Results for 'Mathematical Natural Philosophy'

996 found
Order:
  1. Hobbes on Natural Philosophy as "True Physics" and Mixed Mathematics.Marcus P. Adams - 2016 - Studies in History and Philosophy of Science Part A 56:43-51.
    I offer an alternative account of the relationship of Hobbesian geometry to natural philosophy by arguing that mixed mathematics provided Hobbes with a model for thinking about it. In mixed mathematics, one may borrow causal principles from one science and use them in another science without there being a deductive relationship between those two sciences. Natural philosophy for Hobbes is mixed because an explanation may combine observations from experience (the ‘that’) with causal principles from geometry (the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  2. Natural Philosophy, Deduction, and Geometry in the Hobbes-Boyle Debate.Marcus P. Adams - 2017 - Hobbes Studies 30 (1):83-107.
    This paper examines Hobbes’s criticisms of Robert Boyle’s air-pump experiments in light of Hobbes’s account in _De Corpore_ and _De Homine_ of the relationship of natural philosophy to geometry. I argue that Hobbes’s criticisms rely upon his understanding of what counts as “true physics.” Instead of seeing Hobbes as defending natural philosophy as “a causal enterprise … [that] as such, secured total and irrevocable assent,” 1 I argue that, in his disagreement with Boyle, Hobbes relied upon (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  3. Review of Reading Natural Philosophy: Essays in the History and Philosophy of Science and Mathematics. [REVIEW]Chris Smeenk - 2005 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (1):194-199.
    Book Review for Reading Natural Philosophy: Essays in the History and Philosophy of Science and Mathematics, La Salle, IL: Open Court, 2002. Edited by David Malament. This volume includes thirteen original essays by Howard Stein, spanning a range of topics that Stein has written about with characteristic passion and insight. This review focuses on the essays devoted to history and philosophy of physics.
    Download  
     
    Export citation  
     
    Bookmark  
  4. The Significance of Evidence-based Reasoning in Mathematics, Mathematics Education, Philosophy, and the Natural Sciences.Bhupinder Singh Anand - 2020 - Mumbai: DBA Publishing (First Edition).
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  5. The Significance of Evidence-based Reasoning for Mathematics, Mathematics Education, Philosophy and the Natural Sciences.Bhupinder Singh Anand - forthcoming
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  6. Axiomatic Natural Philosophy and the Emergence of Biology as a Science.Hein van den Berg & Boris Demarest - 2020 - Journal of the History of Biology 53 (3):379-422.
    Ernst Mayr argued that the emergence of biology as a special science in the early nineteenth century was possible due to the demise of the mathematical model of science and its insistence on demonstrative knowledge. More recently, John Zammito has claimed that the rise of biology as a special science was due to a distinctive experimental, anti-metaphysical, anti-mathematical, and anti-rationalist strand of thought coming from outside of Germany. In this paper we argue that this narrative neglects the important (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  7. Hume's Natural Philosophy and Philosophy of Physical Science.Matias Slavov - 2020 - London: Bloomsbury Academic.
    This book contextualizes David Hume's philosophy of physical science, exploring both Hume's background in the history of early modern natural philosophy and its subsequent impact on the scientific tradition.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  8. Plato's Natural Philosophy and Metaphysics.Luc Brisson - 2018 - In Sean D. Kirkland & Eric Sanday (eds.), A Companion to Ancient Philosophy. Evanston, Illinois: Northwestern University Press. pp. 212–231.
    This chapter contains sections titled: Going Beyond Nature in Order to Explain it Technē, epistēmē and alēthēs doxa Mathematics, pure and applied Observation and Experimental Verification Bibliography.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  9. Berkeley's natural philosophy and philosophy of science.Lisa Downing - 2005 - In Kenneth P. Winkler (ed.), The Cambridge Companion to Berkeley. Cambridge University Press. pp. 230--265.
    Although George Berkeley himself made no major scientific discoveries, nor formulated any novel theories, he was nonetheless actively concerned with the rapidly evolving science of the early eighteenth century. Berkeley's works display his keen interest in natural philosophy and mathematics from his earliest writings (Arithmetica, 1707) to his latest (Siris, 1744). Moreover, much of his philosophy is fundamentally shaped by his engagement with the science of his time. In Berkeley's best-known philosophical works, the Principles and Dialogues, he (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  10. Essays concerning Hume's Natural Philosophy.Matias Slavov - 2016 - Dissertation, University of Jyväskylä
    The subject of this essay-based dissertation is Hume’s natural philosophy. The dissertation consists of four separate essays and an introduction. These essays do not only treat Hume’s views on the topic of natural philosophy, but his views are placed into a broader context of history of philosophy and science, physics in particular. The introductory section outlines the historical context, shows how the individual essays are connected, expounds what kind of research methodology has been used, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. The Nature of the Structures of Applied Mathematics and the Metatheoretical Justification for the Mathematical Modeling.Catalin Barboianu - 2015 - Romanian Journal of Analytic Philosophy 9 (2):1-32.
    The classical (set-theoretic) concept of structure has become essential for every contemporary account of a scientific theory, but also for the metatheoretical accounts dealing with the adequacy of such theories and their methods. In the latter category of accounts, and in particular, the structural metamodels designed for the applicability of mathematics have struggled over the last decade to justify the use of mathematical models in sciences beyond their 'indispensability' in terms of either method or concepts/entities. In this paper, I (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Philosophy of Mathematics.Alexander Paseau (ed.) - 2016 - New York: Routledge.
    Mathematics is everywhere and yet its objects are nowhere. There may be five apples on the table but the number five itself is not to be found in, on, beside or anywhere near the apples. So if not in space and time, where are numbers and other mathematical objects such as perfect circles and functions? And how do we humans discover facts about them, be it Pythagoras’ Theorem or Fermat’s Last Theorem? The metaphysical question of what numbers are and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Mathematical Platonism and the Nature of Infinity.Gilbert B. Côté - 2013 - Open Journal of Philosophy 3 (3):372-375.
    An analysis of the counter-intuitive properties of infinity as understood differently in mathematics, classical physics and quantum physics allows the consideration of various paradoxes under a new light (e.g. Zeno’s dichotomy, Torricelli’s trumpet, and the weirdness of quantum physics). It provides strong support for the reality of abstractness and mathematical Platonism, and a plausible reason why there is something rather than nothing in the concrete universe. The conclusions are far reaching for science and philosophy.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  14. Catholic physics: Jesuit natural philosophy in early modern Germany by Marcus Hellyer. [REVIEW]Louis Caruana - 2008 - Heythrop Journal 49 (4):683-685.
    Was the Society of Jesus the main obstacle for the acceptance of the new physics in modern Europe? Was their educational system, all over Europe, completely under the strict control of regulations imposed by the Jesuit hierarchy in Rome? How did the various Jesuit colleges confront, reject, or absorb the crucial novelties of the mathematical and experimental method? Marcus Hellyer addresses such crucial questions in this book.
    Download  
     
    Export citation  
     
    Bookmark  
  15. Spinoza and the Philosophy of Science: Mathematics, Motion, and Being.Eric Schliesser - 1986, 2002
    This chapter argues that the standard conception of Spinoza as a fellow-travelling mechanical philosopher and proto-scientific naturalist is misleading. It argues, first, that Spinoza’s account of the proper method for the study of nature presented in the Theological-Political Treatise (TTP) points away from the one commonly associated with the mechanical philosophy. Moreover, throughout his works Spinoza’s views on the very possibility of knowledge of nature are decidedly sceptical (as specified below). Third, in the seventeenth-century debates over proper methods in (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  16. “In Nature as in Geometry”: Du Châtelet and the Post-Newtonian Debate on the Physical Significance of Mathematical Objects.Aaron Wells - 2023 - In Wolfgang Lefèvre (ed.), Between Leibniz, Newton, and Kant: Philosophy and Science in the Eighteenth Century. Springer Verlag. pp. 69-98.
    Du Châtelet holds that mathematical representations play an explanatory role in natural science. Moreover, she writes that things proceed in nature as they do in geometry. How should we square these assertions with Du Châtelet’s idealism about mathematical objects, on which they are ‘fictions’ dependent on acts of abstraction? The question is especially pressing because some of her important interlocutors (Wolff, Maupertuis, and Voltaire) denied that mathematics informs us about the properties of material things. After situating Du (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17.  23
    Nature of Gravitation. The Structural Intuition of Gravitation in the Framework of Early Modern Mechanical Philosophy.Babu Thaliath - 2012 - Philosophy Study 2 (9):595-618.
    As is generally known, Newton’s notion of universal gravitation surpassed various theories of particular gravities in the early modern age, as represented mainly by Kepler and Hooke. In his seminal work “Hooke and the Law of Universal Gravitation: A Reappraisal of a Reappraisal” Richard S. Westfall argues that Hooke could not reach beyond the concept of spatially bounded particular gravities, as he deployed the method of analogy between the material principle of congruity and incongruity and the extension of gravitational spheres (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Applying Mathematics to Nature.Maarten Van Dyck - 2022 - In David M. Miller & Dana Jalobeanu (eds.), The Cambridge History of Philosophy of the Scientific Revolution. pp. 254-273.
    Download  
     
    Export citation  
     
    Bookmark  
  19. Aristotelianism in the Philosophy of Mathematics.James Franklin - 2011 - Studia Neoaristotelica 8 (1):3-15.
    Modern philosophy of mathematics has been dominated by Platonism and nominalism, to the neglect of the Aristotelian realist option. Aristotelianism holds that mathematics studies certain real properties of the world – mathematics is neither about a disembodied world of “abstract objects”, as Platonism holds, nor it is merely a language of science, as nominalism holds. Aristotle’s theory that mathematics is the “science of quantity” is a good account of at least elementary mathematics: the ratio of two heights, for example, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  20. Nature of Philosophy.Mudasir A. Tantray & Ateequllah Dar - 2016 - International Journal Of Humanities and Social Studies 2 (12):39-42.
    The aim of this paper is to examine the nature, scope and importance of philosophy in the light of its relation to other disciplines. This work pays its focus on the various fundamental problems of philosophy, relating to Ethics, Metaphysics, Epistemology Logic, and its association with scientific realism. It will also highlight the various facets of these problems and the role of philosophers to point out the various issues relating to human issues. It is widely agreed that (...) as a multi-dimensional subject that shows affinity to others branches of philosophy like, Philosophy of Science, Humanities, Physics and Mathematics, but this paper also seeks, a philosophical nature towards the universal problems of nature. It evaluates the contribution and sacrifices of the great sages of philosophers to promote the clarity and progress in the field of philosophy. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  21. Practising Philosophy of Mathematics with Children.Elisa Bezençon - 2020 - Philosophy of Mathematics Education Journal 36.
    This article examines the possibility of philosophizing about mathematics with children. It aims at outlining the nature of the practice of philosophy of mathematics with children in a mainly theoretical and exploratory way. First, an attempt at a definition is proposed. Second, I suggest some reasons that might motivate such a practice. My thesis is that one can identify an intrinsic as well as two extrinsic goals of philosophizing about mathematics with children. The intrinsic goal is related to a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Natorp's mathematical philosophy of science.Thomas Mormann - 2022 - Studia Kantiana 20 (2):65 - 82.
    This paper deals with Natorp’s version of the Marburg mathematical philosophy of science characterized by the following three features: The core of Natorp’s mathematical philosophy of science is contained in his “knowledge equation” that may be considered as a mathematical model of the “transcendental method” conceived by Natorp as the essence of the Marburg Neo-Kantianism. For Natorp, the object of knowledge was an infinite task. This can be elucidated in two different ways: Carnap, in the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. ’s Gravesande on the Application of Mathematics in Physics and Philosophy.Jip Van Besouw - 2017 - Noctua 4 (1-2):17-55.
    Willem Jacob ’s Gravesande is widely remembered as a leading advocate of Isaac Newton’s work. In the first half of the eighteenth century, ’s Gravesande was arguably Europe’s most important proponent of what would become known as Newtonian physics. ’s Gravesande himself minimally described this discipline, which he called «physica», as studying empirical regularities mathematically while avoiding hypotheses. Commentators have as yet not progressed much beyond this view of ’s Gravesande’s physics. Therefore, much of its precise nature, its methodology, and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  24. Cassirer's Psychology of Relations: From the Psychology of Mathematics and Natural Science to the Psychology of Culture.Samantha Matherne - 2018 - Journal for the History of Analytical Philosophy 6 (3).
    In spite of Ernst Cassirer’s criticisms of psychologism throughout Substance and Function, in the final chapter he issues a demand for a “psychology of relations” that can do justice to the subjective dimensions of mathematics and natural science. Although these remarks remain somewhat promissory, the fact that this is how Cassirer chooses to conclude Substance and Function recommends it as a topic worthy of serious consideration. In this paper, I argue that in order to work out the details of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  25. Artifice and the natural world: Mathematics, logic, technology.James Franklin - 2006 - In K. Haakonssen (ed.), Cambridge History of Eighteenth-Century Philosophy. Cambridge University Press.
    If Tahiti suggested to theorists comfortably at home in Europe thoughts of noble savages without clothes, those who paid for and went on voyages there were in pursuit of a quite opposite human ideal. Cook's voyage to observe the transit of Venus in 1769 symbolises the eighteenth century's commitment to numbers and accuracy, and its willingness to spend a lot of public money on acquiring them. The state supported the organisation of quantitative researches, employing surveyors and collecting statistics to..
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  26. Mathematics as Make-Believe: A Constructive Empiricist Account.Sarah Elizabeth Hoffman - 1999 - Dissertation, University of Alberta (Canada)
    Any philosophy of science ought to have something to say about the nature of mathematics, especially an account like constructive empiricism in which mathematical concepts like model and isomorphism play a central role. This thesis is a contribution to the larger project of formulating a constructive empiricist account of mathematics. The philosophy of mathematics developed is fictionalist, with an anti-realist metaphysics. In the thesis, van Fraassen's constructive empiricism is defended and various accounts of mathematics are considered and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  27. Logic, mathematics, physics: from a loose thread to the close link: Or what gravity is for both logic and mathematics rather than only for physics.Vasil Penchev - 2023 - Astrophysics, Cosmology and Gravitation Ejournal 2 (52):1-82.
    Gravitation is interpreted to be an “ontomathematical” force or interaction rather than an only physical one. That approach restores Newton’s original design of universal gravitation in the framework of “The Mathematical Principles of Natural Philosophy”, which allows for Einstein’s special and general relativity to be also reinterpreted ontomathematically. The entanglement theory of quantum gravitation is inherently involved also ontomathematically by virtue of the consideration of the qubit Hilbert space after entanglement as the Fourier counterpart of pseudo-Riemannian space. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Wisdom Mathematics.Nicholas Maxwell - 2010 - Friends of Wisdom Newsletter (6):1-6.
    For over thirty years I have argued that all branches of science and scholarship would have both their intellectual and humanitarian value enhanced if pursued in accordance with the edicts of wisdom-inquiry rather than knowledge-inquiry. I argue that this is true of mathematics. Viewed from the perspective of knowledge-inquiry, mathematics confronts us with two fundamental problems. (1) How can mathematics be held to be a branch of knowledge, in view of the difficulties that view engenders? What could mathematics be knowledge (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  29.  97
    The principle of light and sound in mathematics and physics as the origin of nature and the universe.Jhon Jairo Mosquera Rodas - manuscript
    This article presents the proposal of the principle of sound and light from mathematics and physics, as the origin of nature and the universe, using the Cartesian plane, together with the triadic plane of potential manifestation and complex organisation, starting from the contributions of four pre-Socratic philosophers, Pythagoras of Ephesus, Parmenides of Elea, Heraclitus of Samos and Democritus of Abdera, thus identifying essential principles of the origin of these, to conclude with the most important demonstrations of this theory, which allow (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Lakatos’ Quasi-empiricism in the Philosophy of Mathematics.Michael J. Shaffer - 2015 - Polish Journal of Philosophy 9 (2):71-80.
    Imre Lakatos' views on the philosophy of mathematics are important and they have often been underappreciated. The most obvious lacuna in this respect is the lack of detailed discussion and analysis of his 1976a paper and its implications for the methodology of mathematics, particularly its implications with respect to argumentation and the matter of how truths are established in mathematics. The most important themes that run through his work on the philosophy of mathematics and which culminate in the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  31. Jakob Friedrich Fries (1773-1843): Eine Philosophie der exakten Wissenschaften.Kay Herrmann - 1994 - Tabula Rasa. Jenenser Zeitschrift Für Kritisches Denken (6).
    Jakob Friedrich Fries (1773-1843): A Philosophy of the Exact Sciences -/- Shortened version of the article of the same name in: Tabula Rasa. Jenenser magazine for critical thinking. 6th of November 1994 edition -/- 1. Biography -/- Jakob Friedrich Fries was born on the 23rd of August, 1773 in Barby on the Elbe. Because Fries' father had little time, on account of his journeying, he gave up both his sons, of whom Jakob Friedrich was the elder, to the Herrnhut (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Explanation in mathematics: Proofs and practice.William D'Alessandro - 2019 - Philosophy Compass 14 (11):e12629.
    Mathematicians distinguish between proofs that explain their results and those that merely prove. This paper explores the nature of explanatory proofs, their role in mathematical practice, and some of the reasons why philosophers should care about them. Among the questions addressed are the following: what kinds of proofs are generally explanatory (or not)? What makes a proof explanatory? Do all mathematical explanations involve proof in an essential way? Are there really such things as explanatory proofs, and if so, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  33. Mathematical skepticism: a sketch with historian in foreground.Luciano Floridi - 1998 - In J. van der Zande & R. Popkin (eds.), The Skeptical Tradition around 1800. pp. 41–60.
    We know very little about mathematical skepticism in modem times. Imre Lakatos once remarked that “in discussing modem efforts to establish foundations for mathematical knowledge one tends to forget that these are but a chapter in the great effort to overcome skepticism by establishing foundations for knowledge in general." And in a sense he was clearly right: modem thought — with its new discoveries in mathematical sciences, the mathematization of physics, the spreading of Pyrrhonist doctrines, the centrality (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  34. Mathematical necessity and reality.James Franklin - 1989 - Australasian Journal of Philosophy 67 (3):286 – 294.
    Einstein, like most philosophers, thought that there cannot be mathematical truths which are both necessary and about reality. The article argues against this, starting with prima facie examples such as "It is impossible to tile my bathroom floor with regular pentagonal tiles." Replies are given to objections based on the supposedly purely logical or hypothetical nature of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  35. Justification and Explanation in Mathematics and Morality.Justin Clarke-Doane - 2015 - Oxford Studies in Metaethics 10.
    In his influential book, The Nature of Morality, Gilbert Harman writes: “In explaining the observations that support a physical theory, scientists typically appeal to mathematical principles. On the other hand, one never seems to need to appeal in this way to moral principles.” What is the epistemological relevance of this contrast, if genuine? This chapter argues that ethicists and philosophers of mathematics have misunderstood it. They have confused what the chapter calls the justificatory challenge for realism about an area, (...)
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  36. The directionality of distinctively mathematical explanations.Carl F. Craver & Mark Povich - 2017 - Studies in History and Philosophy of Science Part A 63:31-38.
    In “What Makes a Scientific Explanation Distinctively Mathematical?” (2013b), Lange uses several compelling examples to argue that certain explanations for natural phenomena appeal primarily to mathematical, rather than natural, facts. In such explanations, the core explanatory facts are modally stronger than facts about causation, regularity, and other natural relations. We show that Lange's account of distinctively mathematical explanation is flawed in that it fails to account for the implicit directionality in each of his examples. (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  37. Abstract mathematical tools and machines for mathematics.Jean-Pierre Marquis - 1997 - Philosophia Mathematica 5 (3):250-272.
    In this paper, we try to establish that some mathematical theories, like K-theory, homology, cohomology, homotopy theories, spectral sequences, modern Galois theory (in its various applications), representation theory and character theory, etc., should be thought of as (abstract) machines in the same way that there are (concrete) machines in the natural sciences. If this is correct, then many epistemological and ontological issues in the philosophy of mathematics are seen in a different light. We concentrate on one problem (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  38. Hilbert Mathematics Versus Gödel Mathematics. IV. The New Approach of Hilbert Mathematics Easily Resolving the Most Difficult Problems of Gödel Mathematics.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 16 (75):1-52.
    The paper continues the consideration of Hilbert mathematics to mathematics itself as an additional “dimension” allowing for the most difficult and fundamental problems to be attacked in a new general and universal way shareable between all of them. That dimension consists in the parameter of the “distance between finiteness and infinity”, particularly able to interpret standard mathematics as a particular case, the basis of which are arithmetic, set theory and propositional logic: that is as a special “flat” case of Hilbert (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. A Mathematical Model of Aristotle’s Syllogistic.John Corcoran - 1973 - Archiv für Geschichte der Philosophie 55 (2):191-219.
    In the present article we attempt to show that Aristotle's syllogistic is an underlying logiC which includes a natural deductive system and that it isn't an axiomatic theory as had previously been thought. We construct a mathematical model which reflects certain structural aspects of Aristotle's logic. We examine the relation of the model to the system of logic envisaged in scattered parts of Prior and Posterior Analytics. Our interpretation restores Aristotle's reputation as a logician of consummate imagination and (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  40. Can mathematics explain the evolution of human language?Guenther Witzany - 2011 - Communicative and Integrative Biology 4 (5):516-520.
    Investigation into the sequence structure of the genetic code by means of an informatic approach is a real success story. The features of human language are also the object of investigation within the realm of formal language theories. They focus on the common rules of a universal grammar that lies behind all languages and determine generation of syntactic structures. This universal grammar is a depiction of material reality, i.e., the hidden logical order of things and its relations determined by (...) laws. Therefore mathematics is viewed not only as an appropriate tool to investigate human language and genetic code structures through computer sciencebased formal language theory but is itself a depiction of material reality. This confusion between language as a scientific tool to describe observations/experiences within cognitive constructed models and formal language as a direct depiction of material reality occurs not only in current approaches but was the central focus of the philosophy of science debate in the twentieth century, with rather unexpected results. This article recalls these results and their implications for more recent mathematical approaches that also attempt to explain the evolution of human language. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  41. Time, Mathematics, and the Fold: A Post-Heideggerian Itinerary.Said Mikki - manuscript
    A perspective is provided on how to move beyond postmodernism while struggling to do philosophy in the twenty-first century. The ontological structures of time, history, and mathematics are analyzed from the vantagepoint of the Heideggerian theory of nonspatial Fold.
    Download  
     
    Export citation  
     
    Bookmark  
  42. Mathematical and Non-causal Explanations: an Introduction.Daniel Kostić - 2019 - Perspectives on Science 1 (27):1-6.
    In the last couple of years, a few seemingly independent debates on scientific explanation have emerged, with several key questions that take different forms in different areas. For example, the questions what makes an explanation distinctly mathematical and are there any non-causal explanations in sciences (i.e., explanations that don’t cite causes in the explanans) sometimes take a form of the question of what makes mathematical models explanatory, especially whether highly idealized models in science can be explanatory and in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. The Mathematical Roots of Semantic Analysis.Axel Arturo Barcelo Aspeitia - manuscript
    Semantic analysis in early analytic philosophy belongs to a long tradition of adopting geometrical methodologies to the solution of philosophical problems. In particular, it adapts Descartes’ development of formalization as a mechanism of analytic representation, for its application in natural language semantics. This article aims to trace the mathematical roots of Frege, Russel and Carnap’s analytic method. Special attention is paid to the formal character of modern analysis introduced by Descartes. The goal is to identify the particular (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. De la subordinación a la hegemonía. Sobre la legitimación epistemológica de las matemáticas en la filosofía natural en el siglo XVII.Felipe Ochoa - 2013 - Civilizar 13 (25):157-176.
    This article analyzes the epistemological legitimation of mathematics in natural philosophy in the seventeenth century. In the Renaissance it was claimed that mathematics does not meet the Aristotelian criteria of scientificity, and that it did not explain the efficient and final causes. So, its critics, inspired by the Aristotelian tradition, rejected the first attempts to mathematize natural philosophy. The epistemological conditions involved in the debate are examined on the scientific nature of mathematics and its relevance to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Mathematics and Statistics in the Social Sciences.Stephan Hartmann & Jan Sprenger - 2011 - In Ian C. Jarvie & Jesus Zamora-Bonilla (eds.), The SAGE Handbook of the Philosophy of Social Sciences. London: Sage Publications. pp. 594-612.
    Over the years, mathematics and statistics have become increasingly important in the social sciences1 . A look at history quickly confirms this claim. At the beginning of the 20th century most theories in the social sciences were formulated in qualitative terms while quantitative methods did not play a substantial role in their formulation and establishment. Moreover, many practitioners considered mathematical methods to be inappropriate and simply unsuited to foster our understanding of the social domain. Notably, the famous Methodenstreit also (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  46. The Indefinite within Descartes' Mathematical Physics.Françoise Monnoyeur-Broitman - 2013 - Eidos: Revista de Filosofía de la Universidad Del Norte 19:107-122.
    Descartes' philosophy contains an intriguing notion of the infinite, a concept labeled by the philosopher as indefinite. Even though Descartes clearly defined this term on several occasions in the correspondence with his contemporaries, as well as in his Principles of Philosophy, numerous problems about its meaning have arisen over the years. Most commentators reject the view that the indefinite could mean a real thing and, instead, identify it with an Aristotelian potential infinite. In the first part of this (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Oswald Spengler and Martin Heidegger on Modern Science, Metaphysics, and Mathematics.Gregory Morgan Swer - 2017 - Idealistic Studies 47 (1 & 2):1-22.
    This paper argues that Oswald Spengler has an innovative philosophical position on the nature and interrelation of mathematics and science. It further argues that his position in many ways parallels that of Martin Heidegger. Both held that an appreciation of the mathematical nature of contemporary science was critical to a proper appreciation of science, technology and modernity. Both also held that the fundamental feature of modern science is its mathematical nature, and that the mathematical operates as a (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  48. Psychology as a natural science in the eighteenth century.Gary Hatfield - 1994 - Revue de Synthèse 115 (3-4):375-391.
    Psychology considered as a natural science began as Aristotelian "physics" or "natural philosophy" of the soul. C. Wolff placed psychology under metaphysics, coordinate with cosmology. Scottish thinkers placed it within moral philosophy, but distinguished its "physical" laws from properly moral laws (for guiding conduct). Several Germans sought to establish an autonomous empirical psychology as a branch of natural science. British and French visual theorists developed mathematically precise theories of size and distance perception; they created instruments (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  49. Bayesian perspectives on mathematical practice.James Franklin - 2020 - Handbook of the History and Philosophy of Mathematical Practice.
    Mathematicians often speak of conjectures as being confirmed by evidence that falls short of proof. For their own conjectures, evidence justifies further work in looking for a proof. Those conjectures of mathematics that have long resisted proof, such as the Riemann hypothesis, have had to be considered in terms of the evidence for and against them. In recent decades, massive increases in computer power have permitted the gathering of huge amounts of numerical evidence, both for conjectures in pure mathematics and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  50. A Constructive Treatment to Elemental Life Forms through Mathematical Philosophy.Susmit Bagchi - 2021 - Philosophies 6 (4):84.
    The quest to understand the natural and the mathematical as well as philosophical principles of dynamics of life forms are ancient in the human history of science. In ancient times, Pythagoras and Plato, and later, Copernicus and Galileo, correctly observed that the grand book of nature is written in the language of mathematics. Platonism, Aristotelian logism, neo-realism, monadism of Leibniz, Hegelian idealism and others have made efforts to understand reasons of existence of life forms in nature and the (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 996