We reconsider the pragmatic interpretation of intuitionisticlogic [21] regarded as a logic of assertions and their justi cations and its relations with classical logic. We recall an extension of this approach to a logic dealing with assertions and obligations, related by a notion of causal implication [14, 45]. We focus on the extension to co-intuitionisticlogic, seen as a logic of hypotheses [8, 9, 13] and on polarized bi-intuitionisticlogic (...) as a logic of assertions and conjectures: looking at the S4 modal translation, we give a de nition of a system AHL of bi-intuitionisticlogic that correctly represents the duality between intuitionistic and co-intuitionisticlogic, correcting a mistake in previous work [7, 10]. A computational interpretation of cointuitionism as a distributed calculus of coroutines is then used to give an operational interpretation of subtraction.Work on linear co-intuitionism is then recalled, a linear calculus of co-intuitionistic coroutines is de ned and a probabilistic interpretation of linear co-intuitionism is given as in [9]. Also we remark that by extending the language of intuitionisticlogic we can express the notion of expectation, an assertion that in all situations the truth of p is possible and that in a logic of expectations the law of double negation holds. Similarly, extending co-intuitionisticlogic, we can express the notion of conjecture that p, de ned as a hypothesis that in some situation the truth of p is epistemically necessary. (shrink)
In his essay ‘“Wang’s Paradox”’, Crispin Wright proposes a solution to the Sorites Paradox (in particular, the form of it he calls the ‘Paradox of Sharp Boundaries’) that involves adopting intuitionisticlogic when reasoning with vague predicates. He does not give a semantic theory which accounts for the validity of intuitionisticlogic (and the invalidity of stronger logics) in that area. The present essay tentatively makes good the deficiency. By applying a theorem of Tarski, it shows (...) that intuitionisticlogic is the strongest logic that may be applied, given certain semantic assumptions about vague predicates. The essay ends with an inconclusive discussion of whether those semantic assumptions should be accepted. (shrink)
We provide a direct method for proving Craig interpolation for a range of modal and intuitionistic logics, including those containing a "converse" modality. We demonstrate this method for classical tense logic, its extensions with path axioms, and for bi-intuitionisticlogic. These logics do not have straightforward formalisations in the traditional Gentzen-style sequent calculus, but have all been shown to have cut-free nested sequent calculi. The proof of the interpolation theorem uses these calculi and is purely syntactic, (...) without resorting to embeddings, semantic arguments, or interpreted connectives external to the underlying logical language. A novel feature of our proof includes an orthogonality condition for defining duality between interpolants. (shrink)
This paper studies the relationship between labelled and nested calculi for propositional intuitionisticlogic, first-order intuitionisticlogic with non-constant domains and first-order intuitionisticlogic with constant domains. It is shown that Fitting’s nested calculi naturally arise from their corresponding labelled calculi—for each of the aforementioned logics—via the elimination of structural rules in labelled derivations. The translational correspondence between the two types of systems is leveraged to show that the nested calculi inherit proof-theoretic properties from (...) their associated labelled calculi, such as completeness, invertibility of rules and cut admissibility. Since labelled calculi are easily obtained via a logic’s semantics, the method presented in this paper can be seen as one whereby refined versions of labelled calculi (containing nested calculi as fragments) with favourable properties are derived directly from a logic’s semantics. (shrink)
This paper shows how to derive nested calculi from labelled calculi for propositional intuitionisticlogic and first-order intuitionisticlogic with constant domains, thus connecting the general results for labelled calculi with the more refined formalism of nested sequents. The extraction of nested calculi from labelled calculi obtains via considerations pertaining to the elimination of structural rules in labelled derivations. Each aspect of the extraction process is motivated and detailed, showing that each nested calculus inherits favorable proof-theoretic (...) properties from its associated labelled calculus. (shrink)
This paper studies a formalisation of intuitionisticlogic by Negri and von Plato which has general introduction and elimination rules. The philosophical importance of the system is expounded. Definitions of ‘maximal formula’, ‘segment’ and ‘maximal segment’ suitable to the system are formulated and corresponding reduction procedures for maximal formulas and permutative reduction procedures for maximal segments given. Alternatives to the main method used are also considered. It is shown that deductions in the system convert into normal form and (...) that deductions in normal form have the subformula property. (shrink)
We discuss the philosophical implications of formal results showing the con- sequences of adding the epsilon operator to intuitionistic predicate logic. These results are related to Diaconescu’s theorem, a result originating in topos theory that, translated to constructive set theory, says that the axiom of choice (an “existence principle”) implies the law of excluded middle (which purports to be a logical principle). As a logical choice principle, epsilon allows us to translate that result to a logical setting, where (...) one can get an analogue of Diaconescu’s result, but also can disentangle the roles of certain other assumptions that are hidden in mathematical presentations. It is our view that these results have not received the attention they deserve: logicians are unlikely to read a discussion because the results considered are “already well known,” while the results are simultaneously unknown to philosophers who do not specialize in what most philosophers will regard as esoteric logics. This is a problem, since these results have important implications for and promise signif i cant illumination of contem- porary debates in metaphysics. The point of this paper is to make the nature of the results clear in a way accessible to philosophers who do not specialize in logic, and in a way that makes clear their implications for contemporary philo- sophical discussions. To make the latter point, we will focus on Dummettian discussions of realism and anti-realism. Keywords: epsilon, axiom of choice, metaphysics, intuitionisticlogic, Dummett, realism, antirealism. (shrink)
In this book set theory INC# based on intuitionisticlogic with restricted modus ponens rule is proposed. It proved that intuitionisticlogic with restricted modus ponens rule can to safe Cantor naive set theory from a triviality. Similar results for paraconsistent set theories were obtained in author papers [13]-[16].
This paper contains five observations concerning the intended meaning of the intuitionistic logical constants: (1) if the explanations of this meaning are to be based on a non-decidable concept, that concept should not be that of 'proof'; (2) Kreisel's explanations using extra clauses can be significantly simplified; (3) the impredicativity of the definition of → can be easily and safely ameliorated; (4) the definition of → in terms of 'proofs from premises' results in a loss of the inductive character (...) of the definitions of ∨ and ∃; and (5) the same occurs with the definition of ∀ in terms of 'proofs with free variables'. (shrink)
In this paper intuitionistic set theory INC# in infinitary set theoretical language is considered. External induction principle in nonstandard intuitionistic arithmetic were derived. Non trivial application in number theory is considered.
Hilbert’s choice operators τ and ε, when added to intuitionisticlogic, strengthen it. In the presence of certain extensionality axioms they produce classical logic, while in the presence of weaker decidability conditions for terms they produce various superintuitionistic intermediate logics. In this thesis, I argue that there are important philosophical lessons to be learned from these results. To make the case, I begin with a historical discussion situating the development of Hilbert’s operators in relation to his evolving (...) program in the foundations of mathematics and in relation to philosophical motivations leading to the development of intuitionisticlogic. This sets the stage for a brief description of the relevant part of Dummett’s program to recast debates in metaphysics, and in particular disputes about realism and anti-realism, as closely intertwined with issues in philosophical logic, with the acceptance of classical logic for a domain reflecting a commitment to realism for that domain. Then I review extant results about what is provable and what is not when one adds epsilon to intuitionisticlogic, largely due to Bell and DeVidi, and I give several new proofs of intermediate logics from intuitionisticlogic+ε without identity. With all this in hand, I turn to a discussion of the philosophical significance of choice operators. Among the conclusions I defend are that these results provide a finer-grained basis for Dummett’s contention that commitment to classically valid but intuitionistically invalid principles reflect metaphysical commitments by showing those principles to be derivable from certain existence assumptions; that Dummett’s framework is improved by these results as they show that questions of realism and anti-realism are not an “all or nothing” matter, but that there are plausibly metaphysical stances between the poles of anti-realism and realism, because different sorts of ontological assumptions yield intermediate rather than classical logic; and that these intermediate positions between classical and intuitionisticlogic link up in interesting ways with our intuitions about issues of objectivity and reality, and do so usefully by linking to questions around intriguing everyday concepts such as “is smart,” which I suggest involve a number of distinct dimensions which might themselves be objective, but because of their multivalent structure are themselves intermediate between being objective and not. Finally, I discuss the implications of these results for ongoing debates about the status of arbitrary and ideal objects in the foundations of logic, showing among other things that much of the discussion is flawed because it does not recognize the degree to which the claims being made depend on the presumption that one is working with a very strong logic. (shrink)
In this book set theory INC# based on intuitionisticlogic with restricted modus ponens rule is proposed. It proved that intuitionisticlogic with restricted modus ponens rule can to safe Cantor naive set theory from a triviality.
Intuitionisticlogic provides an elegant solution to the Sorites Paradox. Its acceptance has been hampered by two factors. First, the lack of an accepted semantics for languages containing vague terms has led even philosophers sympathetic to intuitionism to complain that no explanation has been given of why intuitionisticlogic is the correct logic for such languages. Second, switching from classical to intuitionisticlogic, while it may help with the Sorites, does not appear to (...) offer any advantages when dealing with the so-called paradoxes of higher-order vagueness. We offer a proposal that makes strides on both issues. We argue that the intuitionist’s characteristic rejection of any third alethic value alongside true and false is best elaborated by taking the normal modal system S4M to be the sentential logic of the operator ‘it is clearly the case that’. S4M opens the way to an account of higher-order vagueness which avoids the paradoxes that have been thought to infect the notion. S4M is one of the modal counterparts of the intuitionistic sentential calculus and we use this fact to explain why IPC is the correct sentential logic to use when reasoning with vague statements. We also show that our key results go through in an intuitionistic version of S4M. Finally, we deploy our analysis to reply to Timothy Williamson’s objections to intuitionistic treatments of vagueness. (shrink)
The obscure and punctuated history of symmetry is compared with the history of the celebrated and exalting notion of infinitesimal; some considerations about them are derived. A long list of odd and hidden events concerning symmetry in theoretical physics is offered. The last event is the discovery of the nature of the same word “symmetry” which pertains to non-classical logic, and it is linked to the principle of sufficient reason. A comparison of the roles played by the two mathematical (...) techniques within a classical physical theory is performed. It leads to recognize the different roles played by the two mathematical tools as a manifestation of an incommensurability phenomenon caused by two foundational dichotomies. (shrink)
There is widespread agreement that while on a Dummettian theory of meaning the justified logic is intuitionist, as its constants are governed by harmonious rules of inference, the situation is reversed on Huw Price's bilateralist account, where meanings are specified in terms of primitive speech acts assertion and denial. In bilateral logics, the rules for classical negation are in harmony. However, as it is possible to construct an intuitionist bilateral logic with harmonious rules, there is no formal argument (...) against intuitionism from the bilateralist perspective. Price gives an informal argument for classical negation based on a pragmatic notion of belief, characterised in terms of the differences they make to speakers' actions. The main part of this paper puts Price's argument under close scrutiny by regimenting it and isolating principles Price is committed to. It is shown that Price should draw a distinction between A or ¬A making a difference. According to Price, if A makes a difference to us, we treat it as decidable. This material allows the intuitionist to block Price's argument. Abandoning classical logic also brings advantages, as within intuitionist logic there is a precise meaning to what it might mean to treat A as decidable: it is to assume A ∨ ¬A. (shrink)
This paper presents rules of inference for a binary quantifier I for the formalisation of sentences containing definite descriptions within intuitionist positive free logic. I binds one variable and forms a formula from two formulas. Ix[F, G] means ‘The F is G’. The system is shown to have desirable proof-theoretic properties: it is proved that deductions in it can be brought into normal form. The discussion is rounded up by comparisons between the approach to the formalisation of definite descriptions (...) recommended here and the more usual approach that uses a term-forming operator ι, where ιxF means ‘the F’. (shrink)
Intuitionistic Propositional Logic is proved to be an infinitely many valued logic by Gödel (Kurt Gödel collected works (Volume I) Publications 1929–1936, Oxford University Press, pp 222–225, 1932), and it is proved by Jaśkowski (Actes du Congrés International de Philosophie Scientifique, VI. Philosophie des Mathématiques, Actualités Scientifiques et Industrielles 393:58–61, 1936) to be a countably many valued logic. In this paper, we provide alternative proofs for these theorems by using models of Kripke (J Symbol Logic (...) 24(1):1–14, 1959). Gödel’s proof gave rise to an intermediate propositional logic (between intuitionistic and classical), that is known nowadays as Gödel or the Gödel-Dummett Logic, and is studied by fuzzy logicians as well. We also provide some results on the inter-definability of propositional connectives in this logic. (shrink)
Benchmarking automated theorem proving (ATP) systems using standardized problem sets is a well-established method for measuring their performance. However, the availability of such libraries for non-classical logics is very limited. In this work we propose a library for benchmarking Girard's (propositional) intuitionistic linear logic. For a quick bootstrapping of the collection of problems, and for discussing the selection of relevant problems and understanding their meaning as linear logic theorems, we use translations of the collection of Kleene's (...) class='Hi'>intuitionistic theorems in the traditional monograph "Introduction to Metamathematics". We analyze four different translations of intuitionisticlogic into linear logic and compare their proofs using a linear logic based prover with focusing. In order to enhance the set of problems in our library, we apply the three provability-preserving translations to the propositional benchmarks in the ILTP Library. Finally, we generate a comprehensive set of reachability problems for Petri nets and encode such problems as linear logic sequents, thus enlarging our collection of problems. (shrink)
We employ a recently developed methodology -- called "structural refinement" -- to extract nested sequent systems for a sizable class of intuitionistic modal logics from their respective labelled sequent systems. This method can be seen as a means by which labelled sequent systems can be transformed into nested sequent systems through the introduction of propagation rules and the elimination of structural rules, followed by a notational translation. The nested systems we obtain incorporate propagation rules that are parameterized with formal (...) grammars, and which encode certain frame conditions expressible as first-order Horn formulae that correspond to a subclass of the Scott-Lemmon axioms. We show that our nested systems are sound, cut-free complete, and admit hp-admissibility of typical structural rules. (shrink)
We generalize intuitionistic tense logics to the multi-modal case by placing grammar logics on an intuitionistic footing. We provide axiomatizations for a class of base intuitionistic grammar logics as well as provide axiomatizations for extensions with combinations of seriality axioms and what we call "intuitionistic path axioms". We show that each axiomatization is sound and complete with completeness being shown via a typical canonical model construction.
This paper and its sequel “look under the hood” of the usual sorts of proof-theoretic systems for certain well-known intuitionistic and classical propositional modal logics. Section 1 is preliminary. Of most importance: a marked formula will be the result of prefixing a formula in a propositional modal language with a step-marker, for this paper either 0 or 1. Think of 1 as indicating the taking of “one step away from 0.” Deductions will be constructed using marked formulas. Section 2 (...) presents the model-theoretic concepts, based on those in [7], that guide the rest of this paper. Section 3 presents Natural Deduction systems IK and CK, formalizations of intuitionistic and classical one-step versions of K. In these systems, occurrences of step-markers allow deductions to display deductive structure that is covered over in familiar “no step” proof-theoretic systems for such logics. Box and Diamond are governed by Introduction and Elimination rules; the familiar K rule and Necessitation are derived (i.e. admissible) rules. CK will be the result of adding the 0-version of the Rule of Excluded Middle to the rules which generate IK. Note: IK is the result of merely dropping that rule from those generating CK, without addition of further rules or axioms (as was needed in [7]). These proof-theoretic systems yield intuitionistic and classical consequence relations by the obvious definition. Section 4 provides some examples of what can be deduced in IK. Section 5 defines some proof-theoretic concepts that are used in Section 6 to prove the soundness of the consequence relation for IK (relative to the class of models defined in Section 2.) Section 7 proves its completeness (relative to that class). Section 8 extends these results to the consequence relation for CK. (Looking ahead: Part 2 will investigate one-step proof-theoretic systems formalizing intuitionistic and classical one-step versions of some familiar logics stronger than K.). (shrink)
Part 1 [Hodes, 2021] “looked under the hood” of the familiar versions of the classical propositional modal logic K and its intuitionistic counterpart. This paper continues that project, addressing some familiar classical strengthenings of K and GL), and their intuitionistic counterparts. Section 9 associates two intuitionistic one-step proof-theoretic systems to each of the just mentioned intuitionistic logics, this by adding for each a new rule to those which generated IK in Part 1. For the systems (...) associated with the intuitionistic counterparts of D and T, these rules are “pure one-step”: their schematic formulations does not use □ or ♢. For the systems associated with the intuitionistic counterparts of K4, etc., these rules meet these conditions: neither □ nor ♢ is iterated; none use both □ and ♢. The join of the two systems associated with each of these familiar logics is the full one-step system for that intuitionisticlogic. And further “blended” intuitionistic systems arise from joining these systems in various ways. Adding the 0-version of Excluded Middle to their intuitionistic counterparts yields the one-step systems corresponding to the familiar classical logics. Each proof-theoretic system defines a consequence relation in the obvious way. Section 10 examines inclusions between these consequence relations. Section 11 associates each of the above consequence relations with an appropriate class of models, and proves them sound with respect to their appropriate class. This allows proofs of some failures of inclusion between consequence relations. Section 12 proves that the each consequence relation is complete or weakly complete, that relative to its appropriate class of models. The Appendix presents three further results about some of the intuitionistic consequence relations discussed in the body of the paper. For Keywords, see Part 1. (shrink)
This paper presents a way of formalising definite descriptions with a binary quantifier ι, where ιx[F, G] is read as ‘The F is G’. Introduction and elimination rules for ι in a system of intuitionist negative free logic are formulated. Procedures for removing maximal formulas of the form ιx[F, G] are given, and it is shown that deductions in the system can be brought into normal form.
We generalize the Kolmogorov axioms for probability calculus to obtain conditions defining, for any given logic, a class of probability functions relative to that logic, coinciding with the standard probability functions in the special case of classical logic but allowing consideration of other classes of "essentially Kolmogorovian" probability functions relative to other logics. We take a broad view of the Bayesian approach as dictating inter alia that from the perspective of a given logic, rational degrees of (...) belief are those representable by probability functions from the class appropriate to that logic. Classical Bayesianism, which fixes the logic as classical logic, is only one version of this general approach. Another, which we call Intuitionistic Bayesianism, selects intuitionisticlogic as the preferred logic and the associated class of probability functions as the right class of candidate representions of epistemic states (rational allocations of degrees of belief). Various objections to classical Bayesianism are, we argue, best met by passing to intuitionistic Bayesianism—in which the probability functions are taken relative to intuitionisticlogic—rather than by adopting a radically non-Kolmogorovian, for example, nonadditive, conception of (or substitute for) probability functions, in spite of the popularity of the latter response among those who have raised these objections. The interest of intuitionistic Bayesianism is further enhanced by the availability of a Dutch Book argument justifying the selection of intuitionistic probability functions as guides to rational betting behavior when due consideration is paid to the fact that bets are settled only when/if the outcome bet on becomes known. (shrink)
Sentences containing definite descriptions, expressions of the form ‘The F’, can be formalised using a binary quantifier ι that forms a formula out of two predicates, where ιx[F, G] is read as ‘The F is G’. This is an innovation over the usual formalisation of definite descriptions with a term forming operator. The present paper compares the two approaches. After a brief overview of the system INFι of intuitionist negative free logic extended by such a quantifier, which was presented (...) in (Kürbis 2019), INFι is first compared to a system of Tennant’s and an axiomatic treatment of a term forming ι operator within intuitionist negative free logic. Both systems are shown to be equivalent to the subsystem of INFι in which the G of ιx[F, G] is restricted to identity. INFι is then compared to an intuitionist version of a system of Lambert’s which in addition to the term forming operator has an operator for predicate abstraction for indicating scope distinctions. The two systems will be shown to be equivalent through a translation between their respective languages. Advantages of the present approach over the alternatives are indicated in the discussion. (shrink)
Takeuti and Titani have introduced and investigated a logic they called intuitionistic fuzzy logic. This logic is characterized as the first-order Gödel logic based on the truth value set [0,1]. The logic is known to be axiomatizable, but no deduction system amenable to proof-theoretic, and hence, computational treatment, has been known. Such a system is presented here, based on previous work on hypersequent calculi for propositional Gödel logics by Avron. It is shown that the (...) system is sound and complete, and allows cut-elimination. A question by Takano regarding the eliminability of the Takeuti-Titani density rule is answered affirmatively. (shrink)
The main subject of Cusanus’ investigations was the name of God. He claimed to have achieved the best possible one, Not-Other. Since Cusanus stressed that these two words do not mean the corresponding affirmative word, i.e. the same, they represent the failure of the double negation law and therefore belong to non-classical, and above all, intuitionist logic. Some of his books implicitly applied intuitionist reasoning and the corresponding organization of a theory which is governed by intuitionist logic. A (...) comparison of two of Cusanus’ short writings shows that throughout his life he substantially improved his use of this kind of logic and ultimately was able to reason consistently within such a logic and recognize some of its basic laws. One important idea developed by him was that of a proposition composed of a triple repetition of “not-other” expressing “the Tri-unity of concordance” i.e. the “best name for the Trinity”. I complete his application of intuitionist logic to theological subjects by characterizing the inner relationships within the Trinity in such a way that there are no longer contradictions in the notion. Generally speaking, the notion of the Trinity implies a translation from intuitionist to classical logic, to which Cusanus closely approximated. Moreover, I show that the main aspects of Christian revelation, including Christ’s teachings, are represented both by this translation and by some doubly negated propositions of intuitionist logic. Hence, intuitionist logic was introduced into the history of Western theological thinking with Christian revelation, as only Cusanus partly recognized. Appendix 1 summarizes a detailed analysis of Cusanus’ second short writing. Appendix 2 shows that the Athanasian creed regarding the Christian Trinity is a consistent sequence of intuitionist propositions provided that some verbal emendations are added, showing that ancient trinitarian thinking was also close to intuitionist reasoning. (shrink)
Intuitionism’s disagreement with classical logic is standardly based on its specific understanding of truth. But different intuitionists have actually explicated the notion of truth in fundamentally different ways. These are considered systematically and separately, and evaluated critically. It is argued that each account faces difficult problems. They all either have implausible consequences or are viciously circular.
Hyperlogic is a hyperintensional system designed to regiment metalogical claims (e.g., "Intuitionisticlogic is correct" or "The law of excluded middle holds") into the object language, including within embedded environments such as attitude reports and counterfactuals. This paper is the first of a two-part series exploring the logic of hyperlogic. This part presents a minimal logic of hyperlogic and proves its completeness. It consists of two interdefined axiomatic systems: one for classical consequence (truth preservation under a (...) classical interpretation of the connectives) and one for "universal" consequence (truth preservation under any interpretation). The sequel to this paper explores stronger logics that are sound and complete over various restricted classes of models as well as languages with hyperintensional operators. (shrink)
Modern categorical logic as well as the Kripke and topological models of intuitionisticlogic suggest that the interpretation of ordinary “propositional” logic should in general be the logic of subsets of a given universe set. Partitions on a set are dual to subsets of a set in the sense of the category-theoretic duality of epimorphisms and monomorphisms—which is reflected in the duality between quotient objects and subobjects throughout algebra. If “propositional” logic is thus seen (...) as the logic of subsets of a universe set, then the question naturally arises of a dual logic of partitions on a universe set. This paper is an introduction to that logic of partitions dual to classical subset logic. The paper goes from basic concepts up through the correctness and completeness theorems for a tableau system of partition logic. (shrink)
I show that the model-theoretic meaning that can be read off the natural deduction rules for disjunction fails to have certain desirable properties. I use this result to argue against a modest form of inferentialism which uses natural deduction rules to fix model-theoretic truth-conditions for logical connectives.
This thesis introduces the "method of structural refinement", which serves as a means of transforming the relational semantics of a modal and/or constructive logic into an 'economical' proof system by connecting two proof-theoretic paradigms: labelled and nested sequent calculi. The formalism of labelled sequents has been successful in that cut-free calculi in possession of desirable proof-theoretic properties can be automatically generated for large classes of logics. Despite these qualities, labelled systems make use of a complicated syntax that explicitly incorporates (...) the semantics of the associated logic, and such systems typically violate the subformula property to a high degree. By contrast, nested sequent calculi employ a simpler syntax and adhere to a strict reading of the subformula property, making such systems useful in the design of automated reasoning algorithms. However, the downside of the nested sequent paradigm is that a general theory concerning the automated construction of such calculi (as in the labelled setting) is essentially absent, meaning that the construction of nested systems and the confirmation of their properties is usually done on a case-by-case basis. The refinement method connects both paradigms in a fruitful way, by transforming labelled systems into nested (or, refined labelled) systems with the properties of the former preserved throughout the transformation process. To demonstrate the method of refinement and some of its applications, we consider grammar logics, first-order intuitionistic logics, and deontic STIT logics. The introduced refined labelled calculi will be used to provide the first proof-search algorithms for deontic STIT logics. Furthermore, we employ our refined labelled calculi for grammar logics to show that every logic in the class possesses the effective Lyndon interpolation property. (shrink)
I distinguish two ways of developing anti-exceptionalist approaches to logical revision. The first emphasizes comparing the theoretical virtuousness of developed bodies of logical theories, such as classical and intuitionisticlogic. I'll call this whole theory comparison. The second attempts local repairs to problematic bits of our logical theories, such as dropping excluded middle to deal with intuitions about vagueness. I'll call this the piecemeal approach. I then briefly discuss a problem I've developed elsewhere for comparisons of logical theories. (...) Essentially, the problem is that a pair of logics may each evaluate the alternative as superior to themselves, resulting in oscillation between logical options. The piecemeal approach offers a way out of this problem andthereby might seem a preferable to whole theory comparisons. I go on to show that reflective equilibrium, the best known piecemeal method, has deep problems of its own when applied to logic. (shrink)
This chapter focuses on alternative logics. It discusses a hierarchy of logical reform. It presents case studies that illustrate particular aspects of the logical revisionism discussed in the chapter. The first case study is of intuitionisticlogic. The second case study turns to quantum logic, a system proposed on empirical grounds as a resolution of the antinomies of quantum mechanics. The third case study is concerned with systems of relevance logic, which have been the subject of (...) an especially detailed reform program. Finally, the fourth case study is paraconsistent logic, perhaps the most controversial of serious proposals. (shrink)
Any intermediate propositional logic can be extended to a calculus with epsilon- and tau-operators and critical formulas. For classical logic, this results in Hilbert’s $\varepsilon $ -calculus. The first and second $\varepsilon $ -theorems for classical logic establish conservativity of the $\varepsilon $ -calculus over its classical base logic. It is well known that the second $\varepsilon $ -theorem fails for the intuitionistic $\varepsilon $ -calculus, as prenexation is impossible. The paper investigates the effect of (...) adding critical $\varepsilon $ - and $\tau $ -formulas and using the translation of quantifiers into $\varepsilon $ - and $\tau $ -terms to intermediate logics. It is shown that conservativity over the propositional base logic also holds for such intermediate ${\varepsilon \tau }$ -calculi. The “extended” first $\varepsilon $ -theorem holds if the base logic is finite-valued Gödel–Dummett logic, and fails otherwise, but holds for certain provable formulas in infinite-valued Gödel logic. The second $\varepsilon $ -theorem also holds for finite-valued first-order Gödel logics. The methods used to prove the extended first $\varepsilon $ -theorem for infinite-valued Gödel logic suggest applications to theories of arithmetic. (shrink)
A textbook for modal and other intensional logics based on the Open Logic Project. It covers normal modal logics, relational semantics, axiomatic and tableaux proof systems, intuitionisticlogic, and counterfactual conditionals.
A natural problem from elementary arithmetic which is so strongly undecidable that it is not even Trial and Error decidable (in other words, not decidable in the limit) is presented. As a corollary, a natural, elementary arithmetical property which makes a difference between intuitionistic and classical theories is isolated.
This paper deals with, prepositional calculi with strong negation (N-logics) in which the Craig interpolation theorem holds. N-logics are defined to be axiomatic strengthenings of the intuitionistic calculus enriched with a unary connective called strong negation. There exists continuum of N-logics, but the Craig interpolation theorem holds only in 14 of them.
This paper considers logics which are formally dual to intuitionisticlogic in order to investigate a co-constructive logic for proofs and refutations. This is philosophically motivated by a set of problems regarding the nature of constructive truth, and its relation to falsity. It is well known both that intuitionism can not deal constructively with negative information, and that defining falsity by means of intuitionistic negation leads, under widely-held assumptions, to a justification of bivalence. For example, we (...) do not want to equate falsity with the non-existence of a proof since this would render a statement such as “pi is transcendental” false prior to 1882. In addition, the intuitionist account of negation as shorthand for the derivation of absurdity is inadequate, particularly outside of purely mathematical contexts. To deal with these issues, I investigate the dual of intuitionisticlogic, co-intuitionisticlogic, as a logic of refutation, alongside intuitionisticlogic of proofs. Direct proof and refutation are dual to each other, and are constructive, whilst there also exist syntactic, weak, negations within both logics. In this respect, the logic of refutation is weakly paraconsistent in the sense that it allows for statements for which, neither they, nor their negation, are refuted. I provide a proof theory for the co-constructive logic, a formal dualizing map between the logics, and a Kripke-style semantics. This is given an intuitive philosophical rendering in a re-interpretation of Kolmogorov’s logic of problems. (shrink)
This paper introduces the special issue on the Concept of God of the Journal of Applied Logics (College Publications). The issue contains the following articles: Logic and the Concept of God, by Stanisław Krajewski and Ricardo Silvestre; Mathematical Models in Theology. A Buber-inspired Model of God and its Application to “Shema Israel”, by Stanisław Krajewski; Gödel’s God-like Essence, by Talia Leven; A Logical Solution to the Paradox of the Stone, by Héctor Hernández Ortiz and Victor Cantero; No New Solutions (...) to the Logical Problem of the Trinity, by Beau Branson; What Means ‘Tri-’ in ‘Trinity’ ? An Eastern Patristic Approach to the ‘Quasi-Ordinals’, by Basil Lourié; The Éminence Grise of Christology: Porphyry’s Logical Teaching as a Cornerstone of Argumentation in Christological Debates of the Fifth and Sixth Centruies, by Anna Zhyrkova; The Problem of Universals in Late Patristic Theology, by Dirk Krasmüller; Intuitionist Reasoning in the Tri-unitrian Theology of Nicolas of Cues, by Antonino Drago. (shrink)
Logical monism is the view that there is ‘One True Logic’. This is the default position, against which pluralists react. If there were not ‘One True Logic’, it is hard to see how there could be one true theory of anything. A theory is closed under a logic! But what is logical monism? In this article, I consider semantic, logical, modal, scientific, and metaphysical proposals. I argue that, on no ‘factualist’ analysis (according to which ‘there is One (...) True Logic’ expresses a factual claim, rather than an attitude like approval), does the doctrine have both metaphysical and methodological import. Metaphysically, logics abound. Methodologically, what to infer from what is not settled by the facts, even the normative ones. I conclude that the only interesting sense in which there could be One True Logic is noncognitive. The same may be true of monism about normative areas, like moral, epistemic, and prudential ones, generally. (shrink)
In “Proof-Theoretic Justification of Logic”, building on work by Dummett and Prawitz, I show how to construct use-based meaning-theories for the logical constants. The assertability-conditional meaning-theory takes the meaning of the logical constants to be given by their introduction rules; the consequence-conditional meaning-theory takes the meaning of the logical constants to be given by their elimination rules. I then consider the question: given a set of introduction rules \, what are the strongest elimination rules that are validated by an (...) assertability conditional meaning-theory based on \? I prove that the intuitionistic introduction rules are the strongest rules that are validated by the intuitionistic elimination rules. I then prove that intuitionisticlogic is the strongest logic that can be given either an assertability-conditional or consequence-conditional meaning-theory. In “Grounding Grounding” I discuss the notion of grounding. My discussion revolves around the problem of iterated grounding-claims. Suppose that \ grounds \; what grounds that \ grounds that \? I argue that unless we can get a satisfactory answer to this question the notion of grounding will be useless. I discuss and reject some proposed accounts of iterated grounding claims. I then develop a new way of expressing grounding, propose an account of iterated grounding-claims and show how we can develop logics for grounding. In “Is the Vagueness Argument Valid?” I argue that the Vagueness Argument in favor of unrestricted composition isn’t valid. However, if the premisses of the argument are true and the conclusion false, mereological facts fail to supervene on non-mereological facts. I argue that this failure of supervenience is an artifact of the interplay between the necessity and determinacy operators and that it does not mean that mereological facts fail to depend on non-mereological facts. I sketch a deflationary view of ontology to establish this. (shrink)
In this paper, we make distinctions between Classical Logic (where the propositions are 100% true, or 100 false) and the Neutrosophic Logic (where one deals with partially true, partially indeterminate and partially false propositions) in order to respond to K. Georgiev’s criticism [1]. We recall that if an axiom is true in a classical logic system, it is not necessarily that the axiom be valid in a modern (fuzzy, intuitionistic fuzzy, neutrosophic etc.) logic system.
By formalizing some classical facts about provably total functions of intuitionistic primitive recursive arithmetic (iPRA), we prove that the set of decidable formulas of iPRA and of iΣ1+ (intuitionistic Σ1-induction in the language of PRA) coincides with the set of its provably ∆1-formulas and coincides with the set of its provably atomic formulas. By the same methods, we shall give another proof of a theorem of Marković and De Jongh: the decidable formulas of HA are its provably ∆1-formulas.
I introduce a formalization of probability which takes the concept of 'evidence' as primitive. In parallel to the intuitionistic conception of truth, in which 'proof' is primitive and an assertion A is judged to be true just in case there is a proof witnessing it, here 'evidence' is primitive and A is judged to be probable just in case there is evidence supporting it. I formalize this outlook by representing propositions as types in Martin-Lof type theory (MLTT) and defining (...) a 'probability type' on top of the existing machinery of MLTT, whose inhabitants represent pieces of evidence in favor of a proposition. One upshot of this approach is the potential for a mathematical formalism which treats 'conjectures' as mathematical objects in their own right. Other intuitive properties of evidence occur as theorems in this formalism. (shrink)
This paper considers a formalisation of classical logic using general introduction rules and general elimination rules. It proposes a definition of ‘maximal formula’, ‘segment’ and ‘maximal segment’ suitable to the system, and gives reduction procedures for them. It is then shown that deductions in the system convert into normal form, i.e. deductions that contain neither maximal formulas nor maximal segments, and that deductions in normal form satisfy the subformula property. Tarski’s Rule is treated as a general introduction rule for (...) implication. The general introduction rule for negation has a similar form. Maximal formulas with implication or negation as main operator require reduction procedures of a more intricate kind not present in normalisation for intuitionist logic. (shrink)
The proof theory of many-valued systems has not been investigated to an extent comparable to the work done on axiomatizatbility of many-valued logics. Proof theory requires appropriate formalisms, such as sequent calculus, natural deduction, and tableaux for classical (and intuitionistic) logic. One particular method for systematically obtaining calculi for all finite-valued logics was invented independently by several researchers, with slight variations in design and presentation. The main aim of this report is to develop the proof theory of finite-valued (...) first order logics in a general way, and to present some of the more important results in this area. In Systems covered are the resolution calculus, sequent calculus, tableaux, and natural deduction. This report is actually a template, from which all results can be specialized to particular logics. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.