There is widespread excitement in the literature about the method of arbitrary functions: many take it to show that it is from the dynamics of systems that the objectivity of probabilities emerge. In this paper, I differentiate three ways in which a probability function might be objective, and I argue that the method of arbitrary functions cannot help us show that dynamics objectivise probabilities in any of these senses.
Carl Hempel (1965) argued that probabilistic hypotheses are limited in what they can explain. He contended that a hypothesis cannot explain why E is true if the hypothesis says that E has a probability less than 0.5. Wesley Salmon (1971, 1984, 1990, 1998) and Richard Jeffrey (1969) argued to the contrary, contending that P can explain why E is true even when P says that E’s probability is very low. This debate concerned noncontrastive explananda. Here, a view of (...) contrastive causal explanation is described and defended. It provides a new limit on what probabilistic hypotheses can explain; the limitation is that P cannot explain why E is true rather than A if P assign E a probability that is less than or equal to the probability that P assigns to A. The view entails that a true deterministic theory and a true probabilistic theory that apply to the same explanandum partition are such that the deterministic theory explains all the true contrastive propositions constructable from that partition, whereas the probabilistic theory often fails to do so. (shrink)
I present an account of deterministic chance which builds upon the physico-mathematical approach to theorizing about deterministic chance known as 'the method of arbitrary functions'. This approach promisingly yields deterministic probabilities which align with what we take the chances to be---it tells us that there is approximately a 1/2 probability of a spun roulette wheel stopping on black, and approximately a 1/2 probability of a flipped coin landing heads up---but it requires some probabilistic materials to (...) work with. I contend that the right probabilistic materials are found in reasonable initial credence distributions. I note that, with some normative assumptions, the resulting account entails that deterministic chances obey a variant of Lewis's 'principal principle'. I additionally argue that deterministic chances, so understood, are capable of explaining long-run frequencies. (shrink)
In this text the ancient philosophical question of determinism (“Does every event have a cause ?”) will be re-examined. In the philosophy of science and physics communities the orthodox position states that the physical world is indeterministic: quantum events would have no causes but happen by irreducible chance. Arguably the clearest theorem that leads to this conclusion is Bell’s theorem. The commonly accepted ‘solution’ to the theorem is ‘indeterminism’, in agreement with the Copenhagen interpretation. Here it is recalled that indeterminism (...) is not really a physical but rather a philosophical hypothesis, and that it has counterintuitive and far-reaching implications. At the same time another solution to Bell’s theorem exists, often termed ‘superdeterminism’ or ‘total determinism’. Superdeterminism appears to be a philosophical position that is centuries and probably millennia old: it is for instance Spinoza’s determinism. If Bell’s theorem has both indeterministic and deterministic solutions, choosing between determinism and indeterminism is a philosophical question, not a matter of physical experimentation, as is widely believed. If it is impossible to use physics for deciding between both positions, it is legitimate to ask which philosophical theories are of help. Here it is argued that probability theory – more precisely the interpretation of probability – is instrumental for advancing the debate. It appears that the hypothesis of determinism allows to answer a series of precise questions from probability theory, while indeterminism remains silent for these questions. From this point of view determinism appears to be the more reasonable assumption, after all. (shrink)
Evolutionary theory (ET) is teeming with probabilities. Probabilities exist at all levels: the level of mutation, the level of microevolution, and the level of macroevolution. This uncontroversial claim raises a number of contentious issues. For example, is the evolutionary process (as opposed to the theory) indeterministic, or is it deterministic? Philosophers of biology have taken different sides on this issue. Millstein (1997) has argued that we are not currently able answer this question, and that even scientific realists ought to (...) remain agnostic concerning the determinism or indeterminism of evolutionary processes. If this argument is correct, it suggests that, whatever we take probabilities in ET to be, they must be consistent with either determinism or indeterminism. This raises some interesting philosophical questions: How should we understand the probabilities used in ET? In other words, what is meant by saying that a certain evolutionary change is more or less probable? Which interpretation of probability is the most appropriate for ET? I argue that the probabilities used in ET are objective in a realist sense, if not in an indeterministic sense. Furthermore, there are a number of interpretations of probability that are objective and would be consistent with ET under determinism or indeterminism. However, I argue that evolutionary probabilities are best understood as propensities of population-level kinds. (shrink)
I sketch a new constraint on chance, which connects chance ascriptions closely with ascriptions of ability, and more specifically with 'CAN'-claims. This connection between chance and ability has some claim to be a platitude; moreover, it exposes the debate over deterministic chance to the extensive literature on (in)compatibilism about free will. The upshot is that a prima facie case for the tenability of deterministic chance can be made. But the main thrust of the paper is to draw attention (...) to the connection between the truth conditions of sentences involving 'CAN' and 'CHANCE', and argue for the context sensitivity of each term. Awareness of this context sensitivity has consequences for the evaluation of particular philosophical arguments for (in) compatibilism when they are presented in particular contexts. (shrink)
A non-relativistic quantum mechanical theory is proposed that describes the universe as a continuum of worlds whose mutual interference gives rise to quantum phenomena. A logical framework is introduced to properly deal with propositions about objects in a multiplicity of worlds. In this logical framework, the continuum of worlds is treated in analogy to the continuum of time points; both “time” and “world” are considered as mutually independent modes of existence. The theory combines elements of Bohmian mechanics and of Everett’s (...) many-worlds interpretation; it has a clear ontology and a set of precisely defined postulates from where the predictions of standard quantum mechanics can be derived. Probability as given by the Born rule emerges as a consequence of insufficient knowledge of observers about which world it is that they live in. The theory describes a continuum of worlds rather than a single world or a discrete set of worlds, so it is similar in spirit to many-worlds interpretations based on Everett’s approach, without being actually reducible to these. In particular, there is no splitting of worlds, which is a typical feature of Everett-type theories. Altogether, the theory explains (1) the subjective occurrence of probabilities, (2) their quantitative value as given by the Born rule, and (3) the apparently random “collapse of the wavefunction” caused by the measurement, while still being an objectively deterministic theory. (shrink)
We offer a new argument for the claim that there can be non-degenerate objective chance (“true randomness”) in a deterministic world. Using a formal model of the relationship between different levels of description of a system, we show how objective chance at a higher level can coexist with its absence at a lower level. Unlike previous arguments for the level-specificity of chance, our argument shows, in a precise sense, that higher-level chance does not collapse into epistemic probability, despite (...) higher-level properties supervening on lower-level ones. We show that the distinction between objective chance and epistemic probability can be drawn, and operationalized, at every level of description. There is, therefore, not a single distinction between objective and epistemic probability, but a family of such distinctions. (shrink)
The article is a plea for ethicists to regard probability as one of their most important concerns. It outlines a series of topics of central importance in ethical theory in which probability is implicated, often in a surprisingly deep way, and lists a number of open problems. Topics covered include: interpretations of probability in ethical contexts; the evaluative and normative significance of risk or uncertainty; uses and abuses of expected utility theory; veils of ignorance; Harsanyi’s aggregation theorem; (...) population size problems; equality; fairness; giving priority to the worse off; continuity; incommensurability; nonexpected utility theory; evaluative measurement; aggregation; causal and evidential decision theory; act consequentialism; rule consequentialism; and deontology. (shrink)
Why do we value higher-level scientific explanations if, ultimately, the world is physical? An attractive answer is that physical explanations often cite facts that don't make a difference to the event in question. I claim that to properly develop this view we need to commit to a type of deterministic chance. And in doing so, we see the theoretical utility of deterministic chance, giving us reason to accept a package of views including deterministic chance.
This paper motivates and develops a novel semantic framework for deontic modals. The framework is designed to shed light on two things: the relationship between deontic modals and substantive theories of practical rationality and the interaction of deontic modals with conditionals, epistemic modals and probability operators. I argue that, in order to model inferential connections between deontic modals and probability operators, we need more structure than is provided by classical intensional theories. In particular, we need probabilistic structure that (...) interacts directly with the compositional semantics of deontic modals. However, I reject theories that provide this probabilistic structure by claiming that the semantics of deontic modals is linked to the Bayesian notion of expectation. I offer a probabilistic premise semantics that explains all the data that create trouble for the rival theories. (shrink)
This book explores a question central to philosophy--namely, what does it take for a belief to be justified or rational? According to a widespread view, whether one has justification for believing a proposition is determined by how probable that proposition is, given one's evidence. In this book this view is rejected and replaced with another: in order for one to have justification for believing a proposition, one's evidence must normically support it--roughly, one's evidence must make the falsity of that proposition (...) abnormal in the sense of calling for special, independent explanation. This conception of justification bears upon a range of topics in epistemology and beyond. Ultimately, this way of looking at justification guides us to a new, unfamiliar picture of how we should respond to our evidence and manage our own fallibility. This picture is developed here. (shrink)
Multialgebras (or hyperalgebras or non-deterministic algebras) have been much studied in mathematics and in computer science. In 2016 Carnielli and Coniglio introduced a class of multialgebras called swap structures, as a semantic framework for dealing with several Logics of Formal Inconsistency (or LFIs) that cannot be semantically characterized by a single finite matrix. In particular, these LFIs are not algebraizable by the standard tools of abstract algebraic logic. In this paper, the first steps towards a theory of non-deterministic (...) algebraization of logics by swap structures are given. Specifically, a formal study of swap structures for LFIs is developed, by adapting concepts of universal algebra to multialgebras in a suitable way. A decomposition theorem similar to Birkhoff's representation theorem is obtained for each class of swap structures. Moreover, when applied to the 3-valued algebraizable logics J3 and Ciore, their classes of algebraic models are retrieved, and the swap structures semantics become twist structures semantics (as independently introduced by M. Fidel and D. Vakarelov). This fact, together with the existence of a functor from the category of Boolean algebras to the category of swap structures for each LFI (which is closely connected with Kalman's functor), suggests that swap structures can be seen as non-deterministic twist structures. This opens new avenues for dealing with non-algebraizable logics by the more general methodology of multialgebraic semantics. (shrink)
In this study we investigate the influence of reason-relation readings of indicative conditionals and ‘and’/‘but’/‘therefore’ sentences on various cognitive assessments. According to the Frege-Grice tradition, a dissociation is expected. Specifically, differences in the reason-relation reading of these sentences should affect participants’ evaluations of their acceptability but not of their truth value. In two experiments we tested this assumption by introducing a relevance manipulation into the truth-table task as well as in other tasks assessing the participants’ acceptability and probability evaluations. (...) Across the two experiments a strong dissociation was found. The reason-relation reading of all four sentences strongly affected their probability and acceptability evaluations, but hardly affected their respective truth evaluations. Implications of this result for recent work on indicative conditionals are discussed. (shrink)
In finite probability theory, events are subsets S⊆U of the outcome set. Subsets can be represented by 1-dimensional column vectors. By extending the representation of events to two dimensional matrices, we can introduce "superposition events." Probabilities are introduced for classical events, superposition events, and their mixtures by using density matrices. Then probabilities for experiments or `measurements' of all these events can be determined in a manner exactly like in quantum mechanics (QM) using density matrices. Moreover the transformation of the (...) density matrices induced by the experiments or `measurements' is the Lüders mixture operation as in QM. And finally by moving the machinery into the n-dimensional vector space over ℤ₂, different basis sets become different outcome sets. That `non-commutative' extension of finite probability theory yields the pedagogical model of quantum mechanics over ℤ₂ that can model many characteristic non-classical results of QM. (shrink)
We provide a 'verisimilitudinarian' analysis of the well-known Linda paradox or conjunction fallacy, i.e., the fact that most people judge the probability of the conjunctive statement "Linda is a bank teller and is active in the feminist movement" (B & F) as more probable than the isolated statement "Linda is a bank teller" (B), contrary to an uncontroversial principle of probability theory. The basic idea is that experimental participants may judge B & F a better hypothesis about Linda (...) as compared to B because they evaluate B & F as more verisimilar than B. In fact, the hypothesis "feminist bank teller", while less likely to be true than "bank teller", may well be a better approximation to the truth about Linda. (shrink)
The notion of comparative probability defined in Bayesian subjectivist theory stems from an intuitive idea that, for a given pair of events, one event may be considered “more probable” than the other. Yet it is conceivable that there are cases where it is indeterminate as to which event is more probable, due to, e.g., lack of robust statistical information. We take that these cases involve indeterminate comparative probabilities. This paper provides a Savage-style decision-theoretic foundation for indeterminate comparative probabilities.
This paper defends David Hume's "Of Miracles" from John Earman's (2000) Bayesian attack by showing that Earman misrepresents Hume's argument against believing in miracles and misunderstands Hume's epistemology of probable belief. It argues, moreover, that Hume's account of evidence is fundamentally non-mathematical and thus cannot be properly represented in a Bayesian framework. Hume's account of probability is show to be consistent with a long and laudable tradition of evidential reasoning going back to ancient Roman law.
Many philosophers argue that Keynes’s concept of the “weight of arguments” is an important aspect of argument appraisal. The weight of an argument is the quantity of relevant evidence cited in the premises. However, this dimension of argumentation does not have a received method for formalisation. Kyburg has suggested a measure of weight that uses the degree of imprecision in his system of “Evidential Probability” to quantify weight. I develop and defend this approach to measuring weight. I illustrate the (...) usefulness of this measure by employing it to develop an answer to Popper’s Paradox of Ideal Evidence. (shrink)
A probability distribution is regular if no possible event is assigned probability zero. While some hold that probabilities should always be regular, three counter-arguments have been posed based on examples where, if regularity holds, then perfectly similar events must have different probabilities. Howson (2017) and Benci et al. (2016) have raised technical objections to these symmetry arguments, but we see here that their objections fail. Howson says that Williamson’s (2007) “isomorphic” events are not in fact isomorphic, but Howson (...) is speaking of set-theoretic representations of events in a probability model. While those sets are not isomorphic, Williamson’s physical events are, in the relevant sense. Benci et al. claim that all three arguments rest on a conflation of different models, but they do not. They are founded on the premise that similar events should have the same probability in the same model, or in one case, on the assumption that a single rotation-invariant distribution is possible. Having failed to refute the symmetry arguments on such technical grounds, one could deny their implicit premises, which is a heavy cost, or adopt varying degrees of instrumentalism or pluralism about regularity, but that would not serve the project of accurately modelling chances. (shrink)
When probability discounting (or probability weighting), one multiplies the value of an outcome by one's subjective probability that the outcome will obtain in decision-making. The broader import of defending probability discounting is to help justify cost-benefit analyses in contexts such as climate change. This chapter defends probability discounting under risk both negatively, from arguments by Simon Caney (2008, 2009), and with a new positive argument. First, in responding to Caney, I argue that small costs and (...) benefits need to be evaluated, and that viewing practices at the social level is too coarse-grained. Second, I argue for probability discounting, using a distinction between causal responsibility and moral responsibility. Moral responsibility can be cashed out in terms of blameworthiness and praiseworthiness, while causal responsibility obtains in full for any effect which is part of a causal chain linked to one's act. With this distinction in hand, unlike causal responsibility, moral responsibility can be seen as coming in degrees. My argument is, given that we can limit our deliberation and consideration to that which we are morally responsible for and that our moral responsibility for outcomes is limited by our subjective probabilities, our subjective probabilities can ground probability discounting. (shrink)
Agent-causal libertarians maintain we are irreducible agents who, by acting, settle matters that aren’t already settled. This implies that the neural matters underlying the exercise of our agency don’t conform to deterministic laws, but it does not appear to exclude the possibility that they conform to statistical laws. However, Pereboom (Noûs 29:21–45, 1995; Living without free will, Cambridge University Press, Cambridge, 2001; in: Nadelhoffer (ed) The future of punishment, Oxford University Press, New York, 2013) has argued that, if these (...) neural matters conform to either statistical or deterministic physical laws, the complete conformity of an irreducible agent’s settling of matters with what should be expected given the applicable laws would involve coincidences too wild to be credible. Here, I show that Pereboom’s argument depends on the assumption that, at times, the antecedent probability certain behavior will occur applies in each of a number of occasions, and is incapable of changing as a result of what one does from one occasion to the next. There is, however, no evidence this assumption is true. The upshot is the wild coincidence objection is an empirical objection lacking empirical support. Thus, it isn’t a compelling argument against agent-causal libertarianism. (shrink)
The major competing statistical paradigms share a common remarkable but unremarked thread: in many of their inferential applications, different probability interpretations are combined. How this plays out in different theories of inference depends on the type of question asked. We distinguish four question types: confirmation, evidence, decision, and prediction. We show that Bayesian confirmation theory mixes what are intuitively “subjective” and “objective” interpretations of probability, whereas the likelihood-based account of evidence melds three conceptions of what constitutes an “objective” (...)probability. (shrink)
This paper is a response to Tyler Wunder’s ‘The modality of theism and probabilistic natural theology: a tension in Alvin Plantinga's philosophy’ (this journal). In his article, Wunder argues that if the proponent of the Evolutionary Argument Against Naturalism (EAAN) holds theism to be non-contingent and frames the argument in terms of objective probability, that the EAAN is either unsound or theism is necessarily false. I argue that a modest revision of the EAAN renders Wunder’s objection irrelevant, and that (...) this revision actually widens the scope of the argument. (shrink)
A definition of causation as probability-raising is threatened by two kinds of counterexample: first, when a cause lowers the probability of its effect; and second, when the probability of an effect is raised by a non-cause. In this paper, I present an account that deals successfully with problem cases of both these kinds. In doing so, I also explore some novel implications of incorporating into the metaphysical investigation considerations of causal psychology.
We generalize the Kolmogorov axioms for probability calculus to obtain conditions defining, for any given logic, a class of probability functions relative to that logic, coinciding with the standard probability functions in the special case of classical logic but allowing consideration of other classes of "essentially Kolmogorovian" probability functions relative to other logics. We take a broad view of the Bayesian approach as dictating inter alia that from the perspective of a given logic, rational degrees of (...) belief are those representable by probability functions from the class appropriate to that logic. Classical Bayesianism, which fixes the logic as classical logic, is only one version of this general approach. Another, which we call Intuitionistic Bayesianism, selects intuitionistic logic as the preferred logic and the associated class of probability functions as the right class of candidate representions of epistemic states (rational allocations of degrees of belief). Various objections to classical Bayesianism are, we argue, best met by passing to intuitionistic Bayesianism—in which the probability functions are taken relative to intuitionistic logic—rather than by adopting a radically non-Kolmogorovian, for example, nonadditive, conception of (or substitute for) probability functions, in spite of the popularity of the latter response among those who have raised these objections. The interest of intuitionistic Bayesianism is further enhanced by the availability of a Dutch Book argument justifying the selection of intuitionistic probability functions as guides to rational betting behavior when due consideration is paid to the fact that bets are settled only when/if the outcome bet on becomes known. (shrink)
There is a plethora of confirmation measures in the literature. Zalabardo considers four such measures: PD, PR, LD, and LR. He argues for LR and against each of PD, PR, and LD. First, he argues that PR is the better of the two probability measures. Next, he argues that LR is the better of the two likelihood measures. Finally, he argues that LR is superior to PR. I set aside LD and focus on the trio of PD, PR, and (...) LR. The question I address is whether Zalabardo succeeds in showing that LR is superior to each of PD and PR. I argue that the answer is negative. I also argue, though, that measures such as PD and PR, on one hand, and measures such as LR, on the other hand, are naturally understood as explications of distinct senses of confirmation. (shrink)
How were reliable predictions made before Pascal and Fermat's discovery of the mathematics of probability in 1654? What methods in law, science, commerce, philosophy, and logic helped us to get at the truth in cases where certainty was not attainable? The book examines how judges, witch inquisitors, and juries evaluated evidence; how scientists weighed reasons for and against scientific theories; and how merchants counted shipwrecks to determine insurance rates. Also included are the problem of induction before Hume, design arguments (...) for the existence of God, and theories on how to evaluate scientific and historical hypotheses. It is explained how Pascal and Fermat's work on chance arose out of legal thought on aleatory contracts. The book interprets pre-Pascalian unquantified probability in a generally objective Bayesian or logical probabilist sense. (shrink)
Modern scientific cosmology pushes the boundaries of knowledge and the knowable. This is prompting questions on the nature of scientific knowledge. A central issue is what defines a 'good' model. When addressing global properties of the Universe or its initial state this becomes a particularly pressing issue. How to assess the probability of the Universe as a whole is empirically ambiguous, since we can examine only part of a single realisation of the system under investigation: at some point, data (...) will run out. We review the basics of applying Bayesian statistical explanation to the Universe as a whole. We argue that a conventional Bayesian approach to model inference generally fails in such circumstances, and cannot resolve, e.g., the so-called 'measure problem' in inflationary cosmology. Implicit and non-empirical valuations inevitably enter model assessment in these cases. This undermines the possibility to perform Bayesian model comparison. One must therefore either stay silent, or pursue a more general form of systematic and rational model assessment. We outline a generalised axiological Bayesian model inference framework, based on mathematical lattices. This extends inference based on empirical data (evidence) to additionally consider the properties of model structure (elegance) and model possibility space (beneficence). We propose this as a natural and theoretically well-motivated framework for introducing an explicit, rational approach to theoretical model prejudice and inference beyond data. (shrink)
Leibniz’s account of probability has come into better focus over the past decades. However, less attention has been paid to a certain domain of application of that account, that is, the application of it to the moral or ethical domain—the sphere of action, choice and practice. This is significant, as Leibniz had some things to say about applying probability theory to the moral domain, and thought the matter quite relevant. Leibniz’s work in this area is conducted at a (...) high level of abstraction. It establishes a proof of concept, rather than concrete guidelines for how to apply calculations to specific cases. Still, this highly abstract material does allow us to begin to construct a framework for thinking about Leibniz’s approach to the ethical side of probability. (shrink)
NOTE: This paper is a reworking of some aspects of an earlier paper – ‘What else justification could be’ and also an early draft of chapter 2 of Between Probability and Certainty. I'm leaving it online as it has a couple of citations and there is some material here which didn't make it into the book (and which I may yet try to develop elsewhere). My concern in this paper is with a certain, pervasive picture of epistemic justification. On (...) this picture, acquiring justification for believing something is essentially a matter of minimising one’s risk of error – so one is justified in believing something just in case it is sufficiently likely, given one’s evidence, to be true. This view is motivated by an admittedly natural thought: If we want to be fallibilists about justification then we shouldn’t demand that something be certain – that we completely eliminate error risk – before we can be justified in believing it. But if justification does not require the complete elimination of error risk, then what could it possibly require if not its minimisation? If justification does not require epistemic certainty then what could it possibly require if not epistemic likelihood? When all is said and done, I’m not sure that I can offer satisfactory answers to these questions – but I will attempt to trace out some possible answers here. The alternative picture that I’ll outline makes use of a notion of normalcy that I take to be irreducible to notions of statistical frequency or predominance. (shrink)
Dutch Book arguments have been presented for static belief systems and for belief change by conditionalization. An argument is given here that a rule for belief change which under certain conditions violates probability kinematics will leave the agent open to a Dutch Book.
In the following we will investigate whether von Mises’ frequency interpretation of probability can be modified to make it philosophically acceptable. We will reject certain elements of von Mises’ theory, but retain others. In the interpretation we propose we do not use von Mises’ often criticized ‘infinite collectives’ but we retain two essential claims of his interpretation, stating that probability can only be defined for events that can be repeated in similar conditions, and that exhibit frequency stabilization. The (...) central idea of the present article is that the mentioned ‘conditions’ should be well-defined and ‘partitioned’. More precisely, we will divide probabilistic systems into object, initializing, and probing subsystem, and show that such partitioning allows to solve problems. Moreover we will argue that a key idea of the Copenhagen interpretation of quantum mechanics (the determinant role of the observing system) can be seen as deriving from an analytic definition of probability as frequency. Thus a secondary aim of the article is to illustrate the virtues of analytic definition of concepts, consisting of making explicit what is implicit. (shrink)
Bayesian confirmation theory is rife with confirmation measures. Zalabardo focuses on the probability difference measure, the probability ratio measure, the likelihood difference measure, and the likelihood ratio measure. He argues that the likelihood ratio measure is adequate, but each of the other three measures is not. He argues for this by setting out three adequacy conditions on confirmation measures and arguing in effect that all of them are met by the likelihood ratio measure but not by any of (...) the other three measures. Glass and McCartney, hereafter “G&M,” accept the conclusion of Zalabardo’s argument along with each of the premises in it. They nonetheless try to improve on Zalabardo’s argument by replacing his third adequacy condition with a weaker condition. They do this because of a worry to the effect that Zalabardo’s third adequacy condition runs counter to the idea behind his first adequacy condition. G&M have in mind confirmation in the sense of increase in probability: the degree to which E confirms H is a matter of the degree to which E increases H’s probability. I call this sense of confirmation “IP.” I set out four ways of precisifying IP. I call them “IP1,” “IP2,” “IP3,” and “IP4.” Each of them is based on the assumption that the degree to which E increases H’s probability is a matter of the distance between p and a certain other probability involving H. I then evaluate G&M’s argument in light of them. (shrink)
This paper argues that the technical notion of conditional probability, as given by the ratio analysis, is unsuitable for dealing with our pretheoretical and intuitive understanding of both conditionality and probability. This is an ontological account of conditionals that include an irreducible dispositional connection between the antecedent and consequent conditions and where the conditional has to be treated as an indivisible whole rather than compositional. The relevant type of conditionality is found in some well-defined group of conditional statements. (...) As an alternative, therefore, we briefly offer grounds for what we would call an ontological reading: for both conditionality and conditional probability in general. It is not offered as a fully developed theory of conditionality but can be used, we claim, to explain why calculations according to the RATIO scheme does not coincide with our intuitive notion of conditional probability. What it shows us is that for an understanding of the whole range of conditionals we will need what John Heil (2003), in response to Quine (1953), calls an ontological point of view. (shrink)
There are many scientific and everyday cases where each of Pr and Pr is high and it seems that Pr is high. But high probability is not transitive and so it might be in such cases that each of Pr and Pr is high and in fact Pr is not high. There is no issue in the special case where the following condition, which I call “C1”, holds: H 1 entails H 2. This condition is sufficient for transitivity in (...) high probability. But many of the scientific and everyday cases referred to above are cases where it is not the case that H 1 entails H 2. I consider whether there are additional conditions sufficient for transitivity in high probability. I consider three candidate conditions. I call them “C2”, “C3”, and “C2&3”. I argue that C2&3, but neither C2 nor C3, is sufficient for transitivity in high probability. I then set out some further results and relate the discussion to the Bayesian requirement of coherence. (shrink)
Karl Popper discovered in 1938 that the unconditional probability of a conditional of the form ‘If A, then B’ normally exceeds the conditional probability of B given A, provided that ‘If A, then B’ is taken to mean the same as ‘Not (A and not B)’. So it was clear (but presumably only to him at that time) that the conditional probability of B given A cannot be reduced to the unconditional probability of the material conditional (...) ‘If A, then B’. I describe how this insight was developed in Popper’s writings and I add to this historical study a logical one, in which I compare laws of excess in Kolmogorov probability theory with laws of excess in Popper probability theory. (shrink)
The basic idea of quantum mechanics is that the property of any system can be in a state of superposition of various possibilities. This state of superposition is also known as wave function and it evolves linearly with time in a deterministic way in accordance with the Schrodinger equation. However, when a measurement is carried out on the system to determine the value of that property, the system instantaneously transforms to one of the eigen states and thus we get (...) only a single value as outcome of the measurement. Quantum measurement problem seeks to find the cause and exact mechanism governing this transformation. In an attempt to solve the above problem, in this paper, we will first define what the wave function represents in real world and will identify the root cause behind the stochastic nature of events. Then, we will develop a model to explain the mechanism of collapse of the quantum mechanical wave function in response to a measurement. In the process of development of model, we will explain Schrodinger cat paradox and will show how Born’s rule for probability becomes a natural consequence of measurement process. (shrink)
This dissertation is a contribution to formal and computational philosophy. -/- In the first part, we show that by exploiting the parallels between large, yet finite lotteries on the one hand and countably infinite lotteries on the other, we gain insights in the foundations of probability theory as well as in epistemology. Case 1: Infinite lotteries. We discuss how the concept of a fair finite lottery can best be extended to denumerably infinite lotteries. The solution boils down to the (...) introduction of infinitesimal probability values, which can be achieved using non-standard analysis. Our solution can be generalized to uncountable sample spaces, giving rise to a Non-Archimedean Probability (NAP) theory. Case 2: Large but finite lotteries. We propose application of the language of relative analysis (a type of non-standard analysis) to formulate a new model for rational belief, called Stratified Belief. This contextualist model seems well-suited to deal with a concept of beliefs based on probabilities ‘sufficiently close to unity’. -/- The second part presents a case study in social epistemology. We model a group of agents who update their opinions by averaging the opinions of other agents. Our main goal is to calculate the probability for an agent to end up in an inconsistent belief state due to updating. To that end, an analytical expression is given and evaluated numerically, both exactly and using statistical sampling. The probability of ending up in an inconsistent belief state turns out to be always smaller than 2%. (shrink)
Why microscopic objects exhibit wave properties (are delocalized), but macroscopic do not (are localized)? Traditional quantum mechanics attributes wave properties to all objects. When complemented with a deterministic collapse model (Quantum Stud.: Math. Found. 3, 279 (2016)) quantum mechanics can dissolve the discrepancy. Collapse in this model means contraction and occurs when the object gets in touch with other objects and satisfies a certain criterion. One single collapse usually does not suffice for localization. But the object rapidly gets in (...) touch with other objects in a short time, leading to rapid localization. Decoherence is not involved. (shrink)
Epistemic closure under known implication is the principle that knowledge of "p" and knowledge of "p implies q", together, imply knowledge of "q". This principle is intuitive, yet several putative counterexamples have been formulated against it. This paper addresses the question, why is epistemic closure both intuitive and prone to counterexamples? In particular, the paper examines whether probability theory can offer an answer to this question based on four strategies. The first probability-based strategy rests on the accumulation of (...) risks. The problem with this strategy is that risk accumulation cannot accommodate certain counterexamples to epistemic closure. The second strategy is based on the idea of evidential support, that is, a piece of evidence supports a proposition whenever it increases the probability of the proposition. This strategy makes progress and can accommodate certain putative counterexamples to closure. However, this strategy also gives rise to a number of counterintuitive results. Finally, there are two broadly probabilistic strategies, one based on the idea of resilient probability and the other on the idea of assumptions that are taken for granted. These strategies are promising but are prone to some of the shortcomings of the second strategy. All in all, I conclude that each strategy fails. Probability theory, then, is unlikely to offer the account we need. (shrink)
This thesis focuses on expressively rich languages that can formalise talk about probability. These languages have sentences that say something about probabilities of probabilities, but also sentences that say something about the probability of themselves. For example: (π): “The probability of the sentence labelled π is not greater than 1/2.” Such sentences lead to philosophical and technical challenges; but can be useful. For example they bear a close connection to situations where ones confidence in something can affect (...) whether it is the case or not. The motivating interpretation of probability as an agent's degrees of belief will be focused on throughout the thesis. -/- This thesis aims to answer two questions relevant to such frameworks, which correspond to the two parts of the thesis: “How can one develop a formal semantics for this framework?” and “What rational constraints are there on an agent once such expressive frameworks are considered?”. (shrink)
Contrary to Bell’s theorem it is demonstrated that with the use of classical probability theory the quantum correlation can be approximated. Hence, one may not conclude from experiment that all local hidden variable theories are ruled out by a violation of inequality result.
This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or "toy" model of quantum mechanics over sets (QM/sets). There are two parts. The notion of an "event" is reinterpreted from being an epistemological state of indefiniteness to being an objective state of indefiniteness. And the mathematical framework of finite probability theory is recast as the quantum probability calculus for QM/sets. The (...) point is not to clarify finite probability theory but to elucidate quantum mechanics itself by seeing some of its quantum features in a classical setting. (shrink)
Probability plays a crucial role regarding the understanding of the relationship which exists between mathematics and physics. It will be the point of departure of this brief reflection concerning this subject, as well as about the placement of Poincaré’s thought in the scenario offered by some contemporary perspectives.
It is argued that two observers with the same information may rightly disagree about the probability of an event that they are both observing. This is a correct way of describing the view of a lottery outcome from the perspective of a winner and from the perspective of an observer not connected with the winner - the outcome is improbable for the winner and not improbable for the unconnected observer. This claim is both argued for and extended by developing (...) a case in which a probabilistic inference is supported for one observer and not for another, though they relevantly differ only in perspective, not in any information that they have. It is pointed out, finally, that all probabilities are in this way dependent on perspective. (shrink)
This paper argues for the importance of Chapter 33 of Book 2 of Locke's _Essay Concerning Human Understanding_ ("Of the Association of Ideas) both for Locke's own philosophy and for its subsequent reception by Hume. It is argued that in the 4th edition of the Essay of 1700, in which the chapter was added, Locke acknowledged that many beliefs, particularly in religion, are not voluntary and cannot be eradicated through reason and evidence. The author discusses the origins of the chapter (...) in Locke's own earlier writings on madness and in discussions of Enthusiasm in religion. While recognizing association of ideas as derived through custom and habit is the source of prejudice as Locke argued, Hume went on to show how it also is the basis for what Locke himself called "the highest degree of probability", namely "constant and never-failing Experience in like cases" and our belief in “steady and regular Causes.”. (shrink)
Stalnaker's Thesis about indicative conditionals is, roughly, that the probability one ought to assign to an indicative conditional equals the probability that one ought to assign to its consequent conditional on its antecedent. The thesis seems right. If you draw a card from a standard 52-card deck, how confident are you that the card is a diamond if it's a red card? To answer this, you calculate the proportion of red cards that are diamonds -- that is, you (...) calculate the probability of drawing a diamond conditional on drawing a red card. Skyrms' Thesis about counterfactual conditionals is, roughly, that the probability that one ought to assign to a counterfactual equals one's rational expectation of the chance, at a relevant past time, of its consequent conditional on its antecedent. This thesis also seems right. If you decide not to enter a 100-ticket lottery, how confident are you that you would have won had you bought a ticket? To answer this, you calculate the prior chance--that is, the chance just before your decision not to buy a ticket---of winning conditional on entering the lottery. The central project of this article is to develop a new uniform theory of conditionals that allows us to derive a version of Skyrms' Thesis from a version of Stalnaker's Thesis, together with a chance-deference norm relating rational credence to beliefs about objective chance. (shrink)
There is a trade-off between specificity and accuracy in existing models of belief. Descriptions of agents in the tripartite model, which recognizes only three doxastic attitudes—belief, disbelief, and suspension of judgment—are typically accurate, but not sufficiently specific. The orthodox Bayesian model, which requires real-valued credences, is perfectly specific, but often inaccurate: we often lack precise credences. I argue, first, that a popular attempt to fix the Bayesian model by using sets of functions is also inaccurate, since it requires us to (...) have interval-valued credences with perfectly precise endpoints. We can see this problem as analogous to the problem of higher order vagueness. Ultimately, I argue, the only way to avoid these problems is to endorse Insurmountable Unclassifiability. This principle has some surprising and radical consequences. For example, it entails that the trade-off between accuracy and specificity is in-principle unavoidable: sometimes it is simply impossible to characterize an agent’s doxastic state in a way that is both fully accurate and maximally specific. What we can do, however, is improve on both the tripartite and existing Bayesian models. I construct a new model of belief—the minimal model—that allows us to characterize agents with much greater specificity than the tripartite model, and yet which remains, unlike existing Bayesian models, perfectly accurate. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.