Results for 'Mohammed S. Abu Nasser'

989 found
Order:
  1. Predictive Modeling of Obesity and Cardiovascular Disease Risk: A Random Forest Approach.Mohammed S. Abu Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 7 (12):26-38.
    Abstract: This research employs a Random Forest classification model to predict and assess obesity and cardiovascular disease (CVD) risk based on a comprehensive dataset collected from individuals in Mexico, Peru, and Colombia. The dataset comprises 17 attributes, including information on eating habits, physical condition, gender, age, height, and weight. The study focuses on classifying individuals into different health risk categories using machine learning algorithms. Our Random Forest model achieved remarkable performance with an accuracy, F1-score, recall, and precision all reaching 97.23%. (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  2. AI and Ethics in Surveillance: Balancing Security and Privacy in a Digital World.Msbah J. Mosa, Alaa M. Barhoom, Mohammed I. Alhabbash, Fadi E. S. Harara, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Engineering Research (IJAER) 8 (10):8-15.
    Abstract: In an era of rapid technological advancements, artificial intelligence (AI) has transformed surveillance systems, enhancing security capabilities across the globe. However, the deployment of AI-driven surveillance raises significant ethical concerns, particularly in balancing the need for security with the protection of individual privacy. This paper explores the ethical challenges posed by AI surveillance, focusing on issues such as data privacy, consent, algorithmic bias, and the potential for mass surveillance. Through a critical analysis of the tension between security and privacy, (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  3. Parkinson’s Disease Prediction Using Artificial Neural Network.Ramzi M. Sadek, Salah A. Mohammed, Abdul Rahman K. Abunbehan, Abdul Karim H. Abdul Ghattas, Majed R. Badawi, Mohamed N. Mortaja, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2019 - International Journal of Academic Health and Medical Research (IJAHMR) 3 (1):1-8.
    Parkinson's Disease (PD) is a long-term degenerative disorder of the central nervous system that mainly affects the motor system. The symptoms generally come on slowly over time. Early in the disease, the most obvious are shaking, rigidity, slowness of movement, and difficulty with walking. Doctors do not know what causes it and finds difficulty in early diagnosing the presence of Parkinson’s disease. An artificial neural network system with back propagation algorithm is presented in this paper for helping doctors in identifying (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  4. Ethics in AI: Balancing Innovation and Responsibility.Mosa M. M. Megdad, Mohammed H. S. Abueleiwa, Mohammed Al Qatrawi, Jehad El-Tantaw, Fadi E. S. Harara, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Pedagogical Research (IJAPR) 8 (9):20-25.
    Abstract: As artificial intelligence (AI) technologies become more integrated across various sectors, ethical considerations in their development and application have gained critical importance. This paper delves into the complex ethical landscape of AI, addressing significant challenges such as bias, transparency, privacy, and accountability. It explores how these issues manifest in AI systems and their societal impact, while also evaluating current strategies aimed at mitigating these ethical concerns, including regulatory frameworks, ethical guidelines, and best practices in AI design. Through a comprehensive (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  5. Leveraging Artificial Neural Networks for Cancer Prediction: A Synthetic Dataset Approach.Mohammed S. Abu Nasser & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (11):43-51.
    Abstract: This research explores the application of artificial neural networks (ANNs) in predicting cancer using a synthetically generated dataset designed for research purposes. The dataset comprises 10,000 pseudo-patient records, each characterized by gender, age, smoking history, fatigue, and allergy status, along with a binary indicator for the presence or absence of cancer. The 'Gender,' 'Smoking,' 'Fatigue,' and 'Allergy' attributes are binary, while 'Age' spans a range from 18 to 100 years. The study employs a three-layer ANN architecture to develop a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. AI in Mental Health: Innovations, Applications, and Ethical Considerations.Hosni Qasim El-Mashharawi, Izzeddin A. Alshawwa, Fatima M. Salman, Mohammed Naji Al-Qumboz, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Engineering Research (IJAER) 7 (10):53-58.
    Abstract: The integration of artificial intelligence (AI) into mental health care has the potential to revolutionize the field by enhancing diagnostic accuracy, personalizing treatment, and improving access to care. This paper explores the advancements in AI technologies applied to mental health, including machine learning algorithms for diagnosis, natural language processing for therapeutic applications, and predictive analytics for personalized care. It also examines the ethical and practical challenges associated with these technologies, such as privacy concerns, algorithmic bias, and the need for (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  7. AI in Leadership: Transforming Decision-Making and Strategic Vision.Mohran H. Al-Bayed, Mohanad Hilles, Ibrahim Haddad, Marah M. Al-Masawabe, Mohammed Ibrahim Alhabbash, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Pedagogical Research (IJAPR) 8 (9):1-7.
    Abstract: The integration of Artificial Intelligence (AI) into leadership practices is rapidly transforming organizational dynamics and decision-making processes. This paper explores the ways in which AI enhances leadership effectiveness by providing data- driven insights, optimizing decision-making, and automating routine tasks. Additionally, it examines the challenges leaders face when adopting AI, including ethical considerations, potential biases in AI systems, and the need for upskilling. By analyzing current applications of AI in leadership and discussing future trends, this study aims to offer a (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  8. AI in Climate Change Mitigation.Mohammad Alnajjar, Mohammed Hazem M. Hamadaqa, Mohammed N. Ayyad, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Engineering Research (IJAER) 8 (10):31-37.
    Abstract: Climate change presents a critical challenge that demands advanced analytical tools to predict and mitigate its impacts. This paper explores the role of artificial intelligence (AI) in enhancing climate modeling, emphasizing how AI-driven methods are revolutionizing our understanding and response to climate change. By integrating machine learning algorithms with diverse data sources such as satellite imagery, historical climate records, and real-time sensor data, AI improves the accuracy, efficiency, and granularity of climate predictions. The paper reviews key AI techniques, including (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  9. Prediction Heart Attack using Artificial Neural Networks (ANN).Ibrahim Younis, Mohammed S. Abu Nasser, Mohammed A. Hasaballah & Samy S. Abu-Naser - 2023 - International Journal of Engineering and Information Systems (IJEAIS) 7 (10):36-41.
    Abstract Heart Attack is the Cardiovascular Disease (CVD) which causes the most deaths among CVDs. We collected a dataset from Kaggle website. In this paper, we propose an ANN model for the predicting whether a patient has a heart attack or not that. The dataset set consists of 9 features with 1000 samples. We split the dataset into training, validation, and testing. After training and validating the proposed model, we tested it with testing dataset. The proposed model reached an accuracy (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  10. Artificial Neural Network for Predicting COVID 19 Using JNN.Walaa Hasan, Mohammed S. Abu Nasser, Mohammed A. Hasaballah & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (10):41-47.
    Abstract: The emergence of the novel coronavirus (COVID-19) in 2019 has presented the world with an unprecedented global health crisis. The rapid and widespread transmission of the virus has strained healthcare systems, disrupted economies, and challenged societies. In response to this monumental challenge, the intersection of technology and healthcare has become a focal point for innovation. This research endeavors to leverage the capabilities of Artificial Neural Networks (ANNs) to develop an advanced predictive model for forecasting the spread of COVID-19. It (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  11. Predicting Audit Risk Using Neural Networks: An In-depth Analysis.Dana O. Abu-Mehsen, Mohammed S. Abu Nasser, Mohammed A. Hasaballah & Samy S. Abu-Naser - 2023 - International Journal of Academic Information Systems Research (IJAISR) 7 (10):48-56.
    Abstract: This research paper presents a novel approach to predict audit risks using a neural network model. The dataset used for this study was obtained from Kaggle and comprises 774 samples with 18 features, including Sector_score, PARA_A, SCORE_A, PARA_B, SCORE_B, TOTAL, numbers, marks, Money_Value, District, Loss, Loss_SCORE, History, History_score, score, and Risk. The proposed neural network architecture consists of three layers, including one input layer, one hidden layer, and one output layer. The neural network model was trained and validated, achieving (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  12. Streamlined Book Rating Prediction with Neural Networks.Lana Aarra, Mohammed S. Abu Nasser, Mohammed A. Hasaballah & Samy S. Abu-Naser - 2023 - International Journal of Engineering and Information Systems (IJEAIS) 7 (10):7-13.
    Abstract: Online book review platforms generate vast user data, making accurate rating prediction crucial for personalized recommendations. This research explores neural networks as simple models for predicting book ratings without complex algorithms. Our novel approach uses neural networks to predict ratings solely from user-book interactions, eliminating manual feature engineering. The model processes data, learns patterns, and predicts ratings. We discuss data preprocessing, neural network design, and training techniques. Real-world data experiments show the model's effectiveness, surpassing traditional methods. This research can (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  13. Classification of plant Species Using Neural Network.Muhammad Ashraf Al-Azbaki, Mohammed S. Abu Nasser, Mohammed A. Hasaballah & Samy S. Abu-Naser - 2023 - International Journal of Engineering and Information Systems (IJEAIS) 7 (10):28-35.
    Abstract: In this study, we explore the possibility of classifying the plant species. We collected the plant species from Kaggle website. This dataset encompasses 544 samples, encompassing 136 distinct plant species. Recent advancements in machine learning, particularly Artificial Neural Networks (ANNs), offer promise in enhancing plant Species classification accuracy and efficiency. This research explores plant Species classification, harnessing neural networks' power. Utilizing a rich dataset from Kaggle, containing 544 entries, we develop and evaluate a neural network model. Our neural network, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  14. AI in HRM: Revolutionizing Recruitment, Performance Management, and Employee Engagement.Mostafa El-Ghoul, Mohammed M. Almassri, Mohammed F. El-Habibi, Mohanad H. Al-Qadi, Alaa Abou Eloun, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Applied Research (Ijaar) 8 (9):16-23.
    Artificial Intelligence (AI) is rapidly transforming Human Resource Management (HRM) by enhancing the efficiency and effectiveness of key functions such as recruitment, performance management, and employee engagement. This paper explores the integration of AI technologies in HRM, focusing on their potential to revolutionize these critical areas. In recruitment, AI-driven tools streamline candidate sourcing, screening, and selection processes, leading to more accurate and unbiased hiring decisions. Performance management is similarly transformed, with AI enabling continuous, data-driven feedback and personalized development plans that (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  15. Harnessing Artificial Intelligence to Enhance Medical Image Analysis.Malak S. Hamad, Mohammed H. Aldeeb, Mohammed M. Almzainy, Shahd J. Albadrasawi, Musleh M. Musleh, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Health and Medical Research (IJAHMR) 8 (9):1-7.
    Abstract: The integration of Artificial Intelligence (AI) into medical imaging marks a transformative advancement in healthcare, significantly enhancing diagnostic accuracy, efficiency, and patient outcomes. This paper delves into the application of AI technologies in medical image analysis, with a particular focus on techniques such as convolutional neural networks (CNNs) and deep learning models. We examine how these technologies are employed across various imaging modalities, including X-rays, MRIs, and CT scans, to improve disease detection, image segmentation, and diagnostic support. Furthermore, the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  16. AI-Driven Cybersecurity: Transforming the Prevention of Cyberattacks.Mohammed B. Karaja, Mohammed Elkahlout, Abeer A. Elsharif, Ibtesam M. Dheir, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Engineering Research(Ijaer) 8 (10):38-44.
    Abstract: As the frequency and sophistication of cyberattacks continue to rise, organizations face increasing challenges in safeguarding their digital infrastructures. Traditional cybersecurity measures often struggle to keep pace with rapidly evolving threats, creating a pressing need for more adaptive and proactive solutions. Artificial Intelligence (AI) has emerged as a transformative force in this domain, offering enhanced capabilities for detecting, analyzing, and preventing cyberattacks in real- time. This paper explores the pivotal role of AI in strengthening cybersecurity defenses by leveraging machine (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  17. Convergence of Nanotechnology and Artificial Intelligence: Revolutionizing Healthcare and Beyond.Randa Elqassas, Hazem A. S. Alrakhawi, Mohammed M. Elsobeihi, Basel Habil, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Engineering Research (IJAER) 8 (10):25-30.
    Abstract: The convergence of nanotechnology and artificial intelligence (AI) represents a transformative frontier in modern science, with the potential to revolutionize multiple industries, particularly healthcare. Nanotechnology enables the manipulation of matter at the atomic and molecular scale, while AI offers sophisticated data analysis, pattern recognition, and decision-making capabilities. This paper explores the synergies between these two fields, focusing on their impact on medical diagnostics, targeted drug delivery, and personalized treatments. By leveraging AI's predictive power and nanotechnology's precision, healthcare can achieve (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  18. Generative AI in the Creative Industries: Revolutionizing Art, Music, and Media.Mohammed F. El-Habibi, Mohammed A. Hamed, Raed Z. Sababa, Mones M. Al-Hanjori, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Engineering Research(Ijaer) 8 (10):71-74.
    Abstract: Generative AI is transforming the creative industries by redefining how art, music, and media are produced and experienced. This paper explores the profound impact of generative AI technologies, such as deep learning models and neural networks, on creative processes. By enabling artists, musicians, and content creators to collaborate with AI, these systems enhance creativity, speed up production, and generate novel forms of expression. The paper also addresses ethical considerations, including intellectual property rights, the role of human creativity in AI-assisted (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  19. Revolutionizing Drug Discovery: The Role of Artificial Intelligence in Accelerating Pharmaceutical Innovation".Alaa Soliman Abu Mettleq, Alaa N. Akkila, Mohammed A. Alkahlout, Suheir H. A. ALmurshidi, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2024 - Information Journal of Academic Engineering Research (Ijaer) 8 (10):45-53.
    Abstract: The integration of artificial intelligence (AI) into drug discovery is revolutionizing the pharmaceutical industry by accelerating the development of novel therapeutics. AI-powered tools enable researchers to process vast datasets, identify drug candidates, and predict their efficacy and safety with unprecedented speed and accuracy. This paper explores the transformative impact of AI on drug discovery, highlighting key advancements in machine learning algorithms, deep learning, and predictive modeling. Additionally, it addresses the challenges associated with AI implementation, including data quality, regulatory hurdles, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  20.  95
    AI Regulation and Governance.Mohammed M. Abu-Saqer, Sabreen R. Qwaider, Islam Albatish, Azmi H. Alsaqqa, Bassem S. Abu-Nasser & Samy S. Abu-Naser - forthcoming - Information Journal of Engineering Research (Ijaer).
    Abstract: As artificial intelligence (AI) technologies rapidly evolve and permeate various aspects of society, the need for effective regulation and governance has become increasingly critical. This paper explores the current landscape of AI regulation, examining existing frameworks and their efficacy in addressing the unique challenges posed by AI. Key issues such as ensuring compliance, mitigating biases, and maintaining transparency are analyzed. The paper also delves into ethical considerations surrounding AI governance, emphasizing the importance of fairness and accountability. Through case studies (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21. Suggestions to Enhance the Scholarly Search Engine: Google Scholar.Ibrahim M. Nasser, Mohammed M. Elsobeihi & Samy S. Abu Naser - 2019 - International Journal of Engineering and Information Systems (IJEAIS) 3 (3):11-16.
    The scholarly search engine Google Scholar (G.S.) has problems that make it not a 100% trusted search engine. In this research, we discussed a few drawbacks that we noticed in Google Scholar, one of them is related to how does it perform (add articles) option for adding new articles that are related to the registered researchers. Our suggestion is an attempt for making G.S. more efficient by improving the searching method that it uses and finally having trusted statistical results.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  22. Artificial Neural Network for Predicting Car Performance Using JNN.Awni Ahmed Al-Mobayed, Youssef Mahmoud Al-Madhoun, Mohammed Nasser Al-Shuwaikh & Samy S. Abu-Naser - 2020 - International Journal of Engineering and Information Systems (IJEAIS) 4 (9):139-145.
    In this paper an Artificial Neural Network (ANN) model was used to help cars dealers recognize the many characteristics of cars, including manufacturers, their location and classification of cars according to several categories including: Buying, Maint, Doors, Persons, Lug_boot, Safety, and Overall. ANN was used in forecasting car acceptability. The results showed that ANN model was able to predict the car acceptability with 99.12 %. The factor of Safety has the most influence on car acceptability evaluation. Comparative study method is (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  23. ITS for Enhancing Training Methodology for Students Majoring in Electricity.Mohammed S. Nassr & Samy S. Abu-Naser - 2019 - International Journal of Academic Pedagogical Research (IJAPR) 3 (3):16-30.
    This thesis focuses on the use of intelligent tutoring system for education and training of students specialized in electricity in the field of technical and vocational education. The use of modern systems in training and education will have a great positive impact in improving the level of students receiving training and education; this will improve the level of the local economy by producing students of professionals who are able to engage in society efficiently, especially for those who have specialized in (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  24. Fraudulent Financial Transactions Detection Using Machine Learning.Mosa M. M. Megdad, Samy S. Abu-Naser & Bassem S. Abu-Nasser - 2022 - International Journal of Academic Information Systems Research (IJAISR) 6 (3):30-39.
    It is crucial to actively detect the risks of transactions in a financial company to improve customer experience and minimize financial loss. In this study, we compare different machine learning algorithms to effectively and efficiently predict the legitimacy of financial transactions. The algorithms used in this study were: MLP Repressor, Random Forest Classifier, Complement NB, MLP Classifier, Gaussian NB, Bernoulli NB, LGBM Classifier, Ada Boost Classifier, K Neighbors Classifier, Logistic Regression, Bagging Classifier, Decision Tree Classifier and Deep Learning. The dataset (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  25. The Role of AI in Enhancing Business Decision-Making: Innovations and Implications.Faten Y. A. Abu Samara, Aya Helmi Abu Taha, Nawal Maher Massa, Tanseen N. Abu Jamie, Fadi E. S. Harara, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Pedagogical Research (IJAPR) 8 (9):8-15.
    Abstract: Artificial Intelligence (AI) has rapidly advanced, offering significant potential to transform business decision-making. This paper delves into how AI can be harnessed to enhance strategic decision-making within business contexts. It investigates the integration of AI-driven analytics, predictive modeling, and automation, emphasizing their role in improving decision accuracy and operational efficiency. By examining current applications and case studies, the paper underscores the opportunities AI offers, including improved data insights, risk management, and personalized customer experiences. It also addresses the challenges businesses (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  26. Implications and Applications of Artificial Intelligence in the Legal Domain.Besan S. Abu Nasser, Marwan M. Saleh & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 7 (12):18-25.
    Abstract: As the integration of Artificial Intelligence (AI) continues to permeate various sectors, the legal domain stands on the cusp of a transformative era. This research paper delves into the multifaceted relationship between AI and the law, scrutinizing the profound implications and innovative applications that emerge at the intersection of these two realms. The study commences with an examination of the current landscape, assessing the challenges and opportunities that AI presents within legal frameworks. With an emphasis on efficiency, accuracy, and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  27. Artificial Intelligence in Digital Media: Opportunities, Challenges, and Future Directions.Basma S. Abu Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic and Applied Research (IJAAR) 8 (6):1-10.
    Abstract: This research paper explores the transformative impact of artificial intelligence (AI) on digital media, examining both the opportunities it presents and the challenges it poses. The integration of AI into digital media has revolutionized content creation, distribution, and analytics, offering unprecedented levels of personalization, efficiency, and insight. Automated journalism, AI- driven recommendation systems, and advanced audience analytics are among the key areas where AI is making significant contributions. However, the adoption of AI also brings ethical considerations, including concerns about (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Sarcasm Detection in Headline News using Machine and Deep Learning Algorithms.Alaa Barhoom, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2022 - International Journal of Engineering and Information Systems (IJEAIS) 6 (4):66-73.
    Abstract: Sarcasm is commonly used in news and detecting sarcasm in headline news is challenging for humans and thus for computers. The media regularly seem to engage sarcasm in their news headline to get the attention of people. However, people find it tough to detect the sarcasm in the headline news, hence receiving a mistaken idea about that specific news and additionally spreading it to their friends, colleagues, etc. Consequently, an intelligent system that is able to distinguish between can sarcasm (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  29. Glass Classification Using Artificial Neural Network.Mohmmad Jamal El-Khatib, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2019 - International Journal of Academic Pedagogical Research (IJAPR) 3 (23):25-31.
    As a type of evidence glass can be very useful contact trace material in a wide range of offences including burglaries and robberies, hit-and-run accidents, murders, assaults, ram-raids, criminal damage and thefts of and from motor vehicles. All of that offer the potential for glass fragments to be transferred from anything made of glass which breaks, to whoever or whatever was responsible. Variation in manufacture of glass allows considerable discrimination even with tiny fragments. In this study, we worked glass classification (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  30. Tic-Tac-Toe Learning Using Artificial Neural Networks.Mohaned Abu Dalffa, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2019 - International Journal of Engineering and Information Systems (IJEAIS) 3 (2):9-19.
    Throughout this research, imposing the training of an Artificial Neural Network (ANN) to play tic-tac-toe bored game, by training the ANN to play the tic-tac-toe logic using the set of mathematical combination of the sequences that could be played by the system and using both the Gradient Descent Algorithm explicitly and the Elimination theory rules implicitly. And so on the system should be able to produce imunate amalgamations to solve every state within the game course to make better of results (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  31. Strategic Creativity in Islamic Banks in Palestine between Reality and Implementation.S. Keshta Mohamed, A. El Talla Suliman, J. Al Shobaki Mazen & Samy S. Abu-Naser - 2020 - International Journal of Academic Accounting, Finance and Management Research (IJAAFMR) 4 (3):79-99.
    It aimed to identify the strategic creativity in Islamic banks in Palestine between reality and implementation. The study adopted the descriptive analytical approach. A questionnaire was designed as a tool for the study. The study community consisted of all employees in Islamic banks from the top and middle management and the study has been applied to the Palestinian Islamic bank and the Arab Islamic Bank. The comprehensive inventory method was used, given the small size of the study sample, as questionnaires (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Adaptive Intelligent Tutoring System for learning Computer Theory.Mohammed A. Al-Nakhal & Samy S. Abu Naser - 2017 - European Academic Research 4 (10).
    In this paper, we present an intelligent tutoring system developed to help students in learning Computer Theory. The Intelligent tutoring system was built using ITSB authoring tool. The system helps students to learn finite automata, pushdown automata, Turing machines and examines the relationship between these automata and formal languages, deterministic and nondeterministic machines, regular expressions, context free grammars, undecidability, and complexity. During the process the intelligent tutoring system gives assistance and feedback of many types in an intelligent manner according to (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  33. An Intelligent Tutoring System for Teaching the 7 Characteristics for Living Things.Mohammed A. Hamed & Samy S. Abu Naser - 2017 - International Journal of Advanced Research and Development 2 (1):31-35.
    Recently, due to the rapid progress of computer technology, researchers develop an effective computer program to enhance the achievement of the student in learning process, which is Intelligent Tutoring System (ITS). Science is important because it influences most aspects of everyday life, including food, energy, medicine, leisure activities and more. So learning science subject at school is very useful, but the students face some problem in learning it. So we designed an ITS system to help them understand this subject easily (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  34. An Intelligent Tutoring System for Learning Introduction to Computer Science.Ahmad Marouf, Mohammed K. Abu Yousef, Mohammed N. Mukhaimer & Samy S. Abu-Naser - 2018 - International Journal of Academic Multidisciplinary Research (IJAMR) 2 (2):1-8.
    The paper describes the design of an intelligent tutoring system for teaching Introduction to Computer Science-a compulsory curriculum in Al-Azhar University of Gaza to students who attend the university. The basic idea of this system is a systematic introduction into computer science. The system presents topics with examples. The system is dynamically checks student's individual progress. An initial evaluation study was done to investigate the effect of using the intelligent tutoring system on the performance of students enrolled in computer science (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  35. Tomato Leaf Diseases Classification using Deep Learning.Mohammed F. El-Habibi & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 8 (4):73-80.
    Abstract: Tomatoes are among the most popular vegetables in the world due to their frequent use in many dishes, which fall into many varieties in common and traditional foods, and due to their rich ingredients such as vitamins and minerals, so they are frequently used on a daily basis, When we focus our attention on this vegetable, we must also focus and take into consideration the diseases that affect this vegetable, a deep learning model that classifies tomato diseases has been (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  36. Using Deep Learning to Detect the Quality of Lemons.Mohammed B. Karaja & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 8 (4):97-104.
    Abstract: Lemons are an important fruit that have a wide range of uses and benefits, from culinary to health to household and beauty applications. Deep learning techniques have shown promising results in image classification tasks, including fruit quality detection. In this paper, we propose a convolutional neural network (CNN)-based approach for detecting the quality of lemons by analysing visual features such as colour and texture. The study aims to develop and train a deep learning model to classify lemons based on (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  37. Breast Cancer Diagnosis and Survival Prediction Using JNN.Mohammed Ziyad Abu Shawarib, Ahmed Essam Abdel Latif, Bashir Essam El-Din Al-Zatmah & Samy S. Abu-Naser - 2020 - International Journal of Engineering and Information Systems (IJEAIS) 4 (10):23-30.
    Abstract: Breast cancer is reported to be the most common cancer type among women worldwide and it is the second highest women fatality rate amongst all cancer types. Notwithstanding all the progresses made in prevention and early intervention, early prognosis and survival prediction rates are still not sufficient. In this paper, we propose an ANN model which outperforms all the previous supervised learning methods by reaching 99.57 in terms of accuracy in Wisconsin Breast Cancer dataset. Experimental results on Haberman’s Breast (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  38. Knowledge Based System for Diagnosing Lung Cancer Diagnosis and Treatment.Mohammed N. Jamala & Samy S. Abu-Naser - 2023 - International Journal of Academic Information Systems Research (IJAISR) 7 (6):38-45.
    Lung cancer is a serious and deadly disease that affects the lungs, which are responsible for taking in oxygen and expelling carbon dioxide from the body. The disease can develop in any part of the lungs and is usually caused by smoking or exposure to certain chemicals. The main Objective: of this expert system is to provide an accurate diagnosis of lung cancer and the appropriate treatment options. In this paper, Methods: we present the design and implementation of an expert (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  39. Classification of Rice Using Deep Learning.Mohammed H. S. Abueleiwa & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 8 (4):26-36.
    Abstract: Rice is one of the most important staple crops in the world and serves as a staple food for more than half of the global population. It is a critical source of nutrition, providing carbohydrates, vitamins, and minerals to millions of people, particularly in Asia and Africa. This paper presents a study on using deep learning for the classification of different types of rice. The study focuses on five specific types of rice: Arborio, Basmati, Ipsala, Jasmine, and Karacadag. A (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  40. Grape Leaf Species Classification Using CNN.Mohammed M. Almassri & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 8 (4):66-72.
    Abstract: Context: grapevine leaves are an important agricultural product that is used in many Middle Eastern dishes. The species from which the grapevine leaf originates can differ in terms of both taste and price. Method: In this study, we build a deep learning model to tackle the problem of grape leaf classification. 500 images were used (100 for each species) that were then increased to 10,000 using data augmentation methods. Convolutional Neural Network (CNN) algorithms were applied to build this model (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  41. Neural Network-Based Water Quality Prediction.Mohammed Ashraf Al-Madhoun & Samy S. Abu-Naser - 2023 - International Journal of Academic Information Systems Research (IJAISR) 7 (9):25-31.
    Water quality assessment is critical for environmental sustainability and public health. This research employs neural networks to predict water quality, utilizing a dataset of 21 diverse features, including metals, chemicals, and biological indicators. With 8000 samples, our neural network model, consisting of four layers, achieved an impressive 94.22% accuracy with an average error of 0.031. Feature importance analysis revealed arsenic, perchlorate, cadmium, and others as pivotal factors in water quality prediction. This study offers a valuable contribution to enhancing water quality (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  42. Breast Cancer Knowledge Based System.Mohammed H. Aldeeb & Samy S. Abu-Naser - 2023 - International Journal of Engineering and Information Systems 7 (6):46-51.
    Abstract: The Knowledge-Based System for Diagnosing Breast Cancer aims to support medical students in enhancing their education regarding diagnosis and counseling. The system facilitates the analysis of biopsy images under a microscope, determination of tumor type, selection of appropriate treatment methods, and identification of disease-related questions. According to the Ministry of Health's annual report in Gaza, there were 7,069 cases of breast cancer between 2009 and 2014, with 1,502 cases reported in 2014. In an era dominated by visual information, where (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  43. The Evolution of AI in Autonomous Systems: Innovations, Challenges, and Future Prospects.Ashraf M. H. Taha, Zakaria K. D. Alkayyali, Qasem M. M. Zarandah, Bassem S. Abu-Nasser, & Samy S. Abu-Naser - 2024 - International Journal of Academic Engineering Research (IJAER) 8 (10):1-7.
    Abstract: The rapid advancement of artificial intelligence (AI) has catalyzed significant developments in autonomous systems, which are increasingly shaping diverse sectors including transportation, robotics, and industrial automation. This paper explores the evolution of AI technologies that underpin these autonomous systems, focusing on their capabilities, applications, and the challenges they present. Key areas of discussion include the technological innovations driving autonomy, such as machine learning algorithms and sensor integration, and the practical implementations observed in autonomous vehicles, drones, and robotic systems. Additionally, (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  44. Gender Prediction from Retinal Fundus Using Deep Learning.Ashraf M. Taha, Qasem M. M. Zarandah, Bassem S. Abu-Nasser, Zakaria K. D. AlKayyali & Samy S. Abu-Naser - 2022 - International Journal of Academic Information Systems Research (IJAISR) 6 (5):57-63.
    Deep learning may transform health care, but model development has largely been dependent on availability of advanced technical expertise. The aim of this study is to develop a deep learning model to predict the gender from retinal fundus images. The proposed model was based on the Xception pre-trained model. The proposed model was trained on 20,000 retinal fundus images from Kaggle depository. The dataset was preprocessed them split into three datasets (training, validation, Testing). After training and cross-validating the proposed model, (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  45. Breakthroughs in Breast Cancer Detection: Emerging Technologies and Future Prospects.Ola I. A. Lafi, Rawan N. A. Albanna, Dina F. Alborno, Raja E. Altarazi, Amal Nabahin, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Health and Medical Research (IJAHMR) 8 (9):8-15.
    Abstract: Early detection of breast cancer is vital for improving patient outcomes and reducing mortality rates. Technological advancements have significantly enhanced the accuracy and efficiency of screening methods. This paper explores recent innovations in early detection, focusing on the evolution of digital mammography, the benefits of 3D mammography (tomosynthesis), and the application of advanced imaging techniques such as molecular imaging and MRI. It also examines the role of artificial intelligence (AI) in diagnostic tools, showing how machine learning algorithms are improving (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  46. AI and Human Rights.Hani Bakeer, Jawad Y. I. Alzamily, Husam Almadhoun, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Engineering' Research (Ijaer) 8 (10):16-24.
    Abstract; As artificial intelligence (AI) technologies become increasingly integrated into various facets of society, their impact on human rights has garnered significant attention. This paper examines the intersection of AI and human rights, focusing on key issues such as privacy, bias, surveillance, access, and accountability. AI systems, while offering remarkable advancements in efficiency and capability, also pose risks to individual privacy and can perpetuate existing biases, leading to potential discrimination. The use of AI in surveillance raises ethical concerns about the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  47. Artificial Intelligence and Organizational Evolution: Reshaping Workflows in the Modern Era.Ahmed S. Sabah, Ahmed A. Hamouda, Yasmeen Emad Helles, Sami M. Okasha, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Pedagogical Research (IJAPR) 8 (9):16-19.
    Abstract: Artificial Intelligence (AI) is transforming organizational dynamics by reshaping both structures and processes. This paper examines how AI-driven innovations are redefining organizational frameworks, ranging from shifts in hierarchical models to the adoption of decentralized decision-making. It explores AI's impact on key processes, including workflow automation, data analysis, and decision support systems. Through case studies and empirical research, the paper illustrates the advantages of AI in enhancing efficiency, driving innovation, and fostering agility within organizations. Additionally, it addresses the challenges posed (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  48. Energy Efficiency Prediction using Artificial Neural Network.Ahmed J. Khalil, Alaa M. Barhoom, Bassem S. Abu-Nasser, Musleh M. Musleh & Samy S. Abu-Naser - 2019 - International Journal of Academic Pedagogical Research (IJAPR) 3 (9):1-7.
    Buildings energy consumption is growing gradually and put away around 40% of total energy use. Predicting heating and cooling loads of a building in the initial phase of the design to find out optimal solutions amongst different designs is very important, as ell as in the operating phase after the building has been finished for efficient energy. In this study, an artificial neural network model was designed and developed for predicting heating and cooling loads of a building based on a (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  49. Harnessing Artificial Intelligence for Effective Leadership: Opportunities and Challenges.Sabreen R. Qwaider, Mohammed M. Abu-Saqer, Islam Albatish, Azmi H. Alsaqqa, Basem S. Abunasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 8 (8):6-11.
    Abstract: The integration of Artificial Intelligence (AI) into leadership practices is transforming organizational dynamics and This decision-making processes. paper explores how AI can enhance leadership effectiveness by providing data-driven insights, optimizing decision-making, and automating routine tasks. It also examines the challenges leaders face in adopting AI, including ethical considerations, potential biases in AI systems, and the need for upskilling. By analyzing current applications of AI in leadership and discussing future trends, this study aims to provide a comprehensive overview of the (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  50. Artificial Neural Network for Forecasting Car Mileage per Gallon in the City.Mohsen Afana, Jomana Ahmed, Bayan Harb, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2018 - International Journal of Advanced Science and Technology 124:51-59.
    In this paper an Artificial Neural Network (ANN) model was used to help cars dealers recognize the many characteristics of cars, including manufacturers, their location and classification of cars according to several categories including: Make, Model, Type, Origin, DriveTrain, MSRP, Invoice, EngineSize, Cylinders, Horsepower, MPG_Highway, Weight, Wheelbase, Length. ANN was used in prediction of the number of miles per gallon when the car is driven in the city(MPG_City). The results showed that ANN model was able to predict MPG_City with 97.50 (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
1 — 50 / 989