Results for 'MRI data'

969 found
Order:
  1.  47
    Brain Tumor Detection Using MRI.Tahseen Asma - 2024 - International Journal of Engineering Innovations and Management Strategies 1 (2):1-12.
    The level of accuracy needed to identify the type of tumor using MRI data is necessary to choose the best method for medical care. The K-Nearest Neighbor approach, a fundamental scientific application and image classification technique, can be used to computationally analyze MRI results. The objective of the tumor classification system is to identify the tumor. The only information used to analyze data for this type of system comes from the MRI's axial portion, which are divided into three (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Big Data and reality.Ryan Shaw - 2015 - Big Data and Society 2 (2).
    DNA sequencers, Twitter, MRIs, Facebook, particle accelerators, Google Books, radio telescopes, Tumblr: what do these things have in common? According to the evangelists of “data science,” all of these are instruments for observing reality at unprecedentedly large scales and fine granularities. This perspective ignores the social reality of these very different technological systems, ignoring how they are made, how they work, and what they mean in favor of an exclusive focus on what they generate: Big Data. But no (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  3. The Unobserved Anatomy: Negotiating the Plausibility of AI-Based Reconstructions of Missing Brain Structures in Clinical MRI Scans.Paula Muhr - 2023 - In Antje Flüchter, Birte Förster, Britta Hochkirchen & Silke Schwandt (eds.), Plausibilisierung und Evidenz: Dynamiken und Praktiken von der Antike bis zur Gegenwart. Bielefeld University Press. pp. 169-192.
    Vast archives of fragmentary structural brain scans that are routinely acquired in medical clinics for diagnostic purposes have so far been considered to be unusable for neuroscientific research. Yet, recent studies have proposed that by deploying machine learning algorithms to fill in the missing anatomy, clinical scans could, in future, be used by researchers to gain new insights into various brain disorders. This chapter focuses on a study published in2019, whose authors developed a novel unsupervised machine learning algorithm for synthesising (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4.  83
    Leveraging Machine Learning Algorithms for Medical Image Classification Introduction.Ugochukwu Llodinso - manuscript
    The use of machine learning to medical image classification has seen significant development and implementation in the last several years. Computers can learn to identify patterns, make predictions, and use data to inform their judgements; this capability is known as machine learning, a branch of Artificial intelligence (AI). Classifying images according to their contents allows us to do things like identify the type of sickness, organ, or tissue depicted. Medical picture classification and interpretation using machine learning algorithms has greatly (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Detection of Brain Tumor Using Deep Learning.Hamza Rafiq Almadhoun & Samy S. Abu-Naser - 2022 - International Journal of Academic Engineering Research (IJAER) 6 (3):29-47.
    Artificial intelligence (AI) is an area of computer science that emphasizes the creation of intelligent machines or software that work and reacts like humans, some of the computer activities with artificial intelligence are designed to include speech, recognition, learning, planning and problem solving. Deep learning is a collection of algorithms used in machine learning, it is part of a broad family of methods used for machine learning that are based on learning representations of data. Deep learning is used as (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  6.  81
    3D Convolutional Neural Networks for Accurate Reconstruction of Distorted Faces.M. Arul Selvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (4):560-570.
    The core objective of this project is to recognize and reconstruct distorted facial images, particularly in the context of accidents. This involves using deep learning techniques to analyze the features of a distorted face and regenerate it into a recognizable form. Deep learning models are wellsuited for this task due to their ability to learn complex patterns and representations from data the input data consists of distorted facial images, typically obtained from MRI scans of accident victims. These images (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Advancements in AI for Medical Imaging: Transforming Diagnosis and Treatment.Zakaria K. D. Alkayyali, Ashraf M. H. Taha, Qasem M. M. Zarandah, Bassem S. Abunasser, Alaa M. Barhoom & Samy S. Abu-Naser - 2024 - International Journal of Academic Engineering Research(Ijaer) 8 (8):8-15.
    Abstract: The integration of Artificial Intelligence (AI) into medical imaging represents a transformative shift in healthcare, offering significant improvements in diagnostic accuracy, efficiency, and patient outcomes. This paper explores the application of AI technologies in the analysis of medical images, focusing on techniques such as convolutional neural networks (CNNs) and deep learning models. We discuss how these technologies are applied to various imaging modalities, including X-rays, MRIs, and CT scans, to enhance disease detection, image segmentation, and diagnostic support. Additionally, the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Harnessing Artificial Intelligence to Enhance Medical Image Analysis.Malak S. Hamad, Mohammed H. Aldeeb, Mohammed M. Almzainy, Shahd J. Albadrasawi, Musleh M. Musleh, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Health and Medical Research (IJAHMR) 8 (9):1-7.
    Abstract: The integration of Artificial Intelligence (AI) into medical imaging marks a transformative advancement in healthcare, significantly enhancing diagnostic accuracy, efficiency, and patient outcomes. This paper delves into the application of AI technologies in medical image analysis, with a particular focus on techniques such as convolutional neural networks (CNNs) and deep learning models. We examine how these technologies are employed across various imaging modalities, including X-rays, MRIs, and CT scans, to improve disease detection, image segmentation, and diagnostic support. Furthermore, the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9.  35
    Selective responses to faces, scenes, and bodies in the ventral visual pathway of infants.Heather Kosakowski - 2022 - Current Biology 32 (2):265-274.
    Three of the most robust functional landmarks in the human brain are the selective responses to faces in the fusiform face area (FFA), scenes in the parahippocampal place area (PPA), and bodies in the extrastriate body area (EBA). Are the selective responses of these regions present early in development or do they require many years to develop? Prior evidence leaves this question unresolved. We designed a new 32-channel infant magnetic resonance imaging (MRI) coil and collected high-quality functional MRI (fMRI) (...) from infants (2–9 months of age) while they viewed stimuli from four conditions—faces, bodies, objects, and scenes. We find that infants have face-, scene-, and body-selective responses in the location of the adult FFA, PPA, and EBA, respectively, powerfully constraining accounts of cortical development. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Data is the new gold, but efficiently mining it requires a philosophy of data.Data Thinkerr - 2023 - Data Thinking.
    Fixing the problem won’t be easy, but humans’ sharpened focus on an emerging philosophy of data might give us some clue about where we will be heading for.
    Download  
     
    Export citation  
     
    Bookmark  
  11. The 1 law of "absolute reality"." ~, , Data", , ", , Value", , = O. &Gt, Being", & Human - manuscript
    Download  
     
    Export citation  
     
    Bookmark  
  12. (1 other version)Open data, open review and open dialogue in making social sciences plausible.Quan-Hoang Vuong - 2017 - Nature: Scientific Data Updates 2017.
    Nowadays, protecting trust in social sciences also means engaging in open community dialogue, which helps to safeguard robustness and improve efficiency of research methods. The combination of open data, open review and open dialogue may sound simple but implementation in the real world will not be straightforward. However, in view of Begley and Ellis’s (2012) statement that, “the scientific process demands the highest standards of quality, ethics and rigour,” they are worth implementing. More importantly, they are feasible to work (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  13. Data.Luciano Floridi - 2008 - In William A. Darity (ed.), International Encyclopedia of the Social Sciences. Macmillan.
    The word data (sing. datum) is originally Latin for “things given or granted”. Because of such a humble and generic meaning, the term enjoys considerable latitude both in its technical and in its common usage, for almost anything can be referred to as a “thing given or granted” (Cherry [1978]). With some reasonable approximation, four principal interpretations may be identified in the literature. The first three captures part of the nature of the concept and are discussed in the next (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  14. 3D-MRI Obstruction and Visualization of Pharyngeal Airway Tract using Open Source Seeded Technique.T. Augusty Chandija Lincy, Mrs S. Murine Sharmili & Ijeais Ijarw - 2018 - International Journal of Academic Health and Medical Research (IJAHMR) 2 (2):1-6.
    Abstract: Obstructive Sleep Apnea(OSA) is breathing disorder syndrome in which the airway tract pauses during sleep due to collapse of pharyngeal airway. It is occurred at the sleep time, with fourth dimensional high resolution in airway tract Obstruction in children and adults with OSA. Here, we the operator places the seeds that includes the Oesopharyngeal air tract and found out a threshold for the first frame in order to determine the affected tissues which blocks the patients pharyngeal tract. In this (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Brain Data in Context: Are New Rights the Way to Mental and Brain Privacy?Daniel Susser & Laura Y. Cabrera - 2023 - American Journal of Bioethics Neuroscience 15 (2):122-133.
    The potential to collect brain data more directly, with higher resolution, and in greater amounts has heightened worries about mental and brain privacy. In order to manage the risks to individuals posed by these privacy challenges, some have suggested codifying new privacy rights, including a right to “mental privacy.” In this paper, we consider these arguments and conclude that while neurotechnologies do raise significant privacy concerns, such concerns are—at least for now—no different from those raised by other well-understood (...) collection technologies, such as gene sequencing tools and online surveillance. To better understand the privacy stakes of brain data, we suggest the use of a conceptual framework from information ethics, Helen Nissenbaum’s “contextual integrity” theory. To illustrate the importance of context, we examine neurotechnologies and the information flows they produce in three familiar contexts—healthcare and medical research, criminal justice, and consumer marketing. We argue that by emphasizing what is distinct about brain privacy issues, rather than what they share with other data privacy concerns, risks weakening broader efforts to enact more robust privacy law and policy. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  16. (1 other version)Perception and testimony as data providers.Luciano Floridi - 2014 - Logique Et Analyse 57 (226):71–95.
    This chapter addresses two questions. First, if knowledge is accounted information, how are we supposed (to apply this analysis in order) to understand perceptual knowledge and knowledge by testimony? In the first part of the chapter, I articulate an answer in terms of a re-interpretation of perception and testimony as data providers rather than full-blown cases of knowledge. Second, if perception and testimony are correctly understood as data providers, how are we supposed (to apply this analysis in order) (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  17. Data models, representation and adequacy-for-purpose.Alisa Bokulich & Wendy Parker - 2021 - European Journal for Philosophy of Science 11 (1):1-26.
    We critically engage two traditional views of scientific data and outline a novel philosophical view that we call the pragmatic-representational view of data. On the PR view, data are representations that are the product of a process of inquiry, and they should be evaluated in terms of their adequacy or fitness for particular purposes. Some important implications of the PR view for data assessment, related to misrepresentation, context-sensitivity, and complementary use, are highlighted. The PR view provides (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  18. Retractions Data Mining #1.Quan-Hoang Vuong & Viet-Phuong La - 2019 - Open Science Framework 2019 (2):1-3.
    Motivation: • Breaking barriers in publishing demands a proactive attitude • Open data, open review and open dialogue in making social sciences plausible .
    Download  
     
    Export citation  
     
    Bookmark  
  19. Big data and their epistemological challenge.Luciano Floridi - 2012 - Philosophy and Technology 25 (4):435-437.
    Between 2006 and 2011, humanity accumulated 1,600 EB of data. As a result of this growth, there is now more data produced than available storage. This article explores the problem of “Big Data,” arguing for an epistemological approach as a possible solution to this ever-increasing challenge.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  20. Big Data Ethics in Education and Research.Nicolae Sfetcu - 2023 - It and C 2 (3):26-35.
    Big data ethics involves adherence to the concepts of right and wrong behavior regarding data, especially personal data. Big Data ethics focuses on structured or unstructured data collectors and disseminators. Big data ethics is supported, at EU level, by extensive documentation, which seeks to find concrete solutions to maximize the value of big data without sacrificing fundamental human rights. The European Data Protection Supervisor (EDPS) supports the right to privacy and the right (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Data quality, experimental artifacts, and the reactivity of the psychological subject matter.Uljana Feest - 2022 - European Journal for Philosophy of Science 12 (1):1-25.
    While the term “reactivity” has come to be associated with specific phenomena in the social sciences, having to do with subjects’ awareness of being studied, this paper takes a broader stance on this concept. I argue that reactivity is a ubiquitous feature of the psychological subject matter and that this fact is a precondition of experimental research, while also posing potential problems for the experimenter. The latter are connected to the worry about distorted data and experimental artifacts. But what (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  22. Big Data, epistemology and causality: Knowledge in and knowledge out in EXPOsOMICS.Stefano Canali - 2016 - Big Data and Society 3 (2).
    Recently, it has been argued that the use of Big Data transforms the sciences, making data-driven research possible and studying causality redundant. In this paper, I focus on the claim on causal knowledge by examining the Big Data project EXPOsOMICS, whose research is funded by the European Commission and considered capable of improving our understanding of the relation between exposure and disease. While EXPOsOMICS may seem the perfect exemplification of the data-driven view, I show how causal (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  23. Data, Privacy, and the Individual.Carissa Véliz - 2020 - Center for the Governance of Change.
    The first few years of the 21st century were characterised by a progressive loss of privacy. Two phenomena converged to give rise to the data economy: the realisation that data trails from users interacting with technology could be used to develop personalised advertising, and a concern for security that led authorities to use such personal data for the purposes of intelligence and policing. In contrast to the early days of the data economy and internet surveillance, the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  24. A Theory of Sense-Data.Andrew Y. Lee - forthcoming - Analytic Philosophy.
    I develop and defend a sense-datum theory of perception. My theory follows the spirit of classic sense-datum theories: I argue that what it is to have a perceptual experience is to be acquainted with some sense-data, where sense-data are private particulars that have all the properties they appear to have, that are common to both perception and hallucination, that constitute the phenomenal characters of perceptual experiences, and that are analogous to pictures inside one’s head. But my theory also (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  25. Data management practices in Educational Research.Valentine Joseph Owan & Bassey Asuquo Bassey - 2019 - In P. N. Ololube & G. U. Nwiyi (eds.), Encyclopedia of institutional leadership, policy, and management: A handbook of research in honour of Professor Ozo-Mekuri Ndimele. pp. 1251-1265.
    Data is very important in any research experiment because it occupies a central place in making decisions based on findings resulting from the analysis of such data. Given its central role, it follows that such an important asset as data, deserve effective management in order to protect the integrity and provide an opportunity for effective problem-solving. The main thrust of this paper was to examine data management practices that should be adopted by scholars in maintaining the (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  26. Why Data Privacy is Key To a Smart Energy Future.Carissa Véliz & Philipp Grunewald - 2018 - Nature Energy 3:702-704.
    The ability to collect fine-grained energy data from smart meters has benefits for utilities and consumers. However, a proactive approach to data privacy is necessary to maximize the potential of these data to support low-carbon energy systems, and innovative business models.
    Download  
     
    Export citation  
     
    Bookmark  
  27.  85
    Efficient Data Center Management: Advanced SLA-Driven Load Balancing Solutions.M. Arul Selvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):368-376.
    In modern data centers, managing the distribution of workloads efficiently is crucial for ensuring optimal performance and meeting Service Level Agreements (SLAs). Load balancing algorithms play a vital role in this process by distributing workloads across computing resources to avoid overloading any single resource. However, the effectiveness of these algorithms can be significantly enhanced through the integration of advanced optimization techniques. This paper proposes an SLA-driven load balancing algorithm optimized using methods such as genetic algorithms, particle swarm optimization, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. OPTIMIZING DATA SCIENCE WORKFLOWS IN CLOUD COMPUTING.Tummalachervu Chaitanya Kanth - 2024 - Journal of Science Technology and Research (JSTAR) 4 (1):71-76.
    This paper explores the challenges and innovations in optimizing data science workflows within cloud computing environments. It begins by highlighting the critical role of data science in modern industries and the pivotal contribution of cloud computing in enabling scalable and efficient data processing. The primary focus lies in identifying and analyzing the key challenges encountered in current data science workflows deployed in cloud infrastructures. These challenges include scalability issues related to handling large volumes of data, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  29. Big Data and Changing Concepts of the Human.Carrie Figdor - 2019 - European Review 27 (3):328-340.
    Big Data has the potential to enable unprecedentedly rigorous quantitative modeling of complex human social relationships and social structures. When such models are extended to nonhuman domains, they can undermine anthropocentric assumptions about the extent to which these relationships and structures are specifically human. Discoveries of relevant commonalities with nonhumans may not make us less human, but they promise to challenge fundamental views of what it is to be human.
    Download  
     
    Export citation  
     
    Bookmark  
  30. Data and Safety Monitoring Board and the Ratio Decidendi of the Trial.Roger Stanev - 2015 - Journal of Philosophy, Science and Law 15:1-26.
    Decision-making by a Data and Safety Monitoring Board (DSMB) regarding clinical trial conduct and termination is intricate and largely limited by cases and rules. Decision-making by legal jury is also intricate and largely constrained by cases and rules. In this paper, I argue by analogy that legal decision-making, which strives for a balance between competing demands of conservatism and innovation, supplies a good basis to the logic behind DSMB decision-making. Using the doctrine of precedents in legal reasoning as my (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Sense-data and the philosophy of mind: Russell, James, and Mach.Gary Hatfield - 2002 - Principia 6 (2):203-230.
    The theory of knowledge in early twentieth-century Anglo American philosophy was oriented toward phenomenally described cognition. There was a healthy respect for the mind-body problem, which meant that phenomena in both the mental and physical domains were taken seriously. Bertrand Russell's developing position on sense-data and momentary particulars drew upon, and ultimately became like, the neutral monism of Ernst Mach and William James. Due to a more recent behaviorist and physicalist inspired "fear of the mental", this development has been (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  32. Cloud Data Security Using Elliptic Curve Cryptography.Arockia Panimalars, N. Dharani, R. Aiswarya & Pavithra Shailesh - 2017 - International Research Journal of Engineering and Technology 9 (4).
    Data security is, protecting data from ill- conceived get to, utilize, introduction, intrusion, change, examination, recording or destruction. Cloud computing is a sort of Internet-based computing that grants conjoint PC handling resources and information to PCs what's more, different gadgets according to necessity. It is a model that empowers universal, on-request access to a mutual pool of configurable computing resources. At present, security has been viewed as one of the best issues in the improvement of Cloud Computing. The (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  33. Punishment and psychopathy: a case-control functional MRI investigation of reinforcement learning in violent antisocial personality disordered men.Sarah Gregory, R. James Blair, Dominic Ffytche, Andrew Simmons, Veena Kumari, Sheilagh Hodgins & Nigel Blackwood - 2014 - Lancet Psychiatry 2:153–160.
    Background Men with antisocial personality disorder show lifelong abnormalities in adaptive decision making guided by the weighing up of reward and punishment information. Among men with antisocial personality disorder, modifi cation of the behaviour of those with additional diagnoses of psychopathy seems particularly resistant to punishment. Methods We did a case-control functional MRI (fMRI) study in 50 men, of whom 12 were violent off enders with antisocial personality disorder and psychopathy, 20 were violent off enders with antisocial personality disorder but (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  34. What is data ethics?Luciano Floridi & Mariarosaria Taddeo - 2016 - Philosophical Transactions of the Royal Society A 374 (2083):20160360.
    This theme issue has the founding ambition of landscaping Data Ethics as a new branch of ethics that studies and evaluates moral problems related to data (including generation, recording, curation, processing, dissemination, sharing, and use), algorithms (including AI, artificial agents, machine learning, and robots), and corresponding practices (including responsible innovation, programming, hacking, and professional codes), in order to formulate and support morally good solutions (e.g. right conducts or right values). Data Ethics builds on the foundation provided by (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  35. Data Synthesis for Big Questions: From Animal Tracks to Ecological Models.Rose Trappes - 2024 - Philosophy, Theory, and Practice in Biology 16 (1):4.
    This paper addresses a relatively new mode of ecological research: data synthesis studies. Data synthesis studies involve reusing data to create a general model as well as a reusable, aggregated dataset. Using a case from movement ecology, I analyse the trade-offs and strategies involved in data synthesis. Like theoretical ecological modelling, I find that synthesis studies involve a modelling trade-off between generality, precision and realism; they deal with this trade-off by adopting a pragmatic kludging strategy. I (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Data Analytics in Higher Education: Key Concerns and Open Questions.Alan Rubel & Kyle M. L. Jones - 2017 - University of St. Thomas Journal of Law and Public Policy 1 (11):25-44.
    “Big Data” and data analytics affect all of us. Data collection, analysis, and use on a large scale is an important and growing part of commerce, governance, communication, law enforcement, security, finance, medicine, and research. And the theme of this symposium, “Individual and Informational Privacy in the Age of Big Data,” is expansive; we could have long and fruitful discussions about practices, laws, and concerns in any of these domains. But a big part of the audience (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  37. Secure and Scalable Data Mining Technique over a Restful Web Services.Solar Francesco & Oliver Smith - forthcoming - International Journal of Research and Innovation in Applied Science.
    Scalability, efficiency, and security had been a persistent problem over the years in data mining, several techniques had been proposed and implemented but none had been able to solve the problem of scalability, efficiency and security from cloud computing. In this research, we solve the problem scalability, efficiency and security in data mining over cloud computing by using a restful web services and combination of different technologies and tools, our model was trained by using different machine learning algorithm, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. ADVANCE DATA SECURITY IN CLOUD NETWORK SYSTEMS.Tummalachervu Chaitanya Kanth - 2023 - Journal of Science Technology and Research (JSTAR) 4 (1):29-36.
    This research presents a novel and efficient public key cryptosystem known as the Enhanced Schmidt Samoa (ESS) cryptosystem, proposed to safeguard the data of a single owner in cloud computing environments. Data storage is a one-time process in the cloud, while data retrieval is a frequent operation. Experimental results demonstrate that the ESS cryptosystem offers robust data confidentiality in the cloud, surpassing the security provided by traditional cryptosystems. The research also introduces a secure cloud framework designed (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  39. Critical Provocations for Synthetic Data.Daniel Susser & Jeremy Seeman - 2024 - Surveillance and Society 22 (4):453-459.
    Training artificial intelligence (AI) systems requires vast quantities of data, and AI developers face a variety of barriers to accessing the information they need. Synthetic data has captured researchers’ and industry’s imagination as a potential solution to this problem. While some of the enthusiasm for synthetic data may be warranted, in this short paper we offer critical counterweight to simplistic narratives that position synthetic data as a cost-free solution to every data-access challenge—provocations highlighting ethical, political, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Data Mining the Brain to Decode the Mind.Daniel Weiskopf - 2020 - In Fabrizio Calzavarini & Marco Viola (eds.), Neural Mechanisms: New Challenges in the Philosophy of Neuroscience. Springer.
    In recent years, neuroscience has begun to transform itself into a “big data” enterprise with the importation of computational and statistical techniques from machine learning and informatics. In addition to their translational applications such as brain-computer interfaces and early diagnosis of neuropathology, these tools promise to advance new solutions to longstanding theoretical quandaries. Here I critically assess whether these promises will pay off, focusing on the application of multivariate pattern analysis (MVPA) to the problem of reverse inference. I argue (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  41. Data subject rights as a research methodology: A systematic literature review.Adamu Adamu Habu & Tristan Henderson - 2023 - Journal of Responsible Technology 16 (C):100070.
    Data subject rights provide data controllers with obligations that can help with transparency, giving data subjects some control over their personal data. To date, a growing number of researchers have used these data subject rights as a methodology for data collection in research studies. No one, however, has gathered and analysed different academic research studies that use data subject rights as a methodology for data collection. To this end, we conducted a systematic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Data Mining in the Context of Legality, Privacy, and Ethics.Amos Okomayin, Tosin Ige & Abosede Kolade - 2023 - International Journal of Research and Innovation in Applied Science 10 (Vll):10-15.
    Data mining possess a significant threat to ethics, privacy, and legality, especially when we consider the fact that data mining makes it difficult for an individual or consumer (in the case of a company) to control accessibility and usage of his data. Individuals should be able to control how his/ her data in the data warehouse is being access and utilize while at the same time providing enabling environment which enforces legality, privacy and ethicality on (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  43.  32
    Deep Learning - Driven Data Leakage Detection for Secure Cloud Computing.Yoheswari S. - 2024 - International Journal of Engineering Innovations and Management Strategies 5 (1):1-4.
    Cloud computing has revolutionized the storage and management of data by offering scalable, cost-effective, and flexible solutions. However, it also introduces significant security concerns, particularly related to data leakage, where sensitive information is exposed to unauthorized entities. Data leakage can result in substantial financial losses, reputational damage, and legal complications. This paper proposes a deep learning-based framework for detecting data leakage in cloud environments. By leveraging advanced neural network architectures, such as Long Short- Term Memory (LSTM) (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Critical remarks on current practices of data article publishing: Issues, challenges, and recommendations.Quan-Hoang Vuong, Viet-Phuong La & Minh-Hoang Nguyen - 2024 - Data Science and Informetrics 4 (2):1-14.
    The contribution of the data paper publishing paradigm to the knowledge generation and validation processes is becoming substantial and pivotal. In this paper, through the information-processing perspective of Mindsponge Theory, we discuss how the data article publishing system serves as a filtering mechanism for quality control of the increasingly chaotic datasphere. The overemphasis on machine-actionality and technical standards presents some shortcomings and limitations of the data article publishing system, such as the lack of consideration of humanistic values, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. AI training data, model success likelihood, and informational entropy-based value.Quan-Hoang Vuong, Viet-Phuong La & Minh-Hoang Nguyen - manuscript
    Since the release of OpenAI's ChatGPT, the world has entered a race to develop more capable and powerful AI, including artificial general intelligence (AGI). The development is constrained by the dependency of AI on the model, quality, and quantity of training data, making the AI training process highly costly in terms of resources and environmental consequences. Thus, improving the effectiveness and efficiency of the AI training process is essential, especially when the Earth is approaching the climate tipping points and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Using models to correct data: paleodiversity and the fossil record.Alisa Bokulich - 2018 - Synthese 198 (Suppl 24):5919-5940.
    Despite an enormous philosophical literature on models in science, surprisingly little has been written about data models and how they are constructed. In this paper, I examine the case of how paleodiversity data models are constructed from the fossil data. In particular, I show how paleontologists are using various model-based techniques to correct the data. Drawing on this research, I argue for the following related theses: first, the ‘purity’ of a data model is not a (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  47. Data and the Good?Daniel Susser - 2022 - Surveillance and Society 20 (3):297-301.
    Surveillance studies scholars and privacy scholars have each developed sophisticated, important critiques of the existing data-driven order. But too few scholars in either tradition have put forward alternative substantive conceptions of a good digital society. This, I argue, is a crucial omission. Unless we construct new “sociotechnical imaginaries,” new understandings of the goals and aspirations digital technologies should aim to achieve, the most surveillance studies and privacy scholars can hope to accomplish is a less unjust version of the technology (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  48. Big Data Analytics in Healthcare: Exploring the Role of Machine Learning in Predicting Patient Outcomes and Improving Healthcare Delivery.Federico Del Giorgio Solfa & Fernando Rogelio Simonato - 2023 - International Journal of Computations Information and Manufacturing (Ijcim) 3 (1):1-9.
    Healthcare professionals decide wisely about personalized medicine, treatment plans, and resource allocation by utilizing big data analytics and machine learning. To guarantee that algorithmic recommendations are impartial and fair, however, ethical issues relating to prejudice and data privacy must be taken into account. Big data analytics and machine learning have a great potential to disrupt healthcare, and as these technologies continue to evolve, new opportunities to reform healthcare and enhance patient outcomes may arise. In order to investigate (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Big Data Analytics and How to Buy an Election.Jakob Mainz, Rasmus Uhrenfeldt & Jorn Sonderholm - 2021 - Public Affairs Quarterly 32 (2):119-139.
    In this article, we show how it is possible to lawfully buy an election. The method we describe for buying an election is novel. The key things that make it possible to buy an election are the existence of public voter registration lists where one can see whether a given elector has voted in a particular election, and the existence of Big Data Analytics that with a high degree of accuracy can predict what a given elector will vote in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Synthetic Health Data: Real Ethical Promise and Peril.Daniel Susser, Daniel S. Schiff, Sara Gerke, Laura Y. Cabrera, I. Glenn Cohen, Megan Doerr, Jordan Harrod, Kristin Kostick-Quenet, Jasmine McNealy, Michelle N. Meyer, W. Nicholson Price & Jennifer K. Wagner - 2024 - Hastings Center Report 54 (5):8-13.
    Researchers and practitioners are increasingly using machine‐generated synthetic data as a tool for advancing health science and practice, by expanding access to health data while—potentially—mitigating privacy and related ethical concerns around data sharing. While using synthetic data in this way holds promise, we argue that it also raises significant ethical, legal, and policy concerns, including persistent privacy and security problems, accuracy and reliability issues, worries about fairness and bias, and new regulatory challenges. The virtue of synthetic (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 969