérias. Somente 3% do mineral na dieta é utilizado na síntese da vitamina. As principais funções do elemento estão associadas a vitamina que desempenha um papel de importância no organismo como matéria-prima dos microrganismos ruminais para a formação de propionato (ácido graxo volátil importante na síntese da glicose), síntese de purinas e pirimidinas, síntese de metionina, formação de proteínas, metabolismo de carboidratos e gorduras, além de ser necessária para a síntese de hormônios da tireoide. Os bovinos de corte exigem a presença do elemento em 0,15 mg/kg de dieta. A deficiência inclui sinais como diminuição do consumo de alimentos, crescimento retardado, anemia, baixa imunidade por dano na função dos neutrófilos e pelagem opaca. Os bezerros e novilhos são mais susceptíveis a deficiência. Na prática, geralmente é adicionado na mistura mineral em aproximadamente 10 ppm (0,01 g/kg) para garantir que não haja deficiência. A intoxicação por Co é difícil de ocorrer, no entanto afetam os animais que não recebem suplementação, quando há intoxicação os principais sintomas são a diminuição do consumo de alimentos, perda de peso e alterações no sangue. Os bovinos toleram níveis máximos de até 25 mg/kg/dieta. Os requerimentos do mineral aumentam conforme é fornecida uma dieta fundamentalmente concentrada. A maioria das forragens e subprodutos da agroindústria possuem níveis adequados de Co (entre 0,1 e 0,5 mg Co/kg de MS), no entanto os solos alcalinos limitam a absorção do mineral pelas plantas. Estudos indicam que a adição de Co na ordem de 0,25 a 0,35 mg/kg de MS aumentam a digestão de forragem de baixa qualidade e aumenta a população de bactérias anaeróbias no rúmen em até 50%. Dietas de grãos exigem mais Co do que dietas à base de forragem, e o Co deve sempre ser incluído na mistura mineral ao alimentar os animais com dietas à base de grãos. As principais fontes de suplementação de Co para os bovinos é o sulfato (25% Co) e o óxido (72% Co). b) Cobre (Cu) O cobre é um dos elementos com maior incidência de deficiência micromineral dos bovinos. O Cu é um componente importante de muitos sistemas enzimáticos essenciais para o crescimento e desenvolvimento do animal. Suas funções estão relacionadas com o crescimento adequado, o correto funcionamento dos glóbulos vermelhos já que libera ferro pela ação da ceruloplasmina, formação de colágeno, produção de melanina, a reprodução e a imunidade. Em conjunto com o Mo e o S faz parte de sistemas enzimáticos envolvidos com o metabolismo de vitaminas e nucleotídeos. No entanto, pela relação de antagonismo, esses dois elementos podem diminuir o grau de absorção de Cu no organismo, logo para os animais mantidos a pasto é ideal manter o balance entre o Cu e Mo entre 2:1 e 4:1. A quantidade de Cu absorvível é menor nas forragens do que em silagens e fenos. Os bovinos de corte exigem 10 mg/kg/dieta de Cu diariamente, caso não atendida essas exigências a deficiência e complicações começam a aparecer precocemente. Os sinais de deficiência incluem fertilidade reduzida, anestro pós-parto, retardo da puberdade, diminuição das taxas de concepção, diminuição da libido, diminuição do processo de espermatogênese em touros, baixa imunidade e, com isso, aumento da susceptibilidade a doenças, além da pigmentação reduzida da pelagem (pelo preto muda para vermelho), e anemia já que o Cu está relacionado com a transformação do Fe para ser utilizado pelo organismo. Deficiências alimentares podem ocorrer, como no caso as gramíneas do gênero Brachiaria que possuem baixa concentração do mineral, mas a maioria das deficiências é causada pelo consumo de antagonistas, o que reduz a absorção de Cu. Uma vez que o elemento atua em conjunto com outros minerais como Fe, Mo, S, Se e Zn, pode ser apresentada uma deficiência caso esses minerais estejam em excesso, logo não podem superar os seguintes valores: > 0,4% para o S, > 500 ppm para o Zn, > 400 ppm para o Fe e > 150 ppm para o Mo, uma vez que afetam a absorção do Cu no intestino. Deve-se dar ênfase que em bovinos a carência deste elemento pode causar mortes súbitas em animais gordos em virtude da fibrose do miocárdio. De todos os minerais o Cu é o que apresenta maior risco de intoxicação. A intoxicação por Cu é comum em bovinos, uma vez que são sensíveis. O nível máximo que os bovinos suportam é de 40 mg/kg. Caso haja excesso na dieta produz-se hemólise, icterícia, metahemoglobinemia, necrose e morte. O Cu deve ser suplementado como sulfato de cobre (25% Cu), cloreto de cobre tribásico (TBCC) ou uma forma orgânica complexa, já que o óxido de cobre é muito mal absorvido. Também podem ser utilizados o carbonato (51%) ou o hidróxido (63%). A adubação da pastagem também pode ser uma forma, porém não há garantias de absorção pela planta. c) Iodo (I) O iodo é um mineral essencial para a função dos hormônios da tireoide (T3 e T4) que regulam o metabolismo energético e é importante para a manutenção da taxa metabólica. Os bovinos de corte exigem uma quantidade de 0,5 mg/kg de dieta diariamente deste mineral. A incorporação do I na dieta animal é de 0,4 mg/kg para bezerros e de 1,3 g/dia para novilhas não prenhes. No último terço da gestação as vacas exigem cerca de 1,5 g/dia, enquanto vacas em lactação de 4 a 4,5 g/dia. Quando essas exigências não são atendidas, a deficiência produz aumento no tamanho da tireoide, diminuição da taxa metabólica, retardamento do crescimento, baixo peso ao desmame, aumento da susceptibilidade a doenças, problemas podais, além dos problemas e falhas reprodutivas. As vacas que apresentam deficiência de I apresentam retenção de placenta e os bezerros podem nascer cegos, prematuros, sem pelos ou até mesmo mortos. A intoxicação não é comum e quando ocorre deve-se a possíveis erros na formulação da dieta. Produz-se então o aumento da secreção nasal e ocular, além da salivação sinais apresentados em bezerros com uso prolongado o I orgânico. Já os sintomas posteriores se resumem no aumento da taxa metabólica, diminuição da ingestão de alimentos, baixa imunidade e problemas na fertilidade. Os bovinos toleram um nível máximo de 50 mg/kg de ração. Com a eliminação do excesso os animais tendem a se recuperar precocemente. O I raramente é deficiente em determinados rebanhos de vacas. É geralmente suplementado como di-hidroiodeto de etilenodiamina (EDDI). A suplementação legal máxima de EDDI é de 50 mg/cabeça/dia. Em alguns casos, o EDDI foi incluído em dietas para evitar a podridão dos cascos; no entanto, a quantidade de EDDI necessária para evitar a podridão dos cascos é muito maior do que os requisitos e provavelmente não vai evitar a podridão dos cascos quando incluído no máximo legal. Porém as fontes mais comuns de suplementação prática são o iodato de cálcio e o iodato de potássio com 60% de I. A concentração de I nas forragens varia bastante, entre 0,01 mg/kg até a 1 mg/kg, e depende do solo em que estão cultivadas. d) Ferro (Fe) O ferro é principalmente necessário para a formação da hemoglobina (0,355%) molécula encarregada do transporte de O2 e CO2 no organismo; também é componente da mioglobina e de enzimas que auxiliam na respiração celular; além disso faz parte de componentes que transportam o elemento pelo organismo e que depositam o mineral nos tecidos. Os requerimentos de Fe são baixos, bovinos exigem a presença de 50 mg do mineral por kg de dieta diária. A eficiência de absorção do elemento é maior em animais jovens (bezerros (as) e novilhos (as)) possuindo um coeficiente de 60%, no entanto a eficiência de absorção cai para 2% em animais adultos. Os animais jovens podem estar susceptíveis a deficiência uma vez que a dieta é fundamentalmente láctea e que o leite da vaca possui uma baixa presença do mineral em sua composição (37 mg/l). Os bezerros são mais susceptíveis a deficiência de Fe, já que o leite é pobre no mineral. Quando há a carência os sintomas incluem anemia, imunidade baixa, aumento na presença de doenças, diminuição do consumo de alimentos, baixo índice de crescimento e diminuição do ganho de peso e, em casos graves, a morte. A deficiência de Fe é raramente observada em bovinos alimentados com volumosos já que diversos solos possuem o mineral disponível em níveis adequados para a absorção pelas plantas. As plantas forrageiras dos trópicos oferecem níveis elevados do mineral em sua composição, na ordem de 80 a 300 ppm/kg de MS. A intoxicação por Fe é difícil de acontecer, entretanto a quantidade máxima permitida para bovinos é de 500 mg/kg de dieta. A intoxicação está associada com um baixo consumo de alimentos, diminuição do ganho de peso e na eficiência alimentar, diarreia, hipotermia e morte em casos graves. As bactérias ruminais utilizam o Fe livre para seu crescimento, portanto um excesso do elemento aumenta a susceptibilidade a problemas como a acidose metabólica. Alimentos ricos em Fe geralmente são os de origem animal. As sementes de leguminosas são mais ricas do que as forragens frescas. O óxido de ferro (70%) é frequentemente incluído em misturas minerais, mas não está disponível para o animal já que não é absorvível, servindo apenas como um agente corante para dar ao mineral uma cor vermelha escura. O sulfato de ferro (20%) está disponível para o animal e deve ser usado se a suplementação com Fe for necessária. Outras fontes de suplementação são o carbonato ferroso (42%), cloreto férrico (21%) e o fosfato de ferro (28%). e) Manganês (Mn) O manganês é necessário para a reprodução, desenvolvimento fetal e do úbere. À medida que a concentração na dieta aumenta, a concentração do mineral é incrementada nos tecidos reprodutivos, sugerindo uma relação direta entre o Mn e a fertilidade. Está relacionado com várias funções dentre as quais estão a ativação e constituição de diversas enzimas, metabolismo de lipídeos e carboidratos e o crescimento ósseo. Os requerimentos variam de acordo com o estado fisiológico e de produção. Por exemplo, a exigência para bovinos de corte varia entre 20 e 40 mg/kg de dieta. Animais em crescimento e ganho requerem 20 mg/kg na dieta, enquanto vacas gestantes e em lactação exigem 40 mg/kg na dieta. O leite da vaca contém 0,03 mg/kg ou por litro, o que faz com que os animais jovens ou recém-nascidos possam apresentar deficiência desse mineral. A deficiência de Mn é rara e pouco provável que seja um problema para os bovinos à pasto no Brasil. A carência causa alteração no crescimento, anormalidades do esqueleto e das articulações, encurtamento dos tendões em recém-nascidos, baixo peso ao nascimento e alterações reprodutivas como degeneração testicular, esterilidade, anestro, cios silenciosos, falta de cio e abortos. A intoxicação por Mn é difícil de ocorrer, uma vez que os níveis máximos são elevados para bovinos sendo 2 g/kg na dieta. Entretanto, o Mn atua com outros minerais que podem afetar seu limite total. As pastagens do Brasil possuem níveis acima das exigências dos animais, uma vez que há disponibilidade do elemento no solo, entretanto há algumas áreas deficientes. Os pastos do gênero Brachiaria possuem níveis adequados de Mn (120 e 400 ppm/kg de MS). O óxido de manganês e o sulfato de manganês (27%) são a forma mais comum desse mineral usado em misturas minerais com um coeficiente de absorção de 0,75%. As dietas à base de milho possuem baixas concentrações de Mn e a suplementação faz-se necessário caso haja alimentação com essas dietas. Em dietas com alto excesso de Ca e P inibe-se a absorção e aumenta-se a excreção do elemento nas fezes. Em bezerros, o alto excesso de Fe também diminui a absorção de Mn. f) Selênio (Se) Por muito tempo esse mineral foi taxado de tóxico aos animais, no entanto a partir do século XX é que se descobriu a essencialidade deste elemento nas funções antioxidantes, no metabolismo de lipídeos, no processo de imunidade e na síntese de hormônios da tireoide. O selênio é um mineral relativamente deficiente em algumas áreas do Brasil. Os bovinos requerem em média 0,1 mg/kg na dieta, tolerando até o nível máximo de 5 mg/kg na dieta. A deficiência de Se causa doença do músculo branco (semelhante à distrofia muscular) em bezerros recém-nascidos, também pode fazer com que os bezerros sejam fracos ao nascer e aumentar sua suscetibilidade a doenças de calefação como os batedores, além de aumentar a taxa de mortalidade pré-desmame. Taxas aumentadas de placentas retidas e desempenho reprodutivo ruim são frequentemente observadas em vacas com deficiências desse mineral. A intoxicação por Se não é rara, porém níveis superiores a 5 mg/kg tornam-se tóxicos aos bovinos. A intoxicação pode ser crônica apresentando baixa vitalidade, pelos ásperos, perda de apetite, crescimento do casco e anemia; ou aguda apresentando cegueira, salivação e paralisia. Há plantas que acumulam Se a ponto de ocasionar intoxicação aguda no animal, essa maior concentração está relacionada com a presença do mineral no solo. Geralmente, solos ácidos (pH < 6) são pobres neste elemento, em contrapartida, solos alcalinos (pH > 8) são ricos em Se. As folhas das plantas apresentam de 1,5 a 2 vezes mais Se que os talos; e as sementes possuem uma concentração alta. Muitos subprodutos da agroindústria, com exceção dos derivados do leite, possuem uma alta concentração de Se. A farinha de pescado possui, em média, mais de 1 mg de Se/kg de MS, porém sua eficiência de absorção é baixa. Plantas forrageiras possuem um coeficiente de absorção de 31% e os concentrados possuem uma eficiência de 61% de absorção pelo animal. A suplementação com esse mineral aumenta seu teor no leite da vaca que é de 0,01 a 0,025 mg/kg ou por litro, o que é benéfico ao animal jovem. A FDA (fibra em detergente ácido) permite que o selênio seja usado em um nível não superior a 0,3 ppm (ou até 0,10 mg/kg) da matéria seca na dieta total de bovinos de corte. Nas zonas em que ocorrem deficiências, o ideal é a administração do nível legal máximo. A FDA permite que até 120 ppm sejam incluídos em uma mistura sal-mineral para alimentação de escolha livre. O Se é geralmente adicionado a misturas minerais na forma de selenito de sódio (45%), mas há as formas orgânicas do elemento como o selênio levedura e o selênio metionina ambos com teores variando entre 1000 e 2000 mg de Se/kg de produto. O selênio é muito tóxico e deve ser usado apenas na forma pré-misturada. A deficiência de Se não deve ser um problema se as quantidades adequadas de Se são balanceadas no suplemento mineral. No entanto, a concentração de Se no suplemento e na ingestão rotulada não deve resultar numa ingestão total superior a 3 mg por dia. Assim, um mineral marcado para a ingestão de 0,10 gramas por cabeça por dia não pode exceder 26 ppm de Se. O Se pode ser suplementado na ração, na mistura mineral, na forma de pellets ou mesmo injetável. g) Zinco (Zn) Este elemento pode ser encontrado nos ossos, sangue e nos pelos. O Zn é um elemento que possui funções catalíticas, estruturais e regulatórias. É um importante componente de sistemas enzimáticos que afetam o metabolismo de lipídeos, proteínas, glicose, hormônios da tireoide e ácidos nucleicos. Também é de suma importância para a espermatogênese e o desenvolvimento dos órgãos sexuais primários e secundários no macho e para uma resposta imune adequada e a calcificação dos ossos. Além disso, é fundamental para a saúde da pele e dos cascos. Os Bovinos de corte exigem 30 mg de Zn/kg na dieta, tolerando níveis de até 500 mg/kg/ração. Os depósitos deste elemento são baixos no organismo. A utilização de formas orgânicas como o zinco metionina melhoram o ganho de peso de bovinos à pasto. Quando as exigências não são atendidas a deficiência pode produzir crescimento retardado, perda de apetite, baixa eficiência alimentar, alopecia, lesões podais e na pele, baixa taxa de concepção, aumento de distocias, alteração do estro e na resposta imunológica e, nos machos, retardamento da puberdade e diminuição dos testículos e da libido. Quando é fornecido níveis superiores ao máximo legal há intoxicação, porém é de difícil manifestação e os sintomas se reduzem a recusa na ingestão de alimentos, fraqueza e anemia. O zinco é um elemento de marginal a deficiente na maioria das forragens brasileiras. O gado tem uma capacidade limitada para armazenar Zn e a suplementação é sempre necessária. A absorção de Zn é de 15% e está intimamente ligada à absorção de cobre, e a relação zinco-cobre deve ser mantida em aproximadamente 3:1. Além disso, altos níveis de ferro podem diminuir a absorção de zinco. A absorção do Zn diminui uma vez que a proporção de ferro para zinco excede 2:1. Altas concentrações de Ca na dieta diminuem a absorção e aumentam os requerimentos de Zn. Algumas forragens possuem boa disponibilidade de Zn o que é essencial para a metionina, quando isso não acontece, faz-se necessário a suplementação com Zn tanto para o funcionalismo enzimático quanto para a saúde dos cascos e, assim, melhorar os ganhos diários e a eficiência alimentar. Nas forragens, o nível de Zn é relativamente baixo (20 ppm), enquanto os grãos de cereais possuem em média 35 ppm. Deve-se suplementar os bovinos em pastejo e sob condições de estresse. As fontes proteicas são ricas em Zn enquanto as energéticas são pobres. Para a suplementação prática, a forma orgânica tem apresentado melhores resultados, dentre as inorgânicas tanto o sulfato (22 a 30%) quanto o óxido (70 a 80%) possuem boa disponibilidade, sendo o óxido o mais recomendável e utilizado. h) Molibdênio (Mo) O Mo é um mineral exigido em doses pequenas, porém essencial. Frequentemente estuda-se este mineral juntamente com o Cu, uma vez que este interfere na absorção do mesmo. É um importante componente e atuante em enzimas que afetam o metabolismo de purinas, pirimidinas e niacinas. Além disso, é constituinte de enzimas do leite e dos tecidos. Como é um mineral exigido em doses pequenas, a deficiência é difícil de ocorrer. Os sintomas de deficiência são análogos aos do Cu, podendo haver anemia e crescimento retardado em função da dificuldade de utilização do Fe. A intoxicação é comum em animais criados à pasto sob um solo com pH elevado. Como a maioria dos solos do Brasil são ácidos é pouco comum a intoxicação, entretanto podem acontecer tendo como principais sintomas os mesmos da deficiência de Cu, podendo haver ainda anemia, diarreia e diminuição da espermatogênese. Os bovinos toleram um nível máximo de 5 mg de Mo/kg/dieta. A absorção de Mo é melhorada com suplementação de Cu, da mesma forma, já que Mo e Cu são antagonistas, uma das formas de minimizar a intoxicação por Mo é o fornecimento de Cu. Geralmente os alimentos possuem níveis acima das exigências dos animais, porém em concentrações não tóxicas. As principais fontes de suplementação são o molibdato de sódio (40%) e molibdato de amônio (54%). i) Níquel (Ni) Apesar de ser um mineral considerado essencial, sua função principal não é bem definida, sabe-se que participa da ativação de enzimas sobre o metabolismo proteico e energético, e importante para as bactérias por participar das hidrogenases e urease. A absorção é relativamente baixa variando entre 1 e 5%. Possui interações com o Fe, Zn, Ca e Mg. A falta de Ni pode prejudicar a absorção de Fe, por outro lado, concentrações grandes de Fe prejudicam a absorção de Ni. Se houver falta de Ni o nível de Zn no organismo animal poderá diminuir. No que se refere a deficiência, devido a concentração adequada do mineral nos alimentos a carência em condições normais é de difícil acontecimento. As exigências para os bovinos são pequenas, é recomendável uma dieta que contenha 0,3 ppm de Ni. A intoxicação por Ni é quase ou sempre rara, uma vez que para que haja sintomas de intoxicação será preciso a presença de Ni em 3000 vezes a exigência, isto é, os bovinos toleram o elemento em até 1000 mg/kg de ração. A principal fonte de suplementação é o cloreto de níquel hexahidratado (50%). Os alimentos geralmente possuem níveis adequados do elemento, exceto os energéticos que são ricos em amido e pobres em minerais. As pastagens possuem até 3,5 mg de Ni/kg de MS e os concentrados proteicos como o farelo de soja e o de girassol possuem até 8 mg de Ni/kg de MS, ou seja, possuem teores maiores que as exigências dos animais sendo as melhores fontes para sua suplementação natural. A tabela 1 descreve as principais funções dos macros e microminerais e as principais fontes para os bovinos de corte criados no sistema de pastejo. Tabela 1: os minerais e suas funções nos bovinos de corte Macro Funções Fonte Composição corporal (%) Ca Formação dos ossos e dentes, função nervosa e muscular Pastos e forragens 1,33 P Reprodução, formação de ossos e dentes (relação íntima com Ca) Grãos 0,74 Mg Crescimento, reprodução e funções metabólicas Suplemento mineral 0,04 K Funções metabólicas Pastos e forragens 0,19 N Funções metabólicas, formação de aminoácidos nitrogenados no rúmen Forragens e grãos — Na Cl Regulação da pressão osmótica e equilíbrio ácido-base, manutenção do líquido corporal, impulsos nervosos, contração muscular e do coração, auxiliam na passagem de nutrientes, na retirada de resíduos das células e absorção de vitaminas hidrossolúveis (riboflavina, tiamina e ácido ascórbico) Sal comum 0,16 0,15 S Síntese de aminoácidos sulfurados, de vitaminas do complexo B, componente de enzimas e hormônios (insulina e ocitocina), crescimento microbiano Forragens e suplemento mineral 0,11 Micro Funções Fonte Composição corporal (%) Cr Resposta imune, fator de tolerância a glicose Grãos 0,3 Co Componente da vitamina B12 Leguminosas Cu Formação da hemoglobina, metabolismo tecidual Forragens e grãos I Produção de hormonas da tireoide, metabolismo energético Pastos e forragens Mn Reprodução Pastos e forragens Mo Atividade enzimática Pastos e forragens Se Antioxidante Forragens e grãos Zn Atividade enzimática, glutationa peroxidase Leguminosas Fonte: OLIVEIRA, 2005 e adaptação de GILL et al., 2004. 2. MINERAIS TÓXICOS Alguns minerais são considerados tóxicos para os bovinos mesmo em dosagens muito pequenas. Todavia, alguns ainda podem ser considerados essenciais, mas em dosagens recomendadas por especialistas. a) Arsênio (As) É um elemento considerado tóxico e inibidor de vários sistemas enzimáticos. É encontrado em inseticidas e pesticidas, logo o manejo de aplicação de produtos nas pastagens pode ser crucial para a intoxicação dos animais. As plantas absorvem pouco ou quase nada desse mineral através do solo. O nível máximo desse elemento deve ser de 30 mg/kg/ração. Já as exigências situam-se entre 25 e 50 µg/kg, bem abaixo dos níveis que se encontram nos alimentos. b) Cádmio (Cd) Esse elemento pode ser encontrado em plantas e nos tecidos dos animais. As plantas, por sua vez, refletem o nível do elemento presente no solo. Os fertilizantes e os fosfatos utilizados na nutrição animal podem conter níveis preocupantes em sua composição. Experimentos com esse mineral indicaram problemas no crescimento e na reprodução. Em dietas normais, o nível desse elemento é maior que as indicações. Como é de difícil excreção, este elemento tende a acumular-se no organismo ocasionando danos hepáticos e destruição do epitélio intestinal além de diminuir o desempenho produtivo do animal. O nível máximo deve ser de 10 mg/kg/ração. c) Chumbo (Pb) O Pb pode ser preocupante em pastagens próximas a rodovias. As fontes de elementos minerais como a de manganês podem conter altos níveis de chumbo. Os principais efeitos deste elemento são tóxicos e estão associados a diminuição da ingestão de alimentos e da imunidade, efeitos neurológicos, cólicas e anemia. A recomendação máxima deve respeitar uma concentração de até 100 mg/kg/ração. d) Flúor (F) Na prática, o F é o elemento tóxico de maior importância, uma vez que em quantidades pequenas (1 mg/kg/dieta) pode aumentar a resistência dos dentes ou ainda destruir os microrganismos que atacam o mesmo, já em quantidades maiores pode atacar e destruir os dentes. Apesar de estimular a enzima piruvato quinase, ele é um potente inibidor de vários sistemas enzimáticos. Já que o F possui uma relação direta com o P, uma forma prática de evitar a intoxicação é manter uma relação de 60:1 entre ambos. O nível máximo tolerável para os bovinos é de 40 mg/kg/dieta. e) Mercúrio (Hg) É um mineral tóxico sem precedentes. Pode ser encontrado naturalmente no solo, mas também através da ação do homem e em produtos da agricultura como fungicidas. A recomendação máxima de Hg é de 2 mg/kg/dieta. As fontes de Hg são a água e alimentos contaminados. Em decorrência de água contaminada, a farinha de peixe e pescados podem conter níveis elevados. 3. MINERAIS PRESENTES NAS GRAMÍNEAS As gramíneas brasileiras possuem boa disponibilidade de macro e microminerais em sua composição bromatológica (tabela 2). No entanto, segundo a literatura, nos trópicos há uma deficiência ou toxidez natural de alguns minerais essenciais para os bovinos, como o Ca, P, Co, Mn, Se e Zn, sendo os principais minerais que apresentam essas características benéficas ou desvantajosas no Brasil (Adaptação de McDowell, 1999). Com isso, faz-se necessário a suplementação em épocas de deficiência, ou a atenção imediata aos níveis tóxicos em épocas de maior disponibilidade desses minerais. Na época das chuvas em demasia, o solo fica com um pH baixo, derivado do excesso de Al no solo, uma forma de aumentar o pH tornando-o mais neutro possível e de diminuir a presença do Al tóxico aos animais é a calagem com calcário. Os solos do Brasil possuem características particulares conforme cada região, no entanto, é fácil afirmar que o país possui uma deficiência natural de elementos essenciais como o P. Uma das formas mais econômicas para aumentar a concentração de minerais de gramíneas e forrageiras é a adubação do solo onde são cultivadas. No entanto, para o P a forma mais eficiente e econômica é o fornecimento do mesmo no cocho. Adubar o solo para muitos pode ser desperdício de dinheiro, no entanto, a afirmação é errada. As características bromatológicas de gramíneas, forrageiras e leguminosas podem ser alteradas com a simples administração de minerais ou de adubos orgânicos ao solo. Com a adubação do solo, com nitrogênio por exemplo, para o melhor desempenho e composição química das plantas forrageiras, pode influenciar também no consumo de alimentos por animal, na massa seca, taxa de lotação e no ganho de peso diário (figura 2). Um estudo realizado no Quênia com 58 gramíneas cultivadas em solos com as mesmas características dos solos brasileiros, revelaram as seguintes variações na concentração de minerais em kg de MS: cinzas 4% ou 12,2%; Ca 0,09 a 0,55%; P 0,05 a 0,37%. Essa concentração mineral depende da interação de vários fatores, dentre os quais estão o solo, a espécie forrageira, o estado de maturidade, o rendimento, o manejo das pastagens e o clima. Geralmente, as plantas herbáceas e leguminosas possuem uma maior concentração tanto de minerais quanto de outros nutrientes essenciais. Deve-se enfatizar que a idade da planta influencia em sua composição mineral (tabela 3), uma vez que ocorre o processo de diluição e da translocação dos minerais para o sistema radicular da planta. As principais espécies de gramíneas do Brasil são a Brachiaria decumbens, Panicum maximum e Pennisetum purpureum com as seguintes características minerais. Tabela 2: principais minerais presentes nas gramíneas brasileiras Espécie Mineral (g/kg) N P K Ca Mg S Brachiaria decumbens 17 2,6 17,7 5,3 3,4 1,4 Brachiaria humidicola (%) - 0,13 – 0,2 1,1 – 1,7 0,13 – 0,2 0,17 – 0,21 0,11 – 0,18 Panicum maximum 18,8 1,7 21,1 6,4 2,6 1,2 Pennisetum purpureum 23,5 2,1 24,8 4,4 2,5 1,0 Fonte: Adaptação de vários autores. Tabela 3: variação da composição mineral em função da idade da planta Forrageira Idade (dias) Composição da Matéria Seca N P K Ca Mg Zn Mn % ppm Colonião 28 2,4 0,14 2,33 0,34 0,23 34 - 70 1,26 0,08 2,53 0,31 0,14 32 - Gordura 28 2,54 0,18 2,3 0,27 0,25 135 106 70 1,34 0,05 1,7 0,2 0,18 97 136 Elefante 28 - 0,33 2,38 0,61 0,42 40 138 140 - 0,11 0,34 0,43 0,36 33 128 Pangola 28 - 0,19 1,32 0,56 0,39 35 192 140 - 0,12 0,37 0,66 0,39 31 317 Jaraguá 28 - 0,28 1,68 0,4 0,46 51 - 84 - 0,11 0,57 0,23 0,58 37 - Fonte: Adaptação de BERCHIELLI et al., 2006. -/- Figura 2: Efeito da adubação nitrogenada sobre o desempenho de bovinos de corte. Fonte: Pastagem com Ciência, Instagram: sobre adaptação de MOREIRA, L. M. et. al., 2011. 4. FATORES QUE AFETAM A INGESTÃO DE MINERAIS Controlar a ingestão de minerais no nível desejado é uma tarefa difícil uma vez que a ingestão flutua. Deve-se, então, monitorar a ingestão dos minerais por muitas semanas para antes da implementação de um manejo que altere a ingestão dos mesmos. Se a ingestão for muito alta ou baixa, deve-se mover o cocho de suplementação para mais perto ou mais longe da fonte de água em várias áreas da pastagem. Quando o gado está consumindo o suplemento em excesso o sal é muitas vezes adicionado para reduzir a quantidade de minerais que o gado ingere. O nível de sal possui um impacto significativo sobre a ingestão de minerais e é facilmente alterado para o controle da quantidade de suplemento que o animal ingere; no entanto, deve-se levar em consideração a adição do sal ao se determinar a correta ingestão diária. Por exemplo, se um suplemento mineral possuir uma recomendação de taxa de alimentação de 113 g/dia é misturado em uma proporção de 50:50 com sal branco, então o gado deve consumir 226 g/dia desse suplemento. Isso forneceria para o animal a quantidade inicial de 113 g/dia do mineral mais 113 g/dia de sal adicionado. Quando o consumo é insuficiente, deve-se mudar para um suplemento mais seco, melado ou alterar a marcas para um mineral mais palatável ao gado. Além disso, deve-se ter em mente que os bezerros podem consumir quantidades significativas de minerais e isso deve ser considerado antes da diminuição do nível de alimentação, isto é, diminuição do consumo de MS/dia. Se a ingestão de minerais for inadequada, deve-se adicionar um alimento mais palatável a mistura, com uma característica de sabor ao animal. Alimentos como o farelo de algodão, farelo de soja, melaço e grãos de destilaria melhoram a palatabilidade e a ingestão dos suplementos. A ingestão do suplemento pode melhorar quando o cocho estiver perto da fonte de água ou quando se troca a marca do suplemento escolhendo um com mais palatabilidade. Monitorar regularmente o consumo de minerais para manter um registro do número de animais e das quantidades de consumo é importante para combater a ingestão em potencial ou deficiente do suplemento evitando possíveis problemas de deficiência e/ou intoxicação. 4.1 Alimentadores minerais A colocação do alimentador (cocho) é uma parte importante do fornecimento de minerais para o rebanho. Deve certificar-se que exista um número adequado de cochos para a taxa de lotação existente na pastagem. Uma forma prática é a existência de um cocho para cada 30 ou 50 animais. As melhores áreas para a localização dos cochos são perto das fontes de água, em lugares sombreados e perto das melhores áreas de pastagem. Deve-se verificar os cochos pelo menos uma vez por semana para mantê-los limpos para o fornecimento de um suplemento fresco em todos os momentos. Um bom alimentador deve manter o suplemento seco, ser portátil e resistir aos animais e corrosão. Os cochos abertos não são indicados. Os cochos metálicos não são indicados, sendo os de madeira, fibra de vidro ou de plástico os mais indicados e de longa duração. Os cochos permanentes feitos de concreto funcionam bem, mas a portabilidade é um problema. No caso de suplementos minerais, com consumo médio diário de 50 a 150 g/cabeça, deve-se ter 4 cm linear de cocho/UA isso para um cocho de 30 cm de profundidade, 40 cm de largura no topo e 30 cm de largura no fundo, pois essas dimensões permitem acesso dos dois lados do cocho e diminuem embates entre os animais. 4.2 Forma do suplemento Os minerais soltos em uma mistura para livre escolha é uma forma desejável e recomendável para vacas reprodutoras e/ou com crias. Para os animais com dietas completas, o suplemento é mais otimizado e uma forma de fornecimento é em uma mistura TMR, sigla em inglês para ração totalmente misturada. Ao suplementar com um produto em forma de bloco (figura 1), os microminerais devem ser superiores aos que estão contidos em uma mistura solta, uma vez que o animal consome de 28 a 56 g/dia. Além disso, alguns blocos contêm apenas vestígios de sal mineralizado, que acaba não suprindo as necessidades de macrominerais dos animais, como o Ca e o P. Deve-se ler o rótulo do produto cuidadosamente para certificar-se de que o mesmo contém todos os minerais necessários ao animal. Esse tipo de produto em bloco é utilizado para suplementar os animais que não tiveram acesso aos minerais por um longo período. Desta forma, o animal consumirá mais minerais sob a forma solta caso seja concedido o acesso de livre escolha. Esses blocos são utilizados na finalidade de fornecer os requerimentos minerais dos animais em um curto período evitando o consumo excessivo. Não deverá ser fornecido sal branco puro e um dado mineral separadamente, uma vez que a ingestão desse elemento será muito baixa já que o animal desejará apenas o sal. Os suplementos comerciais proteicos e energéticos às vezes são fortificados com minerais. Esses suplementos vêm nas formas de rações peletizadas, melaço líquido, blocos à base de melaço líquido, duro ou prensado ou ainda na forma de blocos à base de grãos. Não é necessário o fornecimento de um suplemento mineral de livre escolha junto com o suplemento comercial proteico ou energético. 4.3 Estação A ingestão de minerais geralmente é maior quando a forragem está com boa disponibilidade e diminui durante o outono ou períodos de seca. A composição mineral da forragem diminui conforme a maturidade da planta (idade). As forragens maduras são consumidas em menores quantidades através da seletividade dos animais, o que reduz ainda mais a ingestão de minerais. Em contrapartida, forrageiras em crescimento possuem melhor capacidade mineral do que as maduras. Além disso, o conteúdo mineral é maior em forrageiras cultivadas em solos com maior fertilidade ou solos adubados química ou organicamente. As plantas geralmente são mais fertilizadas e digestíveis durante a primavera; ou como no Brasil só possuímos duas estações bem definidas, a época dos dois meses antes da transição do período chuvoso para o primeiro mês do período seco demonstra melhor carga mineral para a planta; isso leva a uma maior ingestão natural de minerais através da disponibilidade da pastagem e redução do consumo de suplementos durante essa época do ano. 4.4 Método de suplementação ou alimentação Os animais jovens às vezes são alimentados com uma ração baseada em grãos ou silagem misturada na propriedade. A mistura completa de minerais em rações mistas é difícil; apenas uma pequena quantidade de minerais é necessária e se separa facilmente do maior tamanho das partículas de grãos e forragens. Logo, é mais recomendável usar um suplemento mineral que possua maior taxa de disponibilidade e alimentação, seja incluso na ração, separadamente no cocho para livre escolha ou em outras formas de fornecimento como água ou injetável. Um trabalho foi realizado para comparar a suplementação de um suplemento mineral de livre escolha ou misturar os minerais na ração todos os dias. O mineral continha um ionóforo (Bovatec®). Os resultados do trabalho, no qual as novilhas foram alimentadas com feno de milho, silagem de milho e minerais em um cocho de livre escolha ou onde os minerais foram cobertos (113 g/dia) na alimentação cada dia estão presentes na tabela 4. Tanto a suplementação coberta na ração quanto a de livre escolha apresentaram resultados de ganho diário semelhantes. As novilhas com livre escolha de ingestão do suplemento consumiram cerca de 14 g/cabeça/dia muito menos que o desejado de 113 gramas diárias por animal, mas estavam dentro da faixa necessária para a eficácia do ionóforo. Se quantidades específicas de um mineral ou aditivo alimentar particular são necessárias por dia, é desejável o uso de top-dress ou misturar o mineral na ração todos os dias ao invés de permitir o consumo de livre escolha. Ao oferecer o suplemento para livre escolha dos animais é necessária a monitoração do consumo para obter a certeza de que a ingestão diária é adequada. Esse controle servirá para que se possa inserir aditivos como um ionóforo ou antibiótico para aumentar a eficácia dos minerais no animal. Tabela 4: desempenho das novilhas suplementadas com livre escolha ou na mistura total Item Livre escolha Mistura da ração Peso inicial (kg) 260 262 Peso final (kg) 334 334 Ganho total (kg) 74 72 Ganho diário (kg) 0,875 0,848 Ingestão mineral (g/dia) 99,8 113 Fonte: ARTHINGTON & SWENSONT, 2004. 5. BIODISPONIBILIDADE DOS MINERAIS O tipo de minerais na dieta pode afetar a eficiência de produção e a relação custo-benefício da suplementação. Quando se adquire um sal mineralizado é importante ter em conta a concentração dos minerais e sua biodisponibilidade (tabela 5). A biodisponibilidade de sulfatos e cloretos é maior que a biodisponibilidade dos óxidos. Uma exceção é o óxido de magnésio, que é absorvido o suficiente para ser usado na suplementação dos bovinos de corte. No entanto, deve-se evitar o uso de óxido de cobre, uma vez que é quase ou nada absorvível. O óxido de ferro também é mal absorvido e geralmente é usado para adicionar cor à mistura mineral. Por causa da boa disponibilidade do Fe nas forragens e alimentos no Brasil, o gado raramente requer uma suplementação do elemento, logo a adição do mineral não deverá afetar o desempenho dos animais e pode ser benéfico, uma vez que o Fe pode interagir com outros minerais e impedir sua absorção como citado supra. Os minerais geralmente são incluídos em suplementos na forma inorgânica, mas também podem ser combinados com um aminoácido ou proteína, formando um composto orgânico (referido como complexos proteinados ou quelados). Os suplementos que utilizam a forma orgânica incluem os que fornecem os minerais Cu, Zn, Co e Mn juntamente a um aminoácido, geralmente a metionina, ou proteína. A biodisponibilidade relativa de Cu, Mn e Zn de diferentes fontes é maior em comparação com fontes inorgânicas, conforme descrito na tabela 5. Os minerais orgânicos custam mais do que os inorgânicos; portanto, um aumento no desempenho deve ser realizado para compensar o mais caro. A resposta das fontes orgânicas é variável e são recomendados em determinadas situações. As fontes orgânicas foram eficazes no aumento da eficiência reprodutiva de novilhas sob condições de estresse nutricional, ou ainda na redução da morbilidade e mortalidade de animais recém-desmamados que são altamente susceptíveis à doença respiratória bovina. Para vacas, o fornecimento de fontes orgânicas de minerais é utilizado nos dois últimos meses antes do parto; já para bezerros esse tipo de suplementação é recomendado apenas durante o período de desmame. No entanto, a metionina de zinco pode ser fornecida continuamente durante o período de alimentação visando a diminuição de problemas podais. Tabela 5: biodisponibilidade relativa¹ de microminerais orgânicos e inorgânicos Mineral Sulfato Óxido Carbonato Cloreto Orgânico (complexo/quelado) Cu 100 0 - 105 130 Mn 100 58 28 - 176 Zn 100 - 60 40 159 a 206 ¹ avaliação da biodisponibilidade relativa com respeito a fonte de sulfato. Fonte: Adaptação de vários autores. 6. IDENTIFICANDO UMA DEFICIÊNCIA MINERAL A deficiência mineral em bovinos de corte é difícil de se estimar e de diagnosticar e, silenciosamente, pode ocasionar grandes prejuízos à saúde do animal e ao financeiro. A maioria das deficiências estão relacionadas com o Ca, P e S, mas também com o Zn, Cu e Se. As deficiências minerais são classificadas em primárias e secundárias, de acordo com o grau de manifestação. A deficiência primária ocorre quando o animal ingere forragens que são deficientes em um determinado elemento como o Mg, ou ainda quando não é fornecido a suplementação adequada com sal mineralizado, o que se torna a causa mais comum desse grau de deficiência. Esse tipo de deficiência raramente ocorre em rebanhos bem manejados e que possuem alimentos como forrageiras de boa qualidade nutricional e que são suplementados adequadamente e na época ideal. Essas falhas são mais fáceis de resolver. Por sua vez, a deficiência secundária ocorre quando o animal consome um excesso de minerais antagonistas de outros elementos, que interferem na absorção normal ou no metabolismo um do outro. No caso de deficiência de Cu, o animal pode estar consumindo esse elemento em q. (shrink)
Before the 2007–2008 global financial crisis, the vast majority of social scientists were not paying much attention to the politics of central banking, despite the fact that, since their creation, central banks have been pivotal institutions between private financial institutions and public authorities (Singleton, 2010). During the past decades, central banks acquired considerable independence from public officials under the Central Bank Independence (CBI) template (McNamara, 2002). Governments justified their decisions to delegate monetary competences by relying on a narrow conception of (...) monetary policy, in which central bankers should only seek to control inflation and ignore the implications of their policies on other economic issues such as financial stability or wealth inequalities (Issing et al., 2001; Marcussen, 2009). Heterodox economists and critical political economists opposed this view by declaring that monetary policy is fundamentally political as it deals with complicated policy trade-offs, which generates winners and losers (Epstein & Gintis, 1995; Forder, 2005). However, until 2007, their concerns were very marginal and remained at the fringes of the political debate. The vast majority of policy-makers, economists, and central bankers themselves agreed on the fact that the CBI template was the optimal institutional arrangement between fiscal and monetary authorities. (shrink)
This paper analyzes the proposal that central banks should issue digital currencies (CBDC) to provide a public alternative to private digital accounts and cryptocurrencies. We build on some The promises and perils of central bank digital currencies recent themes in political economy research to give a broader and more balanced perspective than the existing literature, highlighting both the promises and perils of CBDC. We argue that, on the one hand, the present state of the private financial sector is problematic and (...) regulators should seek to tackle the issues of financial power, financial instability and lack of adequate monetary policy options. On the other hand, implementing CBDC comes with risks of its own, such as that of creating a “Frankenstein scenario” where too much power is given to unelected technocrats. Our tentative conclusion is therefore that CBDC should be seen as a second-best option, while the primary focus of policy makers should be on the possibility of financial re-regulation. (shrink)
Qual è il rapporto tra la mente cosciente e la natura? A tale questione fondamentale si può rispondere in modi molto diversi, a seconda di come si concepiscono sia la mente che la natura. Questo lavoro offre una risposta originale, integrando la fenomenologia husserliana e la concezione enattiva all’interno di una prospettiva unitaria chiamata fenomenologia enattiva. Nel percorso qui sviluppato, il lettore troverà un’analisi ricca e aggiornata di alcune tra le questioni più dibattute nella filosofia della mente e nelle scienze (...) cognitive contemporanee: il “problema difficile” della coscienza e il suo rapporto con l’intenzionalità, lo statuto epistemologico e ontologico delle qualità sensibili, la filosofia del colore, il dibattito sulla cognizione incorporata (embodiment) e l’approccio fenomenologico allo studio del mentale. L’autore sviluppa infine una proposta generale che si articola in una metafisica monistico-neutrale, processuale e relazionale della natura e della coscienza. (shrink)
Tras analizar sucintamente las consecuencias científicas y filosóficas de la identidad mente-cerebro, se señalan argumentos a favor y en contra de mantener el debate mente-cerebro. En particular se consideran las nuevas técnicas de exploración del cerebro como argumento en contra de tal debate. Las deficiencias e insuficiencias de tales técnicas aconsejan mantener el debate mente-cerebro y no asumir el materialismo.
Seneca sembra rileggere la dottrina stoica delle passioni alla luce dell’interpretazione aristotelica; procedendo nell’ottica del- l’alternativa secca che si deve al monismo della versione crisip- pea, Seneca fa delle passioni qualcosa di esterno e alternativo al soggetto agente. Tuttavia, seguendo poi una dinamica prospetti- va di tipo dualistico, evoca il ruolo decisionale e responsabiliz- zante del soggetto agente, il quale ha il compito di optare per la ragione o per l’opinione30 e quindi di mantenere o meno la propria enkrateia. Da (...) ciò dipende che questa si trasformi o meno in uno strumento nelle mani della passione. (shrink)
The extended mind thesis claims that some mental states and cognitive processes extend onto the environment. Items external to the organism or exploratory actions may constitute in part mental states and cognitive processes. In Clark and Chalmers’ original paper, ‘The Extended Mind’, this thesis receives support from the parity principle and from the active externalism. In their paper, more emphasis is given to the parity principle, which is presented as neutral regarding the nature of cognition. It would be advantageous to (...) maintain that extended mental states and processes do not require a reform of our pre-theoretical view of cognition. In the present paper, I submit that we should give more emphasis on the active externalism, which, I argue, is not neutral regarding the nature of cognition. Cognition is viewed as successful adaptation to a specific task. Although this move may seem at first disadvantageous, it is necessary for the correct understanding and justification of Otto case as an example of extended mental state. Additionally, the parity principle cannot handle Weiskopf’s criticism that information registered in Otto’s notebook is not responsive to reasons. In order to address this criticism, we need to appeal to active externalism and its corresponding view of cognition. (shrink)
F. Brencio (2021) [in Italian and English] (ed.), Dal corpo oggetto alla mente incarnata - From the object body to the embodied mind, in “InCircolo – Rivista di Filosofia e Culture”, 11, ISSN 2531-4092.
This paper is divided into three sections. It aims to give some resources for making possible a straightforward debate on the mind-body problem as well as some serious researches in it. Having these goals into account, the first section offers an introduction to the mind-body problem and the second section explains briefly some of the most influential answers to this problem. The third section is devoted to eliminative materialism.
Na filosofia moderna, Thomas Reid (1710-1796) foi um dos filósofos que olhou com atenção para o problema da vagueza das palavras quando utilizadas para expressar nosso pensamento ao outro. Ao tratar da concepção de linguagem, Reid parece abordar o tema da ambiguidade e da vagueza das palavras de modo a afastar os erros que a linguagem carrega consigo, apurando-a no sentido de torná-la mais adequada à representação dos fenômenos mentais e, desta forma, tornar possível o avanço sobre o estudo acerca (...) da mente. O presente estudo busca tornar aparente a noção reidiana de linguagem, pretendendo, assim, expor o que esta noção pode representar no que diz respeito à relação entre mundo perceptível, mente e linguagem a partir do pensamento de Reid. (shrink)
This article describes four arguments presented Gilbert Ryle in his book The Concept of Mind to argue that the concept of “mind” is a product of the false belief that there is a ghost in the machine, and this ambiguity is analyzed, it causes words as “will” take meaning in ordinary language. Besides the analysis of the arguments, we offer an answer to each of them and, finally, the idea that mind and will form part of the body and have (...) an ontological support, although not possessing a separate existence from the same holding. (shrink)
In this paper, I will investigate the notion of mind within the “Extended Mind” theory, as it is defended by Andy Clark. The aim is to provide an explanation of its key ideas and to highlight some of its consequences. In the first part I will briefly explain the main features of Clark's theory. In the second part, I will discuss his account of the nature of language and its relationship to cognition, and I will relate it with the arguments (...) for cognitive and mental extension. Then I will use my analysis of Clark's arguments in order to individuate some problems, which characterize his philosophical position. Although I am sympathetic with his theory, I will argue that it is nonetheless committed to a narrow account of cognition and mind. For this reason, I will propose a way to integrate Clark's theory within a semiotic and pragmatist framework inspired by C.S. Peirce. I suggest that, if we conceive the cognition as a semiotic sense-making process, we can provide a broad account of cognition and a fully externalist position about the mind. (shrink)
A tese da mente estendida alega que ao menos alguns processos cognitivos se estendem para além do cérebro do organismo no sentido de que eles são constituídos por ações realizadas por esse organismo no ambiente ao seu redor. Um movimento mais radical seria alegar que ações sociais realizadas pelo organismo poderiam pelo menos constituir alguns dos seus processos cognitivos. Isso pode ser chamando de tese da mente socialmente estendida. Baseando-me na noção de affordance tal como ela foi desenvolvida na tradição (...) da psicologia ecológica, eu defendo que a percepção se estende ao meio ambiente. Então, apoiado no fenômeno da atenção conjunta, eu estendo a noção de affordance para encorporar affordances sociais. Assim, a percepção pode, em algumas situações, ser também estendida socialmente. (shrink)
En este trabajo examino cómo el Funcionalismo de Máquina de Turing resulta compatible con una forma de dualismo, lo que aleja a la IA clásica o fuerte del materialismo que la inspiró originalmente en el siglo XIX. Para sostener esta tesis, argumento que efectivamente existe una notable cercanía entre el pensamiento cartesiano y dicho funcionalismo, ya que el primero afirma que es concebible/posible separar mente y cuerpo, mientras que el segundo sostiene que no es estrictamente necesario que los estados mentales (...) se realicen en las propiedades físicas de engranajes y máquinas reales. This article deals with how Turing Machine Functionalism turns out to be compatible with a form of Dualism, which involves that strong AI is not close to the original Materialism that inspired it in the nineteenth century. To support this thesis, I argue that there is a compelling coincidence between Descartes' philosophy and this version of Functionalism, since the former holds that it is conceivable/possible to separate mind and body, while the latter holds that it is not strictly necessary that mental states are realized by the physical properties of real cogs and machines. (shrink)
In questo lavoro distinguo tra due versioni della tesi del carattere incarnato della mente: “debole” e “forte”. Secondo la versione debole, il possesso di stati mentali presuppone l’esistenza di un corpo che si muove ed agisce nell’ambiente, ossia un corpo funzionale. Secondo la versione forte, invece, il possesso di stati mentali presuppone l’esistenza di un corpo non solo funzionale ma anche senziente, ossia: il corpo come sede della sensibilità o coscienza fenomenica. Sostengo che alcuni approcci all’interno della “scienza cognitiva incarnata” (...) implicano la forma debole di embodiment : la robotica di Brooks, l’enattivismo sensomotorio di Noë e O’Regan e l’enattivismo radicale di Hutto e Myin. In contrapposizione a queste prospettive, e basandomi sull’analisi fenomenologica della corporeità vivente e vissuta, difendo la forma forte di embodiment, secondo cui la mente si fonda essenzialmente sul corpo funzionale e senziente. Parole chiave: Fenomenologia; Embodiment; Coscienza fenomenica; Enattivismo; Qualità sensibili -/- Abstract (english) -/- Functional body and sentient body. The strong view on the embodied mind in phenomenology: In this paper, I draw a distinction between weak and strong versions of the “embodiment thesis”. The weak version claims that mental states are grounded in a body that moves and acts in the environment, i.e., a functional body. The strong version claims that mental states are grounded in a body that is not only functional but also sentient, i.e., a body that is the locus of sensibility or phenomenal consciousness. I argue that some approaches within the “new embodied cognitive science” – Brooks’ robotics, Noë’s and O’Regan’s sensorimotor enactivism, Hutto’s and Myin’s radical enactivism – imply a weak version of the embodiment thesis. In contrast, by drawing on a phenomenological analysis of living and lived corporeality, I argue for the strong version, which claims that the mind is essentially grounded in the functional and sentient body. Keywords: Phenomenology; Embodiment; Phenomenal Consciousness; Enactivism; Sensible Qualities. (shrink)
Reseña del libro Filosofía de la mente, de Mariano Rodríguez González (Ediciones Complutense, 2021), publicada en el número 66 de la Revista de la Sociedad de Lógica, Metodología y Filosofía de la Ciencia en España.
“Dalla filosofia dell’azione alla filosofia della mente” è stato il percorso di alcuni filosofi di nazionalità varia degli anni 1980 – come Paul Churchland negli Stati Uniti o Ansgar Beckermann in Germania – che prima si sono interessati agli aspetti più teorici nella filosofia dell’azione, come il modo di funzionamento delle azioni e la loro spiegazione scientifica, e che poi, con l’arrivo e la diffusione dei personal computers e delle scienze cognitive, hanno ampliato e approfondito questo interesse di ricerca e (...) si sono dedicati alla filosofia della mente più in generale e in particolare alla spiegazione scientifica e filosofica del mentale. Sandro Nannini faceva parte di questo movimento ed è stato uno tra gli inizialmente pochi filosofi italiani che si sono occupati di questi argomenti; successivamente ne è diventato uno dei maggiori specialisti in Italia, proponendo una sua particolare versione di naturalizzazione del mentale. Subordinata agli interessi teorici è stata la sua iniziativa accademica di fondare e promuovere il primo dottorato italiano di ricerca in Scienze Cognitive. Il presente volume tratta dell’opera di Sandro Nannini in contributi che sono riflessioni più o meno specifiche sulle differenti tappe del suo percorso, affrontando temi come l’analisi dell'azione, il libero arbitrio, la discussione di Nannini di vari classici della filosofia, la tendenza del naturalismo a dissolvere la filosofia in un enciclopedismo empirico e la sfida dei qualia e della fenomenologia all’approccio naturalistico alla mente. Il volume contiene inoltre un saggio dello stesso Sandro Nannini, nel quale espone l’ultimo sviluppo della sua filosofia della mente nonché le risposte agli interventi degli altri autori: Mario De Caro, Sara Dellantonio, Rosaria Egidi, Roberta Lanfredini, Christoph Lumer, Paolo Parrini, Pietro Perconti, Claudio Pizzi, Emanuela Scribano e Giuseppe Varnier. (shrink)
Una bolsa mixta dominada por las tonterías reduccionistas de H & D. Este es un seguimiento del famoso Hofstadter (o infame como diría ahora, teniendo en cuenta sus incesantes tonterías) Godel, Escher, Bach (1980). Al igual que su predecesor, se ocupa en gran medida de los fundamentos de la inteligencia artificial, pero se compone principalmente de historias, ensayos y extractos de una amplia gama de personas, con algunos ensayos de DH y DD y comentarios a todas las contribuciones de uno (...) u otro de ellos. Para mis puntos de vista sobre los intentos de D y H para entender el comportamiento ver mi revisión de Hofstadter 'Soy un bucle extraño' y otros escritos. Gran parte de ella es muy reduccionista en tono (es decir, " explica "todo en términos de física / matemáticas y niega " realidad " de la psicología) pero como Hofstadter señala, las ecuaciones de campo cuántico de una molécula de agua son demasiado complejas de resolver (y también es un vacío) y nadie tiene una pista sobre cómo explicar la forma en que surgen las propiedades (por ejemplo, las propiedades del agua de H2 y 02) a medida que sube la escala del vacío al cerebro, por lo que el reduccionismo, como el holismo, requiere una gran cantidad de fe y de hecho es incoherente ya que ni siquiera se puede enmarcar sus argumentos t presuponiendo la coherencia del pensamiento de orden superior. Otros problemas para el reduccionismo son el principio de incertidumbre, el caos (por ejemplo, no hay manera de predecir cómo caerá una pila de arena), la incompleta lógicamente necesaria de las matemáticas (y todo el pensamiento) y la imposibilidad de igualar comportamientos de orden superior (por ejemplo, lenguaje) con fenómenos de orden inferior (por ejemplo, bioquímica), es decir, la explosión combinatoria o subdeterminación. En resumen, aunque hay muchos comentarios interesantes, como casi toda la escritura sobre el comportamiento, este trabajo carece de un relato coherente de la estructura lógica de la racionalidad, que trato de dar en mis escritos. Aquellos que deseen un marco completo hasta la fecha para el comportamiento humano de la moderna dos sistemas punto de vista puede consultar mi libros Talking Monkeys 3ª ed (2019), Estructura Logica de Filosofia, Psicología, Mente y Lenguaje en Ludwig Wittgenstein y John Searle 2a ed (2019), Suicidio pela Democracia 4ª ed (2019), La Estructura Logica del Comportamiento Humano (2019), The Logical Structure de la Conciencia (2019, Comprender las Conexiones entre Ciencia, Filosofía, Psicología, Religión, Política y Economía, Historia y Literatura (2020), Delirios Utópicos Suicidas en el Siglo 21 5ª ed (2019), y Observaciones sobre Imposibilidad, Incompletitud, Paraconsistencia, Indecidibilidad, Aleatoriedad, Computabilidad, Paradoja e Incertidumbre en Chaitin, Wittgenstein, Hofstadter, Wolpert, Doria, da Costa, Godel, Searle, Rodych Berto, Floyd, Moyal-Sharrock y Yanofsky (2019) y otras. (shrink)
Materialismo, reducionismo, behaviorismo, funcionalismo, teoria dos sistemas dinâmicos e computacionalismo são visões populares, mas eles foram mostrados por Wittgenstein para ser incoerente. O estudo do comportamento abrange toda a vida humana, mas o comportamento é em grande parte automático e inconsciente e até mesmo a parte consciente, principalmente expressa em linguagem (que Wittgenstein equivale com a mente), não é perspicaz, por isso é fundamental ter um quadro que Searle chama a estrutura lógica da racionalidade (LSR) e eu chamo a psicologia (...) descritiva do pensamento de ordem superior (DPHOT). Depois de resumir a estrutura trabalhada por Wittgenstein e Searle, como estendido pela pesquisa de raciocínio moderno, eu mostro as inadequações nas visões de Carruther, que permeavam a maioria das discussões de comportamento, incluindo a conduta comportamental contemporânea Ciências. Eu mantenho que seu livro é um amálgama de dois livros, um um sumário da psicologia cognitiva e o outro um sumário das confusões filosóficas padrão na mente com algum jargão novo adicionado. Eu sugiro que este último deve ser considerado como incoerente ou como uma visão dos desenhos animados da vida e que tomar Wittgenstein em sua palavra, podemos praticar a autoterapia bem sucedida, em relação à questão da mente/corpo como uma questão de linguagem/corpo. -/- Aqueles que desejam um quadro até à data detalhado para o comportamento humano da opinião moderna dos dois sistemas consultar meu livros Falando Macacos 3ª Ed (2019), A Estrutura Lógica da Filosofia, Psicologia, Mente e Linguagem em Ludwig Wittgenstein e John Searle 2a Ed (2019), Suicídio Pela Democracia,4aEd(2019), Entendendo as Conexões entre Ciência, Filosofia, Psicologia, Religião, Política e Economia- Artigos e Análises 2006-2019 (2019), Ilusões Utópicas Suicidas no 21St século 5a Ed (2019), A Estrutura Lógica do Comportamento Humano (2019), e A Estrutura Lógica da Consciência (2019) y outras. (shrink)
In this thesis, I elaborate and defend Donald Davidson's account of knowing one's own mental states that exhibit first-person authority. To that end, I place Davidson's account among others in the philosophical landscape concerning self-knowledge. Next, I examine his response to philosophical challenges that arise from mental content externalism and self-deception. Finally, I draw some insights froms Davidson's account to the broader aims of epsitemology.
Il materialismo, il riduzionismo, il comportamentalismo, il funzionalismo, la teoria dei sistemi dinamici e il computazionalismo sono punti di vista popolari, ma sono stati mostrati da Wittgenstein come incoerenti. Lo studio del comportamento comprende tutta la vitaumana, ma il comportamento è in gran parte automatico e inconscio e anche la parte cosciente, per lo più espressa nel linguaggio (che Wittgenstein equivale alla mente), non è perspicua, quindi è fondamentale avere un quadro che Searle chiama la struttura logica della razionalità (LSR) (...) e io chiamo la psicologia descrittiva del pensiero dell'ordine superiore (DPHOT). Dopo aver riassunto il quadro elaborato da Wittgenstein e Searle, come esteso dalla ricerca di ragionamento moderno, mostro le inadeguatezze nelle opinioni di Carruther, che pervadono la maggior parte delle discussioni sul comportamento, comprese le scienze comportamentali contemporanee. Io sostengo che il suo libro è un amalgama di due libri, uno una sintesi della psicologia cognitiva e l'altro una sintesi delle confusioni filosofiche standard sulla mente con qualche nuovo gergo aggiunto. Suggerisco che quest'ultimo dovrebbe essere considerato incoerente o come una visione dei cartoni animati della vita e che prendendo Wittgenstein alla sua parola, possiamo praticare l'autoterapia di successo per quanto riguarda il problema della mente / corpo come un problema di lingua / corpo. Coloro che desiderano un quadro aggiornato completo per il comportamento umano dalla moderna vista a due systems possono consultare il mio libro 'La struttura logica dellafilosofia, psicologia, Mind e il linguaggio in Ludwig Wittgenstein e John Searle' 2nd ed (2019). Coloro che sono interessati a più dei miei scritti possono vedere 'TalkingMonkeys--Filosofia, Psicologia, Scienza, Religione e Politica su un Pianeta Condannato--Articoli e Recensioni 2006-2019 3rd ed (2019) e Suicidal Utopian Delusions nel 21st Century 4th ed (2019) . (shrink)
Alcuni anni fa, ho raggiunto il punto in cui di solito posso dire dal titolo di un libro, o almeno dai titoli dei capitoli, quali tipi di errori filosofici saranno fatti e con quale frequenza. Nel caso di opere nominalmente scientifiche queste possono essere in gran parte limitate a determinati capitoli che sono filosofici o cercanodi trarre conclusioni generali sul significato o sul significato a lungoterminedell'opera. Normalmente però le questioni scientifiche di fatto sono generosamente intrecciate con incomprodellami filosofici su ciò (...) che questi fatti significano. Le chiare distinzioni che Wittgenstein ha descritto circa 80 anni fa tra le questioni scientifiche e le loro descrizioni da parte di vari giochi linguistici sono raramente prese in considerazione, e quindi si è alternativamente stupiti dalla scienza e costerghi per la sua analisi incoerente. Così è con questo volume. Se si vuole creare una mente più o meno come la nostra, è necessario avere una struttura logica per la razionalità e la comprensione dei due sistemi di pensiero (teoria del doppio processo). Se si vuole filosofare su questo, bisogna capire la distinzione tra le questioni scientifiche di fatto e la questione filosofica di come funziona il linguaggio nel contesto in questione, e di come evitare le insidie del riduzionismo e dello scientismo, ma Kurzweil, come la maggior parte degli studenti di comportamento, è in gran parte all'oscuro. Egli è incantato da modelli, teorie e concetti, e dalla voglia di spiegare, mentre Wittgenstein ci ha mostrato che dobbiamo solo descrivere, e che le teorie, i concetti, ecc., sono solo modi di usare il linguaggio (giochi linguistici) che hanno valore solo nella misura in cui hanno un test chiaro (clear truthmakers, o come John Searle (il critico più famoso di AI) ama dire, chiare condizioni di soddisfazione (COS)). Ho cercato di dare un inizio su questo nei miei scritti recenti. Coloro che desiderano un quadro aggiornato completo per il comportamento umano dalla moderna vista a due systems possono consultare il mio libro 'La struttura logica della filosofia, psicologia, mente e il linguaggio in Ludwig Wittgenstein e John Searle' 2nd ed (2019). Coloro che sono interessati a più dei miei scritti possono vedere 'Talking Monkeys--Filosofia, Psicologia, Scienza, Religione e Politica su un Pianeta Condannato--Articoli e Recensioni 2006-2019 3rd ed (2019) e Suicidal Utopian Delusions in the 21st Century 5th ed (2019) . (shrink)
Um saco misto dominado pelo absurdo reducionista da H & D. Esta é uma continuação do famoso (ou infame como eu diria agora, considerando seu absurdo implacável) Godel, Escher, Bach (1980). Assim como seu antecessor, preocupa-se em grande parte com os fundamentos da inteligência artificial, mas é composto principalmente por histórias, ensaios e extratos de uma ampla gama de pessoas, com alguns ensaios de DH e DD e comentários para todas as contribuições de um ou outro deles. Para minhas opiniões (...) sobre as tentativas de D e H para entender o comportamento, consulte minha revisão de "Eu sou um Ciclo Estranho" de Hofstadter e outros escritos. Muito disso é muito reducionista no tom (ou seja, " explica " tudo em termos de física/matemática e nega " realidade " da psicologia), mas como Hofstadter observa, as equações de campo quântico de uma molécula de água são muito complexas para resolver (e assim é um vácuo)e ninguém tem uma pista sobre como explicar a forma como as propriedades emergem (por exemplo, propriedades de água de H2 e 02) à medida que você sobe a escala do vácuo para o cérebro, então o reducionismo, como o holismo, requer muita fé e, de fato, é incoerente, pois não se pode sequer enquadrar seus argumentos sem pressupor da coerência do pensamento de ordem superior. Problemas adicionais para o reducionismo são o princípio da incerteza, o caos (por exemplo, não há como prever como uma pilha de areia cairá), a incompletude logicamente necessária da matemática (e todo o pensamento) e a impossibilidade de combinar comportamentos de ordem superior (por exemplo, linguagem) com fenômenos de ordem inferior (por exemplo, bioquímica), ou seja, a explosão combinatória ou subdeterminação. Em suma, embora existam muitos comentários interessantes, como quase todos escrever sobre comportamento, este trabalho não tem qualquer relato coerente da estrutura lógica da racionalidade, que eu tento dar em meus escritos. Aqueles que desejam um quadro até à data detalhado para o comportamento humano da opinião moderna dos dois sistemas consultar meu livros Falando Macacos 3ª Ed (2019), A Estrutura Lógica da Filosofia, Psicologia, Mente e Linguagem em Ludwig Wittgenstein e John Searle 2a Ed (2019), Suicídio Pela Democracia,4aEd(2019), Entendendo as Conexões entre Ciência, Filosofia, Psicologia, Religião, Política e Economia Artigos e Análises 2006-2019 (2020), Ilusões Utópicas Suicidas no Século 21 6a Ed (2020), A Estrutura Lógica do Comportamento Humano (2019), e A Estrutura Lógica da Consciência (2019) y outras. (shrink)
Alguns anos atrás, cheguei ao ponto onde eu normalmente pode dizer a partir do título de um livro, ou pelo menos a partir dos títulos do capítulo, que tipos de erros filosóficos serão feitas e com que freqüência. No caso de obras nominalmente científicas, estas podem ser largamente restritas a certos capítulos que enceram filosóficos ou tentam tirar conclusões gerais sobre o significado ou significado a longo prazo do trabalho. Normalmente entretanto as matérias científicas do fato são misturado generosa com (...) o jargão filosófico a respeito do que estes fatos significam. As distinções claras que Wittgenstein descreveu cerca de 80 anos atrás entre questões científicas e suas descrições por vários jogos de linguagem são raramente levados em consideração, e assim um é alternadamente impressionados pela ciência e desanimado por sua incoerente Análise. Assim é com este volume. -/- Se alguém é para criar uma mente mais ou menos como a nossa, é preciso ter uma estrutura lógica para a racionalidade e uma compreensão dos dois sistemas de pensamento (teoria do processo dual). Se uma delas é filosofar sobre isso, é preciso entender a distinção entre questões científicas de fato e a questão filosófica de como a linguagem funciona no contexto em questão, e de como evitar as armadilhas do reducionismo e do cientismo, mas Kurzweil, como mais estudantes de comportamento, é em grande parte c sem noção. Ele está encantado com modelos, teorias e conceitos, e o impulso de explicar, enquanto Wittgenstein nos mostrou que só precisamos descrever, e que as teorias, conceitos etc, são apenas maneiras de usar a linguagem (jogos de linguagem) que têm valor apenas na medida em que eles têm uma clara teste (claro que os verdadeiros, ou como John Searle (crítico mais famoso da AI) gosta de dizer, claro condições de satisfação (COS)). Eu tentei fornecer um começo nisto em meus escritos recentes. -/- Aqueles que desejam um quadro até à data detalhado para o comportamento humano da opinião moderna dos dois sistemas consultar meu livros Falando Macacos 3ª Ed (2019), A Estrutura Lógica da Filosofia, Psicologia, Mente e Linguagem em Ludwig Wittgenstein e John Searle 2a Ed (2019), Suicídio Pela Democracia,4aEd(2019), Entendendo as Conexões entre Ciência, Filosofia, Psicologia, Religião, Política e Economia Artigos e Análises 2006-2019 (2019), Ilusões Utópicas Suicidas no 21St século 5a Ed (2019), A Estrutura Lógica do Comportamento Humano (2019), e A Estrutura Lógica da Consciência (2019) y outros. (shrink)
Antes de comentar en "La nueva ciencia de la mente", primero ofrezco algunos comentarios sobre filosofía y su relación con la investigación psicológica contemporánea como se ejemplifica en las obras de Searle (S), Wittgenstein (W), Hacker (H) et al. Ayudará a ver mis reseñas de PNC (Filosofía en un Nuevo Siglo), TLP, PI, OC, Making the Social World (MSW) y otros libros por y sobre estos genios, que proporcionan una descripción clara del comportamiento de orden superior, no se encuentra en (...) psicología ni filosofía, a la que me referiré como el marco de WS. Al igual que con tantos libros de filosofía, podríamos parar con el título. Como indican las citas y comentarios anteriores y en mis otras reseñas y los libros que cubren, hay razones convincentes para los problemas que enfrentamos al describir la psicología del orden superior considerado como conceptual y no científico. Esto debería ser cristalino para todos, pero la envidia de la ciencia y el olvido casi completo a WSH, etc. es un modo la! Pero como H señala anteriormente, los temas discutidos aquí son todo acerca de los juegos de idiomas y no tienen nada que ver con la ciencia. De hecho, como de costumbre, si uno traduce al inglés claro hay muy poco interés aquí, y ciertamente nada no dicho antes y mejor por WS, etc. innumerables veces desde los años 30 (véase, por ejemplo, The Blue and Brown Books de 1933- 35). No es de extrañar que no haga referencias significativas a ninguno de los libros o personas anteriores (¡la única referencia a S es un artículo de 1958!), aunque en mi opinión están en la parte superior de la lista de las principales figuras de la psicología descriptiva. En la p119 nos dice que la clave de todo esto es averiguar cómo "... un proceso cognitivo a nivel personal puede pertenecer a un sujeto representativo. Esta es la tarea de la segunda mitad del libro". Pero W hizo esto hace 80 años y ya que tenemos las explicaciones bellamente claras de WSH, H&M, etc., no tiene sentido torturarse con la prosa bastante sin rumbo y opaca que se desvía terminan en Sartre, Heidegger, Husserl y Frege, con un toque de ensalada de palabras posmodernista para buena medida. Un esfuerzo valiente en un tema interesante, pero en última instancia agotador e infructuoso. Aquellos que deseen un marco completo hasta la fecha para el comportamiento humano de la moderna dos sistemas punto de vista puede consultar mi libros Talking Monkeys 3ª ed (2019), Estructura Logica de Filosofia, Psicología, Mente y Lenguaje en Ludwig Wittgenstein y John Searle 2ª ed (2019), Suicidio pela Democracia 4ª ed (2019), La Estructura Logica del Comportamiento Humano (2019), The Logical Structure de la Conciencia (2019, Comprender las Conexiones entre Ciencia, Filosofía, Psicología, Religión, Política y Economía, Historia y Literatura (2019), Delirios Utópicos Suicidas en el siglo 21 5ª ed (2019), Observaciones sobre Imposibilidad, Incompletitud, Paraconsistencia, Indecidibilidad, Aleatoriedad, Computabilidad, Paradoja e Incertidumbre en Chaitin, Wittgenstein, Hofstadter, Wolpert, Doria, da Costa, Godel, Searle, Rodych Berto, Floyd, Moyal-Sharrock y Yanofsky(2019) y otros. (shrink)
Alcuni anni fa, ho raggiunto il punto in cui di solito posso dire dal titolo di un libro, o almeno dai titoli dei capitoli, quali tipi di errori filosofici saranno fatti e con quale frequenza. Nel caso di opere nominalmente scientifiche queste possono essere in gran parte limitate a determinati capitoli che sono filosofici o cercanodi trarre conclusioni generali sul significato o sul significato a lungoterminedell'opera. Normalmente però le questioni scientifiche di fatto sono generosamente intrecciate con incomprodellami filosofici su ciò (...) che questi fatti significano. Le chiare distinzioni che Wittgenstein ha descritto circa 80 anni fa tra le questioni scientifiche e le loro descrizioni da parte di vari giochi linguistici sono raramente prese in considerazione, e quindi si è alternativamente stupiti dalla scienza e costerghi per la sua analisi incoerente. Così è con questo volume. Se si vuole creare una mente più o meno come la nostra, è necessario avere una struttura logica per la razionalità e la comprensione dei due sistemi di pensiero (teoria del doppio processo). Se si vuole filosofare su questo, bisogna capire la distinzione tra le questioni scientifiche di fatto e la questione filosofica di come funziona il linguaggio nel contesto in questione, e di come evitare le insidie del riduzionismo e dello scientismo, ma Kurzweil, come la maggior parte degli studenti di comportamento, è in gran parte all'oscuro. Egli è incantato da modelli, teorie e concetti, e dalla voglia di spiegare, mentre Wittgenstein ci ha mostrato che dobbiamo solo descrivere, e che le teorie, i concetti, ecc., sono solo modi di usare il linguaggio (giochi linguistici) che hanno valore solo nella misura in cui hanno un test chiaro (clear truthmakers, o come John Searle (il critico più famoso di AI) ama dire, chiare condizioni di soddisfazione (COS)). Ho cercato di dare un inizio su questo nei miei scritti recenti. Coloro che desiderano un quadro aggiornato completo per il comportamento umano dalla moderna vista a due systems possono consultare il mio libro 'La struttura logica della filosofia, psicologia, mente e il linguaggio in Ludwig Wittgenstein e John Searle' 2nd ed (2019). Coloro che sono interessati a più dei miei scritti possono vedere 'Talking Monkeys--Filosofia, Psicologia, Scienza, Religione e Politica su un Pianeta Condannato--Articoli e Recensioni 2006-2019 3rd ed (2019) e Suicidal Utopian Delusions in the 21st Century 5th ed (2019) . (shrink)
In this chapter I will present, in a general way, Millikan's biosemantic theory of the phenomenon of intentionality. For this purpose, the text will take the following path. First, I will present the problem of intentionality and an overview of the dominant theories of intentional content during the twentieth century and part of the twenty-first century. Then, I will present a general version of Millikan's biosemantic theory, appearing in 1984, which will allow us to see what the relevance and originality (...) of his proposal consists in. Finally, in keeping with one of the central purposes of Las filósofas que nos formaron, I will share a brief interview that Millikan very kindly agreed to give for this publication, in which she tells us some non-theoretical aspects of her history as a philosopher. (shrink)
Concepto es una palabra que refiere a un constructo problemático en la psicología cognitiva y en la filosofía de la mente, el cual indistintamente refiere a cierto tipo de representaciones mentales, a entidades extramentales e incluso a habilidades psicológicas. Lo cierto es que las teorías de conceptos emblemáticas al interior de la filosofía y la psicología, como la Teoría Clásica de conceptos (entendidos como definiciones aristotélicas), o como la Teoría de Prototipos de Rosch (entendidos como estructuras estadísticas de datos), no (...) logran dar cuenta de fenómenos tales como la productividad, la sistematicidad y la composicionalidad del pensamiento humano. Se analizarán los requisitos que una buena teoría psicológica sobre los conceptos debe satisfacer, y se presentará un breve esbozo de la Teoría de Sistemas de Símbolos Perceptuales de Lawrence Barsalou. (shrink)
In this paper I expose and analyze the berkeleian proposal of notional knowledge. Among other things, this proposal represents Berkeley´s attempt to know the mind or spirit, that is, the thinking and active thing that, by its own activity, results unrepresentable as idea. As such knowledge is already mentioned in the Philosophical Commentaries I will refer to them to know the origins of that proposal. However, as notional knowledge appears in more detail in later works I will make use especially (...) the Treatise to tackle the complex notional doctrine. -/- . (shrink)
Preface -/- 1. 'Anima' and 'res cogitans'. The Cartesian idea of nature and mind as a residual concept. The first chapter discusses the genesis of the concept of mind in Cartesian Philosophy; the claim is advanced that 'res cogitans' is a residual concept, defined on the basis of a previous definition of matter as 'res extensa'. As a consequence, a contradictory ontology of the mind is Descartes's poisoned bequest to the following tradition of 'scientific' psychology. -/- 2. The Mathematical method (...) in the theory of the mind and the passions. The second chapter discusses the first ambitious attempt in this direction, namely Spinoza's theory of the mind and the passions in Ethics II and III; the topics treated are Spinoza's program of a mathematical science of the mind and his transformation of the genre 'treatise of the passions' into a would-be mathematical science of the motions of the soul. -/- 3. The definition of affections and the impossibility of reducing inadequate to adequate ideas. The third chapter discusses a tension in Spinoza project of a theory of the passions, namely a need to reduce concepts to pure mathematical definitions and the opposite need to keep inadequate imaginative definitions of the phenomena under scrutiny, namely the passions, in order to avoid a radical reduction of the subject-matter to the only truly existing reality (the world order in itself) that would leave the theory without any subject-matter at all. -/- 4. 'Conatus', 'potentia', 'vis'. Concepts of force in the theory of passions and the impossibility of eliminating occult qualities. The fourth chapter discusses the troubles arising in the original project deriving from difficulties in the treatment of dynamic concepts, such as the notion of conatus, which were an unavoidable consequence of Cartesian assumptions. -/- 5. Overview and discussion. Chapter five tries to draw a general discussion, focusing on the tension between the Cartesian assumptions and the actual practice in the new post-Galilean sciences, including attempts at giving birth to psychology or science of man. -/- Appendices I. The mind-body problem in Spinoza. II. Concepts of force in Newton and Spinoza. III. Materialist readings of Newton and Spinoza. IV. On the opposition of materialism and spiritualism and Geisteswissenschaften and natural science. V. Conatus, the idea of liberation and social theory in Spinoza. (shrink)
Friedrich Nietzsche's criticism towards the substance-concept «I» plays an important role in his late thought, and can be properly understood by making reference to the 19th century debate on the scientific psychology. Friedrich Lange and Ernst Mach gave an important contribution to that debate. Both of them developed the ideas of Gustav Fechner, and thought about a «psychology without a soul», i.e. an investigation that gives up with the old metaphysics of substance in dealing with the mind-body problem. In this (...) paper I shall deal with Lange's and Mach's view of the I/soul, in order to shed some light on Nietzsche's rejection of the «I» in philosophy. (shrink)
This work deals with the discussion about the characterization of the emotions that maintain the so called "cognitive current" and "perceptive current". These have been canonically conceived as incompatible ways of accounting for the same phenomenon: the basic emotions. In this paper I intend to examine the disagreement between these opposing approaches, seeking to clarify the scope of this disagreement, and to elucidate the key concepts on this discussion. The article reviews the structure that is detailed below. Each of the (...) positions in question is presented first. To this end, both philosophy and psychology have been considered: R. Solomon and R. Lazarus (cognitive perspective) and W. James and R. Zajonc (perceptive perspective). In this section (The approaches in dispute) I will try to offer a conceptual reconstruction of each of the positions, establishing the fundamental theses of each of them, to be examined in depth in the next section (Cognition and perception) in order to show that the disagreement itself and the difficulties that emerge from it, to provide an adequate characterization of the phenomenon, that can be overcome or at least, must be reconceptualized. In this sense, I will offer two ways in which this reconceptualization can be given: in a dissolute sense, by showing that the discrepancy between the two perspectives are based on false dichotomies, turning the discussion into a terminological disagreement. Second, I will outline a mode of resolution in the proper sense along with consideration. (The meaning of "emotion": are there unconscious emotions?). (shrink)
Proporciono un estudio crítico de algunos de los principales hallazgos de Wittgenstein y Searle sobre la estructura lógica de la intencionalidad (mente, lenguaje, comportamiento), tomando como punto de partida el descubrimiento fundamental de Wittgenstein, que todos los problemas verdaderamente ' filosóficos ' son los mismos — confusiones sobre cómo usar el lenguaje en un contexto particular, y por lo que todas las soluciones son las mismas — observando cómo se puede utilizar el lenguaje en el contexto en cuestión para que (...) sus condiciones de verdad (condiciones de satisfacción o COS) sean claras. El problema básico es que uno puede decir cualquier cosa menos que uno no puede significar (el estado claro COS para) cualquier enunciado arbitrario y significado es solamente posible en un contexto muy específico. Empiezo con ' On Certainty ' (‘En Certeza’) y continúo el análisis de los escritos recientes por y sobre ellos desde la perspectiva de los dos sistemas de pensamiento, empleando un nuevo cuadro de intencionalidad y nueva nomenclatura de sistemas duales. Aquellos que deseen un marco completo hasta la fecha para el comportamiento humano de la moderna dos sistemas punta de vista puede consultar mi libro 'La estructura lógica de la filosofía, la psicología, la mente y lenguaje En Ludwig Wittgenstein y John Searle ' 2nd ED (2019). Los interesados en más de mis escritos pueden ver 'Monos parlantes--filosofía, psicología, ciencia, religión y política en un planeta condenado--artículos y reseñas 2006-2019 3rd ED (2019) y delirios utópicos suicidas en el 21St Century 4TH Ed (2019) y otras. (shrink)
The aim of this work is to expose the Cartesian Model of the mind in Cognitive Archaeology and point out how it relates to the questions behind this branch of archaeology. Based on this, some of the premises assumed by the Cartesian Model and how they influence the formulation to the problem of epistemological relativism in the branch are explained. According to this problem, since there is no way to evaluate hypotheses in this research area, the investigations on cognition, based (...) on archaeological evidence, are unjustified. Finally, some alternative approaches to the Cartesian Model and its research agendas are summarized. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.