Results for 'Kolumban Hutter'

11 found
Order:
  1. One decade of universal artificial intelligence.Marcus Hutter - 2012 - In Pei Wang & Ben Goertzel (eds.), Theoretical Foundations of Artificial General Intelligence. Springer. pp. 67--88.
    The first decade of this century has seen the nascency of the first mathematical theory of general artificial intelligence. This theory of Universal Artificial Intelligence (UAI) has made significant contributions to many theoretical, philosophical, and practical AI questions. In a series of papers culminating in book (Hutter, 2005), an exciting sound and complete mathematical model for a super intelligent agent (AIXI) has been developed and rigorously analyzed. While nowadays most AI researchers avoid discussing intelligence, the award-winning PhD thesis (Legg, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  2. Probabilities on Sentences in an Expressive Logic.Marcus Hutter, John W. Lloyd, Kee Siong Ng & William T. B. Uther - 2013 - Journal of Applied Logic 11 (4):386-420.
    Automated reasoning about uncertain knowledge has many applications. One difficulty when developing such systems is the lack of a completely satisfactory integration of logic and probability. We address this problem directly. Expressive languages like higher-order logic are ideally suited for representing and reasoning about structured knowledge. Uncertain knowledge can be modeled by using graded probabilities rather than binary truth-values. The main technical problem studied in this paper is the following: Given a set of sentences, each having some probability of being (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  3. Reward-Punishment Symmetric Universal Intelligence.Samuel Allen Alexander & Marcus Hutter - 2021 - In Samuel Allen Alexander & Marcus Hutter (eds.), AGI.
    Can an agent's intelligence level be negative? We extend the Legg-Hutter agent-environment framework to include punishments and argue for an affirmative answer to that question. We show that if the background encodings and Universal Turing Machine (UTM) admit certain Kolmogorov complexity symmetries, then the resulting Legg-Hutter intelligence measure is symmetric about the origin. In particular, this implies reward-ignoring agents have Legg-Hutter intelligence 0 according to such UTMs.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  4. Künstliche Intelligenz: Chancen und Risiken.Mannino Adriano, David Althaus, Jonathan Erhardt, Lukas Gloor, Adrian Hutter & Thomas Metzinger - 2015 - Diskussionspapiere der Stiftung Für Effektiven Altruismus 2:1-17.
    Die Übernahme des KI-Unternehmens DeepMind durch Google für rund eine halbe Milliarde US-Dollar signalisierte vor einem Jahr, dass von der KI-Forschung vielversprechende Ergebnisse erwartet werden. Spätestens seit bekannte Wissenschaftler wie Stephen Hawking und Unternehmer wie Elon Musk oder Bill Gates davor warnen, dass künstliche Intelligenz eine Bedrohung für die Menschheit darstellt, schlägt das KI-Thema hohe Wellen. Die Stiftung für Effektiven Altruismus (EAS, vormals GBS Schweiz) hat mit der Unterstützung von Experten/innen aus Informatik und KI ein umfassendes Diskussionspapier zu den Chancen (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Universal Agent Mixtures and the Geometry of Intelligence.Samuel Allen Alexander, David Quarel, Len Du & Marcus Hutter - 2023 - Aistats.
    Inspired by recent progress in multi-agent Reinforcement Learning (RL), in this work we examine the collective intelligent behaviour of theoretical universal agents by introducing a weighted mixture operation. Given a weighted set of agents, their weighted mixture is a new agent whose expected total reward in any environment is the corresponding weighted average of the original agents' expected total rewards in that environment. Thus, if RL agent intelligence is quantified in terms of performance across environments, the weighted mixture's intelligence is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Classification by decomposition: a novel approach to classification of symmetric $$2\times 2$$ games.Mikael Böörs, Tobias Wängberg, Tom Everitt & Marcus Hutter - 2022 - Theory and Decision 93 (3):463-508.
    In this paper, we provide a detailed review of previous classifications of 2 × 2 games and suggest a mathematically simple way to classify the symmetric 2 × 2 games based on a decomposition of the payoff matrix into a cooperative and a zero-sum part. We argue that differences in the interaction between the parts is what makes games interesting in different ways. Our claim is supported by evolutionary computer experiments and findings in previous literature. In addition, we provide a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Explicit Legg-Hutter intelligence calculations which suggest non-Archimedean intelligence.Samuel Allen Alexander & Arthur Paul Pedersen - forthcoming - Lecture Notes in Computer Science.
    Are the real numbers rich enough to measure intelligence? We generalize a result of Alexander and Hutter about the so-called Legg-Hutter intelligence measures of reinforcement learning agents. Using the generalized result, we exhibit a paradox: in one particular version of the Legg-Hutter intelligence measure, certain agents all have intelligence 0, even though in a certain sense some of them outperform others. We show that this paradox disappears if we vary the Legg-Hutter intelligence measure to be hyperreal-valued (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Legg-Hutter universal intelligence implies classical music is better than pop music for intellectual training.Samuel Alexander - 2019 - The Reasoner 13 (11):71-72.
    In their thought-provoking paper, Legg and Hutter consider a certain abstrac- tion of an intelligent agent, and define a universal intelligence measure, which assigns every such agent a numerical intelligence rating. We will briefly summarize Legg and Hutter’s paper, and then give a tongue-in-cheek argument that if one’s goal is to become more intelligent by cultivating music appreciation, then it is bet- ter to use classical music (such as Bach, Mozart, and Beethoven) than to use more recent pop (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Intelligence via ultrafilters: structural properties of some intelligence comparators of deterministic Legg-Hutter agents.Samuel Alexander - 2019 - Journal of Artificial General Intelligence 10 (1):24-45.
    Legg and Hutter, as well as subsequent authors, considered intelligent agents through the lens of interaction with reward-giving environments, attempting to assign numeric intelligence measures to such agents, with the guiding principle that a more intelligent agent should gain higher rewards from environments in some aggregate sense. In this paper, we consider a related question: rather than measure numeric intelligence of one Legg- Hutter agent, how can we compare the relative intelligence of two Legg-Hutter agents? We propose (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  10. An argument for the impossibility of machine intelligence (preprint).Jobst Landgrebe & Barry Smith - 2021 - Arxiv.
    Since the noun phrase `artificial intelligence' (AI) was coined, it has been debated whether humans are able to create intelligence using technology. We shed new light on this question from the point of view of themodynamics and mathematics. First, we define what it is to be an agent (device) that could be the bearer of AI. Then we show that the mainstream definitions of `intelligence' proposed by Hutter and others and still accepted by the AI community are too weak (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  11. Information, learning and falsification.David Balduzzi - 2011
    There are (at least) three approaches to quantifying information. The first, algorithmic information or Kolmogorov complexity, takes events as strings and, given a universal Turing machine, quantifies the information content of a string as the length of the shortest program producing it [1]. The second, Shannon information, takes events as belonging to ensembles and quantifies the information resulting from observing the given event in terms of the number of alternate events that have been ruled out [2]. The third, statistical learning (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation