Abstract: According to certain dispositional accounts of meaning, an agent's meaning is determined by the dispositions that an idealized version of this agent has in optimal conditions. We argue that such attempts cannot properly fix meaning. For even if there is a way to determine which features of an agent should be idealized without appealing to what the agent means, there is no non-circular way to determine how those features should be idealized. We sketch an alternative dispositional account that avoids (...) this problem, according to which an agent's meaning is determined by the dispositions that an abstract version of this agent has in optimal conditions. (shrink)
In his _Treatise on the Golden Lion_, Fazang says that wholes are _in_ each of their parts and that each part of a whole _is_ every other part of the whole. In this paper, I offer an interpretation of these remarks according to which they are not obviously false, and I use this interpretation in order to rigorously reconstruct Fazang's arguments for his claims. On the interpretation I favor, Fazang means that the presence of a whole's part suffices for the (...) presence of the whole and that the presence of any such part is both necessary and sufficient for the presence of any other part. I also argue that this interpretation is more plausible than its extant competitors. (shrink)
The theistic argument from beauty has what we call an 'evil twin', the argument from ugliness. The argument yields either what we call 'atheist win', or, when faced with aesthetic theodicies, 'agnostic tie' with the argument from beauty.
While mechanistic explanation and, to a lesser extent, nomological explanation are well-explored topics in the philosophy of biology, topological explanation is not. Nor is the role of diagrams in topological explanations. These explanations do not appeal to the operation of mechanisms or laws, and extant accounts of the role of diagrams in biological science explain neither why scientists might prefer diagrammatic representations of topological information to sentential equivalents nor how such representations might facilitate important processes of explanatory reasoning unavailable to (...) scientists who restrict themselves to sentential representations. Accordingly, relying upon a case study about immune system vulnerability to attacks on CD4+ T-cells, I argue that diagrams group together information in a way that avoids repetition in representing topological structure, facilitate identification of specific topological properties of those structures, and make available to controlled processing explanatorily salient counterfactual information about topological structures, all in ways that sentential counterparts of diagrams do not. (shrink)
During Aang's intermingling with Fire Lord Ozai, the voice of a Lion Turtle hints at the reason why Aang prevails. “In the era before the Avatar, we bent not the elements but the energy within ourselves. To bend another's energy, your own spirit must be unbendable or you will be corrupted and destroyed.” -/- We use ideas from Buddhist philosophy to answer four questions about the world of Avatar: (1) What is it for a spirit to be unbendable? (2) What (...) is it to bend another's energy? (3) Does Aang's ability to bend Ozai's spirit refute Ozai's accusation that Aang is weak? (4) What does Aang's ability indicate about what it means to be powerful? (shrink)
Using as case studies two early diagrams that represent mechanisms of the cell division cycle, we aim to extend prior philosophical analyses of the roles of diagrams in scientific reasoning, and specifically their role in biological reasoning. The diagrams we discuss are, in practice, integral and indispensible elements of reasoning from experimental data about the cell division cycle to mathematical models of the cycle’s molecular mechanisms. In accordance with prior analyses, the diagrams provide functional explanations of the cell cycle and (...) facilitate the construction of mathematical models of the cell cycle. But, extending beyond those analyses, we show how diagrams facilitate the construction of mathematical models, and we argue that the diagrams permit nomological explanations of the cell cycle. We further argue that what makes diagrams integral and indispensible for explanation and model construction is their nature as locality aids: they group together information that is to be used together in a way that sentential representations do not. (shrink)
One recent priority of the U.S. government is developing autonomous robotic systems. The U.S. Army has funded research to design a metric of evil to support military commanders with ethical decision-making and, in the future, allow robotic military systems to make autonomous ethical judgments. We use this particular project as a case study for efforts that seek to frame morality in quantitative terms. We report preliminary results from this research, describing the assumptions and limitations of a program that assesses the (...) relative evil of two courses of action. We compare this program to other attempts to simulate ethical decision-making, assess possibilities for overcoming the trade-off between input simplification and output reliability, and discuss the responsibilities of users and designers in implementing such programs. We conclude by discussing the implications that this project highlights for the successes and challenges of developing automated mechanisms for ethical decision making. (shrink)
Comparing Buddhist and contemporary analytic views about mereological composition reveals significant dissimilarities about the purposes that constrain successful answers to mereological questions, the kinds of considerations taken to be probative in justifying those answers, and the value of mereological inquiry. I develop these dissimilarities by examining three questions relevant to those who deny the existence of composite wholes. The first is a question of justification: What justifies denying the existence of composite wholes as more reasonable than affirming their existence? The (...) second is a question of ontology: Under what conditions are many partless individuals arranged composite-wise? The third is a question of reasonableness: Why, if there are no composites available to experience, do “the folk” find it reasonable to believe there are? I motivate each question, sketch some analytic answers for each, develop in more detail answers from the Theravādin Buddhist scholar Buddhaghosa, and extract comparative lessons. (shrink)
This chapter briefly reviews the role of race (as a concept) in the history of theorizing the posthuman, engages with existing discussions of race as technology, and explores the significance of understanding race as technology for the field of posthumanism. Our aim is to engage existing literature that posits racialized individuals as posthumans and to consider how studying race might inform theories of the posthuman.
I propose an account of generous action in the Pāli Buddhist tradition, whereby generous actions are instances of giving in which the donor has esteem for the recipient of their giving. The account differs from recent Anglophone accounts of generous action. These tend to construe generous actions as instances of a donor freely offering a gift to the recipient for the sake of benefiting the recipient. Unlike the Buddhist account I propose, these accounts do not require donors to esteem their (...) recipient. Accordingly, I also offer a partial account of esteem, whereby one esteems another only if they refrain from noticing the other’s faults and they encounter the other as someone who is superior in virtue and goodness. Taken together, the Buddhist accounts of generous action and esteem offer insight into certain ways in which different philosophical traditions tend to characterize generous action. (shrink)
Cyborg and prosthetic technologies frame prominent posthumanist approaches to understanding the nature of race. But these frameworks struggle to accommodate the phenomena of racial passing and racial travel, and their posthumanist orientation blurs useful distinctions between racialized humans and their social contexts. We advocate, instead, a humanist approach to race, understanding racial hierarchy as an industrial technology. Our approach accommodates racial passing and travel. It integrates a wide array of research across disciplines. It also helpfully distinguishes among grounds of racialization (...) and conditions facilitating impacts of such racialization. (shrink)
Idealizing conditions are scapegoats for scientific hypotheses, too often blamed for falsehood better attributed to less obvious sources. But while the tendency to blame idealizations is common among both philosophers of science and scientists themselves, the blame is misplaced. Attention to the nature of idealizing conditions, the content of idealized hypotheses, and scientists’ attitudes toward those hypotheses shows that idealizing conditions are blameless when hypotheses misrepresent. These conditions help to determine the content of idealized hypotheses, and they do so in (...) a way that prevents those hypotheses from being false by virtue of their constituent idealizations. (shrink)
Theology involves inquiry into God's nature, God's purposes, and whether certain experiences or pronouncements come From God. These inquiries are metaphysical, part of theology's concern with the veridicality of signs and realities that are independent from humans. Several research programs concerned with the relation between theology and science aim to secure theology's intellectual standing as a metaphysical discipline by showing that it satisfies criteria that make modern science reputable, on the grounds that modern science embodies contemporary canons of respectability for (...) metaphysical disciplines. But, no matter the ways in which theology qua metaphysics is shown to resemble modern science, these research programs seem destined for failure. For, given the currently dominant approaches to understanding modern scientific epistemology, theological reasoning is crucially dissimilar to modern scientific reasoning in that it treats the existence of God as a certainty immune to refutation. Barring the development of an epistemology of modern science that is amenable to theology, theology as metaphysics is intellectually disreputable. (shrink)
Mengzi 孟子 6A2 contains the famous water analogy for the innate goodness of human nature. Some evaluate Mengzi’s reasoning as strong and sophisticated; others, as weak or sophistical. I urge for more nuance in our evaluation. Mengzi’s reasoning fares poorly when judged by contemporary standards of analogical strength. However, if we evaluate the analogy as an instance of correlative thinking within a yin-yang 陰陽 cosmology, his reasoning fares well. That cosmology provides good reason to assert that water tends to flow (...) downward, not because of available empirical evidence, but because water correlates to yin and yin correlates to naturally downward motion. Substantiating these contentions also gives occasion to better understand the nature of correlative reasoning in classical Chinese philosophy. (shrink)
I consider three explanatory strategies from recent systems biology that are driven by mathematics as much as mechanistic detail. Analysis of differential equations drives the first strategy; topological analysis of network motifs drives the second; mathematical theorems from control engineering drive the third. I also distinguish three abstraction types: aggregations, which simplify by condensing information; generalizations, which simplify by generalizing information; and structurations, which simplify by contextualizing information. Using a common explanandum as reference point—namely, the robust perfect adaptation of chemotaxis (...) in Escherichia coli—I argue that each strategy invokes a different combination of abstraction types and that each targets its abstractions to different mechanistic details. (shrink)
This paper elaborates upon various responses to the Problem of the One over the Many, in the service of two central goals. The first is to situate Huayan's mereology within the context of Buddhism's historical development, showing its continuity with a broader tradition of philosophizing about part-whole relations. The second goal is to highlight the way in which Huayan's mereology combines the virtues of the Nyāya-Vaisheshika and Indian Buddhist solutions to the Problem of the One over the Many while avoiding (...) their vices. (shrink)
According to conciliatory views about the epistemology of disagreement, when epistemic peers have conflicting doxastic attitudes toward a proposition and fully disclose to one another the reasons for their attitudes toward that proposition (and neither has independent reason to believe the other to be mistaken), each peer should always change his attitude toward that proposition to one that is closer to the attitudes of those peers with which there is disagreement. According to pure higher-order evidence views, higher-order evidence for a (...) proposition always suffices to determine the proper rational response to disagreement about that proposition within a group of epistemic peers. Using an analogue of Arrow's Impossibility Theorem, I shall argue that no conciliatory and pure higher-order evidence view about the epistemology of disagreement can provide a true and general answer to the question of what disagreeing epistemic peers should do after fully disclosing to each other the (first-order) reasons for their conflicting doxastic attitudes. (shrink)
In order to improve our understanding of the components that reflect functionally important processes during reward anticipation and consumption, we used principle components analyses (PCA) to separate and quantify averaged ERP data obtained from each stage of a modified monetary incentive delay (MID) task. Although a small number of recent ERP studies have reported that reward and loss cues potentiate ERPs during anticipation, action preparation, and consummatory stages of reward processing, these findings are inconsistent due to temporal and spatial overlap (...) between the relevant electrophysiological components. Our results show three components following cue presentation are sensitive to incentive cues (N1, P3a, P3b). In contrast to previous research, reward‐related enhancement occurred only in the P3b, with earlier components more sensitive to break‐even and loss cues. During feedback anticipation, we observed a lateralized centroparietal negativity that was sensitive to response hand but not cue type. We also show that use of PCA on ERPs reflecting reward consumption successfully separates the reward positivity from the independently modulated feedback‐P3. Last, we observe for the first time a new reward consumption component: a late negativity distributed over the left frontal pole. This component appears to be sensitive to response hand, especially in the context of monetary gain. These results illustrate that the time course and sensitivities of electrophysiological activity that follows incentive cues do not follow a simple heuristic in which reward incentive cues produce enhanced activity at all stages and substages. (shrink)
Context: Thirty years ago, members of the systems science community discovered that at their conferences, more was being accomplished in the breaks than in the sessions. Led by Bela H. Banathy, they cancelled the sessions and created a conversation methodology that has proven far more effective. Dozens of conversations have now been held around the world. Problem: At a recent conversation in Linz, Austria, a team devoted its inquiry to the Banathy Conversation Methodology itself, asking, in particular, how to develop (...) and spread the methodology further, beyond the systems science community. Method: The team captured key features and benefits of BCM and developed new tools. Results: Described herein are the development of the methodology, its theoretical underpinnings, the methodology itself, heuristics for successful conversations, and an example of how the methodology is spreading. Implications: Ultimately, the hope is to develop the methodology in such ways that communities could apply it to meet significant challenges and co-create their futures. (shrink)
In her recent paper ‘The Epistemology of Propaganda’ Rachel McKinnon discusses what she refers to as ‘TERF propaganda’. We take issue with three points in her paper. The first is her rejection of the claim that ‘TERF’ is a misogynistic slur. The second is the examples she presents as commitments of so-called ‘TERFs’, in order to establish that radical (and gender critical) feminists rely on a flawed ideology. The third is her claim that standpoint epistemology can be used to establish (...) that such feminists are wrong to worry about a threat of male violence in relation to trans women. In Section 1 we argue that ‘TERF’ is not a merely descriptive term; that to the extent that McKinnon offers considerations in support of the claim that ‘TERF’ is not a slur, these considerations fail; and that ‘TERF’ is a slur according to several prominent accounts in the contemporary literature. In Section 2, we argue that McKinnon misrepresents the position of gender critical feminists, and in doing so fails to establish the claim that the ideology behind these positions is flawed. In Section 3 we argue that McKinnon’s criticism of Stanley fails, and one implication of this is that those she characterizes as ‘positively privileged’ cannot rely on the standpoint-relative knowledge of those she characterizes as ‘negatively privileged’. We also emphasize in this section McKinnon’s failure to understand and account for multiple axes of oppression, of which the cis/trans axis is only one. (shrink)
This paper explores relationships between environment and education after the Covid-19 pandemic through the lens of philosophy of education in a new key developed by Michael Peters and the Philosophy of Education Society of Australasia. The paper is collectively written by 15 authors who responded to the question: Who remembers Greta Thunberg? Their answers are classified into four main themes and corresponding sections. The first section, ‘As we bake the earth, let's try and bake it from scratch’, gathers wider philosophical (...) considerations about the intersection between environment, education, and the pandemic. The second section, ‘Bump in the road or a catalyst for structural change?’, looks more closely into issues pertaining to education. The third section, ‘If you choose to fail us, we will never forgive you’, focuses to Greta Thunberg’s messages and their responses. The last section, ‘Towards a new normal’, explores future scenarios and develops recommendations for critical emancipatory action. The concluding part brings these insights together, showing that resulting synergy between the answers offers much more then the sum of articles’ parts. With its ethos of collectivity, interconnectedness, and solidarity, philosophy of education in a new key is a crucial tool for development of post-pandemic education. (shrink)
Une brève revue de la vie et de l’autobiographie spirituelle du mystique américain unique Adi Da (Franklin Jones). L’autocollant sur la couverture de certaines éditions dit «L’autobiographie spirituelle la plus profonde de tous les temps» et cela pourrait bien être vrai. Je suis dans mes 70 ans et j’ai lu de nombreux livres de professeurs spirituels et de spiritualité, et c’est l’un des plus grands. Certes, il est by loin le compte le plus complet et le plus clair du (...) processus d’illumination que j’ai jamais vu. Même si vous n’avez aucun intérêt du tout dans le plus fascinant de tous les processus psychologiques humains, c’est un document étonnant qui révèle beaucoup sur la religion, le yoga et la psychologie humaine et sonde les profondeurs et les limites des possibilités humaines. Je le décris en détail et je compare son enseignement à celui du mystique indien contemporain Osho. Ceux qui souhaitent un cadre complet à jour pour le comportement humain de la vue moderne de deux systeme peuvent consulter mon livre 'The Logical Structure of Philosophy, Psychology, Mind and Language in Ludwig Wittgenstein and John Searle' 2nd ed (2019). Ceux qui s’intéressent à plus de mes écrits peuvent voir «Talking Monkeys --Philosophie, Psychologie, Science, Religion et Politique sur une planète condamnée --Articles et revues 2006-2019 3e ed (2019) et Suicidal Utopian Delusions in the 21st Century 4th ed (2019) et autres. (shrink)
This chapter both explains the origins of emotivism in C. K. Ogden and I. A. Richards, R. B. Braithwaite, Austin Duncan-Jones, A. J. Ayer and Charles Stevenson (along with the endorsement by Frank P. Ramsey, and the summary of C. D. Broad), and looks at MacIntyre's criticisms of emotivism as the inevitable result of Moore's attack on naturalistic ethics and his ushering in the fact/value, which was a historical product of the Enlightenment.
GAMETOGÊNESE -/- Emanuel Isaque Cordeiro da Silva Instituto Agronômico de Pernambuco Departamento de Zootecnia – UFRPE Embrapa Semiárido -/- • _____OBJETIVO -/- Os estudantes bem informados, estão a buscando conhecimento a todo momento. O estudante de Veterinária e Zootecnia, sabe que a Reprodução é uma área de primordial importância para sua carreira. Logo, o conhecimento da mesma torna-se indispensável. No primeiro trabalho da série fisiologia reprodutiva dos animais domésticos, foi abordado de forma clara, didática e objetiva os mecanismos de diferenciação (...) sexual dos embriões em desenvolvimento, quais os genes envolvidos nesse processo e tudo mais. Nesse segundo trabalho, a abordagem será teórica, mas também clara, sobre a formação primordial dos gametas femininos e masculinos, através da ovogênese nas fêmeas e a espermatogênese nos machos. Esse trabalho visa levar a importância do processo de formação dos gametas e a produção hormonal das gônadas, bem como o entendimento sobre as interações com o eixo hipotálamo-hipofisário. -/- •____INTRODUÇÃO -/- A reprodução sexual é um processo mediante a qual dois organismos da mesma espécie unem seu material genético para dar lugar a um organismo fixo com combinação única de genes; para isso, cada organismo produz células que contém a metade do material genético característico da espécie. Essas células haploides (1n) são denominadas gametas; ao combinar-se um gameta masculino com um feminino produz-se uma célula diploide (2n) (zigoto ou ovo) a partir da qual se forma o embrião. A grande maioria das espécies com reprodução sexual são anisogâmicas, o que significa que produzem dois tipos de gametas diferentes: os gametas masculinos são microscópios, móveis e produzem-se em grande quantidade, enquanto que os femininos são grandes, imóveis e produzem-se em menor quantidade. O tipo de gameta que um indivíduo produz é o que define seu sexo; sobre os animais o macho é o indivíduo que produz grandes quantidades de espermatozoides e a fêmea produz uma menor quantidade de óvulos, enquanto que nas plantas as gônadas masculinas são as produtoras pólen e as femininas produzem oosferas. Os gametas são diferentes do resto das células do organismo, as quais se chamam células somáticas; essas últimas são diploides porque contém dois pares de cromossomos, um par herdado do pai do indivíduo e o outro da mãe. As células somáticas, ademais, se dividem por mitose, ao qual os cromossomos se duplicam antes de cada divisão celular e cada uma das células filhas recebe um complemento diploide idêntico dos cromossomos, logo todas as células somáticas de um indivíduo possuem o mesmo material genético, embora cada tipo celular expresse diferentes combinações de genes. Em contraponto, os gametas são células haploides porque possuem somente um par de cromossomos e a metade do material genético característico da espécie. Cada um dos cromossomos em um gameta é resultado da recombinação dos genes contidos nos cromossomos paterno e materno do indivíduo que originam o gameta, e cada um destes possuem uma combinação única de genes. Os gametas se formam a partir das células germinais, que são células que em sua origem são diploides e elas de “comprometem” a manter-se como uma linha celular especial que em determinado momento sofrerá o processo de meiose para dar origem aos gametas haploides, sejam óvulos ou espermatozoides segundo o sexo do animal. Como descrito no trabalho sobre a diferenciação sexual, as células germinativas primordiais originam-se no epiblasto do embrião, e migram desde o saco vitelino até colonizar as cristas gonodais, onde, por sua vez, proliferam-se e se organizam junto com as células somáticas da gônada primitiva para formar o testículo ou o ovário. As células germinais masculinas e femininas tem a mesma origem embrionária. As gônadas indiferenciadas em um embrião possuem três tipos celulares: as células que dão origem aos gametas (ovogonia ou espermatogonia), as precursoras de células que nutrem os gametas em desenvolvimento (células da granulosa no ovário; células de Sertoli no testículo) e as precursoras de células que secretam hormônios sexuais (células da teca no ovário; células de Leydig no testículo). As células germinais são as únicas estruturas do organismo que têm a capacidade de dividir-se por meiose sofrendo uma redução no número de seus cromossomos, sendo responsável pela transmissão da carga genética aos descendentes. Em contraste, as células somáticas somente se dividem por mitose. A formação dos gametas compreende fases sequenciais de mitose, meiose e pós-meiose. Esses processos são altamente organizados e necessitam de um preciso e bem coordenado programa de expressão genética. Uma das características importantes da gametogênese é a redução cromossômica, que através da meiose, reduz pela metade o número de cromossomos e produz células distintas entre si, devido a trocas de material genético entre os pares de cromossomos provenientes do pai e da mãe, o que ocorre no processo de “crossing over” durante a primeira fase da meiose. A gametogênese é o processo mediante o qual as células germinais de cada sexo se multiplicam, dividem e diferenciam até formar os gametas. No caso da formação dos gametas masculinos o processo recebe o nome específico de espermatogênese, e para os gametas femininos é denominado como ovogênese. Embora os dois processos alcancem o objetivo comum de produção das células haploides, por onde compartilham algumas características, existem diferenças marcadas entre eles devido a necessidade de produzir um número muito distinto de gametas, de tamanho diferente, e com características de motilidade também distintas. -/- •___ESPERMATOGÊNESE -/- A espermatogênese é o processo mediante o qual se produz os gametas masculinos denominados espermatozoides. Durante a vida fetal as células germinais e as células somáticas do testículo em formação organizam-se em túbulos seminíferos que se derivam dos cordões sexuais primários e conformam a maior parte da medula do testículo. Na etapa fetal cada tubo seminífero é delimitado por uma membrana basal, recoberta na parte interior pelas células precursoras das células de Sertoli (um tipo de células somáticas). No exterior do túbulo localizam-se as células precursoras das células de Leydig ou intersticiais (figura 1), que também são células somáticas. Entre a membrana basal e as células de Sertoli encontram-se algumas células germinais denominadas espermatogonias de reserva A0 (denominadas gonócitos) que serão o único tipo de células germinais presentes no testículo enquanto o animal não alcançar a puberdade. As células de Sertoli estabelecem na região basal uniões oclusoras entre si, formando parte da barreira hemato-testicular. As espermatogonias A0 localizam-se por dentro da membrana basal do túbulo seminífero, embora fora da barreira hemato-testicular. Figura 1: fase neonatal. Nota-se a grande infiltração de tecido intersticial em quase 50% da seção originando que os túbulos sejam pequenos e redondos em sua maioria. O citoplasma e núcleo das células pré-Leydig são notadas claramente por essa ser uma espécie suína onde o tecido intersticial está claramente diferenciado. Hematoxilina-eosina (X 220.5). Fonte: Embrapa. -/- O número de células de Sertoli no testículo depende da influência do hormônio folículo estimulante (FSH) presente durante a vida fetal e as primeiras etapas de vida pós-natal. A população de células de Sertoli ao chegar a puberdade se manterá fixa durante o resto da vida do animal; existe uma relação positiva entre o tamanho e a população de células de Sertoli e a capacidade de produção de espermatozoides do testículo. As células de Sertoli são as únicas células somáticas que estão no epitélio seminífero, e sua função é a nutrição, sustentação e controle endócrino das células germinais. As células de Sertoli participam ativamente no processo de liberação dos espermatozoides para a luz do túbulo. Nesse momento, as células de Sertoli realizam a fagocitose de parte do citoplasma do espermatozoide dos chamados corpos residuais. As células de Sertoli também fagocitam as células germinais que se degeneram no curso normal da espermatogênese. Essas células ainda sintetizam grande quantidade de proteínas, como por exemplo as proteínas ABP (androgen hinding protein), que transportam andrógenos para todo o aparelho reprodutivo, transferrinas, que transportam ferro para a respiração celular das células germinais e também às inibinas, que regulam a liberação de FSH pela hipófise, através de um sistema de retroalimentação (feedback) negativa (figura 2). Figura 2: epitélio seminífero, células de Sertoli (flecha) (400 X). Fonte: Embrapa. -/- Antes da puberdade dos túbulos seminíferos observam-se ao corte como estruturas de diâmetro pequeno, sem luz, e conformados unicamente pelas células de Sertoli e espermatogonias de reserva e rodeados por abundante tecido intersticial, ao que estão presentes as células precursoras das células de Leydig. Ainda antes da puberdade, a diferenciação celular manifesta-se primeiro pela presença de espermatócitos primários, os quais se degeneram em geral na fase de paquíteno, por falta de estimulação hormonal. A partir de que o animal chega a puberdade inicia-se o processo de espermatogênese, que se manterá durante toda a vida do animal, exceto em espécies de animais silvestres muito estacionais, ao qual pode se suspender durante a época não reprodutiva para voltar e ser retomada na época ou estação reprodutiva. Depois da puberdade, os túbulos seminíferos possuem um diâmetro muito maior; em seu interior observa-se um grande número de células germinais de todos os tipos, diferentes estádios de divisão, e em seu lúmen contém líquido e espermatozoides. Ainda sobre o alcancei da puberdade, as espermatogonias começam a dividir-se aceleradamente por mitose, enquanto que no espaço intersticial as células mesenquimais também começam a se diferenciar e a dar origem as células de Leydig (figura 3). A partir dessa etapa as células de Leydig (totalmente diferenciadas) são também evidentes no exterior do túbulo, junto com as células mioides ou peritubulares que o rodeiam o que ao contrair-se são responsáveis por controlar o avanço dos fluidos e as células presentes no lúmen do túbulo. As células mioides estão situadas ao redor do túbulo, e é creditado a elas a promoção da contração e da integridade estrutural do túbulo. Esse tipo celular apenas se diferencia na puberdade pela ação dos andrógenos (figura 4). As interações entre as células de Sertoli e as mioides parecem ter um papel importante na manutenção das funções do testículo. Durante o processo de espermatogênese, as espermatogonias de reserva dividem-se periodicamente e enquanto algumas células fixas permanecem como espermatogonias de reserva, outras proliferam e sofrem uma seção de divisões mitóticas durante as quais se vão diferenciando até formarem espermatócitos primários (espermatocitogênese ou fase de mitose), logo sofrem divisões especiais mediante as quais reduzem seu número de cromossomos (fase de meiose), e ao final trocam de forma para converter-se em espermatozoides (espermatocitogênese) (figura 5). Cada uma dessas etapas da espermato- gênese será descrito detalhadamente adiante, antes é necessário a explicação de algumas características das células de Sertoli e de Leydig que ajudarão a entender seu papel durante a espermatogênese. Figura 3: células de Leydig no espaço intersticial do testículo bovino adulto PAS (400 X). Fonte: Embrapa. -/- Figura 4: o estabelecimento da puberdade pela presença de espermatozoides no túbulo. Hematoxilina-eosina (400 X). Fonte: Embrapa. Figura 5: fases mitóticas das espermatogonias (A0 e B) para formação de um espermatócito primário e as duas fases de meiose que se sucedem antes da espermatogênese. Fonte: ZARCO, 2018. -/- Ao início da espermatocitogênese as uniões oclusoras entre as células de Sertoli se abrem por etapas (como as comportas de um submarino) para permitir a passagem das espermatogonias em direção ao centro do túbulo seminífero sem que se estabeleça uma continuidade entre o exterior e o interior da barreira hemato-testicular. Uma vez ultrapassada essa barreira, as sucessivas gerações de espermatogonias, espermatócitos, espermátides e espermatozoides irão se localizar em direção ao interior do túbulo seminífero, em estreita associação com as células de Sertoli. Em consequência, as células de Sertoli dividem o túbulo seminífero em dois compartimentos; o compartimento basal (debaixo das uniões oclusoras das células de Sertoli), ao qual residem as espermatogonias de reserva, e o compartimento adluminal (em direção ao centro do túbulo), cujos espaços entre as células de Sertoli desenvolvem o resto do processo de espermatogênese (meiose e espermatocitogênese). Esse feito é importante porque durante a vida fetal as únicas células germinais existentes eram as espermatogonias de reserva, pelo que os antígenos expressados por gerações mais avançadas (espermatogonias intermediárias, secundárias, espermátides e espermatozoides) não são reconhecidos como próprios do corpo pelo sistema imunológico. Logo, o anterior implica que deve existir uma barreira entre eles e o sangue para evitar um ataque imunológico. Em todas as etapas da espermatogênese, as células de Sertoli atuam como células de suporte para as células germinais, que sempre permanecem recoberta pela membrana das células de Sertoli. Também atuam como células nutricionais já que proporcionam o meio em que as células germinais se desenvolvem e maturam, assim como as substâncias que regulam e sincronizam as sucessivas divisões e transformações das células germinais. As células de Sertoli produzem hormônios, como estrógenos e inibina que atuam sobre a hipófise para regular a secreção das gonadotropinas que controlam a espermatogênese. As células de Leydig que residem no exterior do túbulo seminífero também são importantes para a espermatogênese: produzem a testosterona que estimula e mantém a espermatogênese, bem como serve como substrato sobre o qual atua como aromatizador das células de Sertoli para transformá-las em estrógenos. Como supracitado, para seu estudo podemos dividir a espermatogênese em três fase: espermatocitogênese, meiose e espermiogênese (figura 6). Agora, serão descritas cada uma dessas etapas. Em algumas espécies, incluindo no homem, os macrófagos representam o segundo tipo celular intersticial mais numeroso no testículo, depois das células de Leydig. Os macrófagos e vários subtipos de linfócitos são identificados nós testículos de ovinos e ratos. Eles estão intimamente associados com as células de Leydig e atuam juntamente na regulação da esteroidogênese. Figura 6: fluxograma da espermatogênese. -/- Espermatocitogênese -/- A espermatocitogênese, também chamada de etapa proliferativa ou de mitose, consiste numa série de divisões mitóticas sofridas pelas células descendentes de uma espermatogonia de reserva. Uma vez que a célula se divide, abandona o estado de reserva e começa um processo de diferenciação. As espermatogonias de reserva (denominadas espermatogonias A0 na rata ou As nos humanos) são células que existem desde a vida fetal e que permanecem mitoticamente inativas durante a infância. Uma vez que alcançam a puberdade começam a dividir-se em intervalos regulares, e as células filhas podem permanecer como espermatogonias de reserva ou abandonar a reserva e ingressar na dita espermatocitogênese. Uma vez abandonada a reserva, as células filhas que vão se formando em cada divisão permanecem unidas por pontes citoplasmáticas, constituindo um clone que se divide sincronicamente. As células que se formam depois de cada divisão continuam sendo espermatogonias, porém cada geração é ligeiramente diferente da anterior. Na rata, por exemplo, as espermatogonias tipo A0 ao dividir-se originam espermatogonias do tipo A1, que em sucessivas divisões formam espermatogonias dos tipos A2, A3 e A4, as quais, por sua vez, sofrem outra mitose para formar espermatogonias intermediárias e uma mais para formar espermatogonias do tipo B. Essas últimas se diferenciam (sem se dividir) em espermatócitos primários, processo em que termina a fase de espermatocitogênese, que literalmente significa processo de geração de espermatócitos. As espermatogonias tipo A0 são a fonte para a contínua produção de gametas. A metade delas se dividem e formam células iguais (as chamadas células tronco) e a outra metade forma as espermatogonias A1, que sofre novas divisões mitóticas e formam os tipos 2, 3 e 4. O tipo A4 sofre mitose para formar a intermediária (A In), que por mitose, forma a tipo B (figura 6). Esses tipos de espermatogonias podem ser identificadas em evoluções histológicas de acordo com sua organização topográfica na membrana basal dos túbulos seminíferos ou mediante seu conteúdo de heterocromatina. Outra maneira de diferenciação se baseia em marcadores moleculares específicos que distinguem as espermatogonias tronco (A0) das demais, com os fins de isolamento, desenvolvimento in vitro e transplante. As tipo B passam por mitose para formarem os espermatócitos primários; estes iniciam a primeira etapa da meiose formando os espermatócitos secundários; na segunda etapa da divisão meiótica, cada espermatócito secundário se divide e formam as chamadas espermátides. Quando o testículo alcança seu desenvolvimento total, a meiose completa-se e as espermátides originadas se convertem em espermatozoides. Um dos maiores sinais característicos desse fenômeno é o alargamento das espermátides e sua migração em direção ao lúmen do túbulo seminífero (figuras 4, 7 e 8). Figura 7: espermatogonias marcadas por imuno-histoquímica, anticorpo monoclonal TGFa (400 x). Figura 8: fases de divisões meióticas (M), espermatócitos em paquíteno (PA) e espermatócitos secundários (ES). -/- Figura 9: estádio posterior a liberação dos espermatozoides na luz do túbulo. Hematoxilina-eosina (400 x). Mediante as seis divisões mitóticas que ocorrem durante a espermatocitogênese se forma potencialmente um clone de 64 espermatócitos primários a partir de cada espermatogonia A que ingressa sobre o processo. Não obstante, algumas células sofrem apoptose em cada uma das etapas do processo, ao qual o número real formado é menor. Em outras espécies produzem-se um transcurso similar de divisões mitóticas sucessivas durante a espermatocitogênese, embora a nomenclatura utilizada possa ser distinta, por exemplo nos bovinos as duas últimas divisões mitóticas dão origem as espermatogonias de tipo B1 e B2. -/- Meiose -/- Uma vez que as espermatogonias B se diferenciam em espermatócitos primários, esses iniciam a etapa de meiose, com uma nova divisão; desta vez a divisão é do tipo meiótica. Ao completar-se a primeira divisão meiótica (meiose I) se obtém os espermató-citos secundários, que ao sofrer a segunda divisão meiótica (meiose II) dão origem as espermátides. Vale salientar que a meiose é o processo mediante o qual reduz-se a metade do número de cromossomos, pelo que as espermátides que se obtém são células haploides (1n). Os espermatócitos secundários que se formam depois da primeira divisão meiótica contém a metade do número normal de cromossomos, porém a mesma quantidade de DNA já que cada cromossomo é duplo. As espermátides formadas na conclusão da segunda divisão meiótica (figura 7), por sua vez, contém a metade dos cromossomos, e esse já não são duplos, já que se trata de células 1n. Também deve-se enfatizar que durante a meiose é relevante o entrecruzamento dos cromossomos homólogos, pelo que cada espermátide possui uma combinação única e diferente de genes paternos e maternos. Outro ponto que deve ser levado em consideração é que cada espermátide somente possui um cromossomo sexual; a metade das espermátides contém o cromossomo X herdado da mãe do macho que está levando a cabo a espermatogênese e a outra metade contém o cromossomo Y herdado de seu pai. Para cada espermatócito primário que entra no processo de meiose obtém-se cerca de quatro espermátides, pelo qual ao ser completada a meiose potencialmente se poderiam formar até 256 espermátides por cada espermatogonia que abandona a reserva e ingressa na espermatocitogênese. -/- Espermiogênese -/- Durante a espermiogênese, também chamada de fase de diferenciação, as esper-mátides sofrem, sem se dividir, uma metamorfose que as transforma em espermatozoides, os quais finalmente são liberados das células de Sertoli em direção ao lúmen do túbulo seminífero. A espermiogênese é um processo complicado e longo já que a espermátide deve sofrer complexas trocas nucleares, citoplasmáticas e morfológicas que resultam na forma-ção dos espermatozoides. Algumas dessas mudanças incluem a condensação do material nuclear para formação de um núcleo plano e denso, a eliminação do citoplasma para a constituição de uma célula pequena, a formação de uma estrutura especializada denomi-nada acrossomo ou tampa cefálica, e a formação do pescoço e da cauda (flagelo) do esper-matozoide, do que depende a sua motilidade. Durante a maior parte da espermiogênese, as espermátides se mantém com uma estreita associação com as células de Sertoli; logo, chega-se a observar, então, flagelos que se projetam em direção a luz do túbulo que pare-cem sair das células de Sertoli, sendo na realidade os flagelos dos espermatozoides que ainda não tinham sido liberados pelo lúmen. Ao liberar os espermatozoides em direção a luz do túbulo, as células de Sertoli realizam a fagocitose de parte do citoplasma dos espermatozoides (corpos residuais). Também fagocitam os restos de todas as células germinais que sofrem apoptose ou degeneram-se durante a espermatogênese. Credita-se que ao realizar essas funções as células de Sertoli podem fazer uma monitoração eficiente da espermatogênese, o que lhes permitiria emitir sinais para colaborar na regulação desse processo em nível gonodal e a nível sistêmico através da secreção de hormônios como a inibina e o estradiol. Além da inibina e activina, as células de Sertoli sintetizam outras proteínas, como a ABP (proteína ligadora de andrógenos) que serve como uma molécula de transporte de andrógenos dentro dos túbulos seminíferos, ductos deferentes e epidídimo, ou a transfer-rina, que transporta o ferro necessário para a respiração celular. -/- Resultados da espermatogênese -/- O resultado da espermatogênese não significa apenas uma simples multiplicação das células germinais (até 256 espermatozoides a partir de cada espermatogonia A1), senão que através dela são produzidos gametas haploides pequenos, móveis e com grande diversidade genética entre eles, ao mesmo tempo que se mantêm uma reversa de células mãe (espermatogonias A0) a partir das quais se poderiam originar novos ciclos de esper-matogênese durante o resto da vida do animal. -/- Controle hormonal da espermatogênese -/- Como mencionado, o FSH reproduz um importante papel para o estabelecimento das células de Sertoli durante a vida fetal e início da vida pós-natal. O começo da esper-matogênese também é estimulado pelo FSH, que atua sobre as células de Sertoli para estimular sua função e a ativação de sinais dessas células em direção as células germinais, incluindo-as a abandonar a reserva e ingressar na espermatogênese. O FSH, assim mesmo, estimula a mitose durante o resto da espermatogênese e aumenta a eficiência do processo, já que reduz a apoptose e a degeneração de espermatogonias intermediárias e do tipo B. O FSH também estimula as células de Sertoli para produzirem inibina e ABP. Uma vez iniciada a espermatogênese somente requerem níveis baixos de FSH para se mantê-la. As células de Sertoli também devem ser estimuladas pela testosterona para funcio-nar de maneira adequada; se requer também do LH hipofisário: hormônio que estimula as células de Leydig para produzir testosterona. Por sua vez, a secreção de LH e FSH é regulada pelo GnRH hipotalâmico: esse neurohormônio também faz parte do mecanismo de regulação da espermatogênese. A espermatogênese também é modulada em nível local mediante a produção de determinados fatores e interações entre as células. Dentro dos fatores locais podemos mencionar o fator de crescimento parecido com a insulina 1 (IGF-1), o fator de crescimen-to transformante beta (TGF- β), activina, ocitocina e diversas citocinas. Entre as intera-ções celulares existem tanto uniões de comunicação entre as células de Sertoli e as células germinais, como pontes citoplasmáticas entre todas as células germinais que formam o clone de células descendentes de uma espermatogonia A1. Uma vez que as células de Sertoli iniciam sua função na puberdade é possível manter experimentalmente a espermatogênese somente com testosterona, sem ser requeri-dos nenhum outro hormônio. A quantidade de espermatozoides produzidos, no entanto, é maior quando há presença do FSH. Abaixo do estímulo do FSH as células de Sertoli produzem estradiol e inibina, hormônios que geram uma retroalimentação sobre o eixo hipotálamo-hipofisário para a regulação da secreção de gonadotropinas. Em particular, a inibina reduz a secreção de FSH, pelo qual é factível que sirva como um sinal que evite uma excessiva estimulação as células de Sertoli. -/- Ciclo do epitélio seminífero -/- Em cada espécie as espermatogonias de reserva iniciam um novo processo de divi-sões celulares em intervalos fixos: a casa 14 dias no touro; 12 dias no garanhão e a cada 9 dias no cachaço (reprodutor suíno). A nova geração de células que começam a proliferar sobre a base do tubo deslocam-se em direção ao centro do túbulo a geração anterior, que por sua vez deslocam-se as gerações anteriores. Devido as mudanças que vão sofrendo cada geração celular se ajustam a tempos característicos de cada etapa, já que rodas as células em uma determinada seção do túbulo estão sincronizadas entre si pelas células de Sertoli; em cada espécie somente é possível encontrar um certo número de combinações celulares: 14 diferentes combinações no caso da rata, 8 no touro e 6 no ser humano. A sucessão de possíveis combinações até regressar a primeira combinação se conhece como o ciclo do epitélio seminífero. Na maioria das espécies os espermatozoides que são libera-dos em direção a luz do túbulo provém das células que entraram no processo de esperma-togênese quatro gerações antes que a geração que está ingressando nesse momento, pelo que a espermatogênese no touro dura ao redor de 60 dias e um pouco menos em outras espécies domésticas. Significa que os efeitos negativos das alterações na espermatogêne-se podem estar presentes até dois meses depois de que se produziram essas alterações. Como supracitado, geralmente se observa a mesma combinação celular em toda a área de uma determinada secção transversal do túbulo seminífero. No entanto, se fizermos uma série de secções, observa-se que ao longo do túbulo há uma sucessão ordenada de combinações (a primeira em uma determinada secção; a segunda combinação na seguinte secção, e assim sucessivamente em secções subsequentes até regressar a primeira combi-nação. Teremos, então, que ao início da divisão das espermatogonias A1 se produz de forma sincronizada em uma secção do túbulo, e vai-se transmitindo como uma onda peristáltica as secções adjacentes. Esse processo é denominado como onda do epitélio seminífero e graças à esse túbulo seminífero sempre tem secções em todas as etapas da espermatogênese, com o que se alcança uma produção constante de espermatozoides. -/- Alterações da espermatogênese -/- Nas espécies estacionais a espermatogênese, como já mencionado, pode reduzir-se ou inclusive suspender sua atividade fisiológica durante a época não reprodutiva dessas espécimes, porém esse processo fisiológico não pode ser considerado como uma altera-ção. No entanto, a espermatogênese só pode ser alterada pelas enfermidades ou por fatores externos. A principal causa de alterações na espermatogênese é o aumento da temperatura testicular. Por isso, os testículos são localizados na saco escrotal e são “caídos” para fora do corpo como pode-se observar nos bovinos, caprinos, ovinos, caninos e no próprio homem. A temperatura testicular deve estar cerca de 2 a 6 °C abaixo da temperatura corporal normal. As células germinais masculinas são sensíveis ao calor, pelo qual na maioria dos mamíferos os testículos se encontram fora da cavidade abdominal e existe um sofisticado sistema de termorregulação para mantê-los a uma temperatura menor que a corporal. Se a temperatura corporal for elevada ou se os testículos permanecerem na cavidade abdominal, ou ainda se os sistemas termorreguladores do testículo sejam afetados por fatores inflamatórios como edema ou falta de mobilidade testicular dentro do escroto, a temperatura do tecido testicular aumentará e a espermatogênese sofrerá alterações proporcionais ao excesso de temperatura e a duração da elevação. A espermatogênese também pode ser afetada pela exposição a hormônios ou a outras substâncias. É possível que a causa mais comum (sobretudo no homem) seja o uso de esteroides anabólicos, que elevam a concentração de andrógenos na circulação, provo-cando um feedback negativo sobre a secreção de gonadotropinas. Ao deixar de estimular-se o testículo pelas gonadotropinas, este deixará de produzir testosterona, e as concentra-ções de andrógeno exógeno nunca alcançará as altíssimas concentrações de testosterona que normalmente estão presentes a nível do tecido testicular por ser o local onde se produz o hormônio. Também se supõe que diversas substâncias com propriedades estrogênicas derivadas de processos industriais (indústria dos plásticos, hidrocarbonetos etc.) e presentes no ambiente (fatores xenobióticos) podem ser responsáveis pelas alterações na espermatogênese em diversas espécies, entre as quais se inclui o ser humano. -/- • OVOGÊNESE E FOLICULOGÊNESE -/- A ovogênese é o processo seguido pelas células germinais da fêmea para a forma-ção dos óvulos, que são células haploides. Durante a vida fetal as células germinais proliferam-se no ovário por mitose, formando um grande número de ovogonias, algumas das quais se diferenciam em ovócitos primários que iniciam sua primeira divisão meiótica para deter-se na prófase da divisão. Somente alguns desses ovócitos primários retornarão e concluirão a primeira divisão meiótica em algum momento da vida adulta do animal, dando origem a um ovócito secundário e a um corpo polar. O ovócito secundário inicia a sua segunda divisão meiótica, a qual volta a ficar suspensa até receber um estímulo apropriado, já que somente os ovócitos secundários que são ovulados e penetrados por um espermatozoide retornam e concluem a segunda divisão meiótica, dando origem a um óvulo (figura 10). O processo de ovogênese é realizado dentro dos folículos ovarianos, que também tem que sofrer um longo transcurso de desenvolvimento e diferenciação denominado foliculogênese pelo que a ovogênese como tal realiza-se dentro do marco desse último processo. Por essa razão, na seguinte seção descreverei tanto a ovogênese como a folicu-logênese, e a relação que existe entre ambos. Figura 10: representação da ovogênese. Na etapa de proliferação, as células germinais se diferen-ciam por mitose. A meiose I se caracteriza por uma prófase prolongada, ocorrendo a duplicação do DNA. Nas duas divisões, que ocorrem antes da ovulação e depois da fertilização, a quantidade de DNA é reduzida a 1n, com o fim de que a fusão dos pronúcles (singamia) pós-fertilização, seja gerado um zigoto com um número de cromossomos de 2n (diploide). -/- Geração de ovócitos primários e folículos primordiais Tanto a ovogênese como a foliculogênese iniciam-se durante a vida fetal, quando as células germinais primordiais provenientes do saco vitelino colonizam a gônada primitiva e, junto com as células somáticas z organizam-se para a formação dos cordões sexuais secundários, que se desenvolvem principalmente no córtex do ovário. Nesse período, as células germinais que colonizaram o ovário sofrem até 30 divisões mitóticas, proliferando-se até formar milhares ou milhões de ovogonias, que inicialmente formam “ninhos” constituídos cada um deles por um clone de várias ovogonias que descendem da mesma célula precursora e que se mantêm unidas por pontes citoplasmáticas, sincronizan-do suas divisões mitóticas. Nessa etapa alcança-se a máxima população de células germinais no ovário, que antes de nascer se reduzirá drasticamente por apoptose. No ovário do feto humano chegam a haver até sete milhões de células germinais que ao nascimento se reduzem a dois milhões. Os ovários fetais do bovino, de maneira análoga, chegam a ter até 2.100.000 células germinais, que ao nascimento reduzem para 130.000 aproximadamente. A redução no número de ovogonias produz-se ao mesmo tempo que essas células, que vêm dividindo-se por mitose e estão agrupadas em ninhos, iniciam sua primeira divisão meiótica para se transformarem em ovócitos primários: células germinais que se encontram em uma etapa de suspensão (diplóteno) da prófase da primeira divisão meiótica. Nesse período produz-se uma grande proporção de células germinais; as células somáticas dos cordões sexuais, por sua vez, emitem projeções citoplasmáticas que separam a isolam os ovócitos primários sobreviventes, ficando cada um deles rodeados por uma capa de células aplanadas da (pré) granulosa. Ao mesmo tempo em que se forma uma membrana basal entre as células da granulosa e o tecido intersticial do ovário. Ao ovócito primário rodeado de uma capa de células da (pré) granulosa aplanadas e delimita-das por uma membrana basal denomina-se de folículo primordial (figura 11). Nas vacas os folículos primordiais bem formados já estão presentes nos ovários a partir do dia 90 da gestação. A maioria dos folículos primordiais com os que nasce uma fêmea se manterão inativos durante um longo tempo; muitos deles durante toda a vida do animal. Nos folículos primordiais inativos tanto os ovócitos primários como as células da granulosa conservam sua forma original e mantém um metabolismo reduzido estritamente ao mínimo necessário para manter-se viáveis. Por essa razão, ao realizar um corte histológico de qualquer ovário as estruturas mais numerosas que se observam serão os folículos primordiais. No entanto, cada dia da vida de um animal, inclusive desde a vida fetal, um certo número de folículos primordiais reiniciam seu desenvolvimento, e a partir desse momento um folículo exclusivamente pode ter dois destinos: o primeiro, prosseguir seu desenvolvi-mento até chegar a ovular, e o segundo (que é muito mais frequente) encontrar em algum momento condições inadequadas que fazem fronteira com ele para parar seu desenvolvi-mento, levando-o a sofrer atresia e degenerar até desaparecer do ovário. Figura 11: sequência da foliculogênese apresentando as diferentes estruturas que podemos encontrar em cada fase. Fonte: ZARCO, 2018. Culminação da ovogênese A ovogênese somente se completará quando um ovócito primário reinicia a meio-se; completa sua primeira divisão meiótica para formar um ovócito secundário e um primeiro corpo polar e, quando, finalmente sofrer uma segunda divisão meiótica para formar um óvulo e um segundo corpo polar. Os óvulos são as células 1n que constituem os gametas femininos, pouco numerosos, grandes e imóveis. A grande maioria dos ovóci-tos primários, como veremos mais adiante, nunca retomam a meiose e, em consequência, não chegam a formar ovócitos secundários, e muitos dos ovócitos secundários tampouco sofrem uma segunda divisão meiótica, pelo que não chegam a formar os óvulos. Ao longo da vida de uma fêmea, na maioria das espécies, menos de 0,1% dos ovócitos primários (um a cada mil) chega a terminar a ovogênese, dando origem a um óvulo. O supracitado deve-se a que a ovogênese somente pode retomar-se e ser completa-da em ovócitos primários que se encontram dentro dos folículos primordiais que (uma vez ativados) vão alcançando diversas etapas de seu desenvolvimento em momentos precisos aos que encontram as condições ideais de oxigenação, nutrição, vascularização e exposição a fatores parácrinos e a exposição a concentrações de hormônios que se requerem para que o folículo continue em cada etapa de seu desenvolvimento com o processo de foliculogênese até chegar a ovular. Qualquer folículo que não esteja nessas condições ao longo do desenvolvimento sofrerá degeneração e atresia, pelo que o ovócito primário em seu interior nunca chegará ao ponto em que pode retomar a primeira divisão meiótica. No que resta da presente seção revisaremos o processo de foliculogênese em cujo marco se desenvolve a ovogênese; havemos que tomar de conta que essa última se limita ao que ocorre nas células germinais (ovogonia, ovócito primário, secundário e óvulo), pelo qual depende intimamente do desenvolvimento do folículo de que essas células formam parte. Em um princípio a ativação do folículo primordial e o desenvolvimento folicular são independentes das gonadotropinas: não se conhecem os mecanismos precisos median-te os quais um folículo primordial se ativa e reinicia seu desenvolvimento, nem como se decide quais folículos, dentre as dezenas de milhares de ou centenas de milhares presentes em um ovário se reativarão em um dia em particular. A reativação trata-se de uma liberação de influência de fatores inibidores, já que os folículos primordiais se reativam espontaneamente quando cultivados in vitro, isolados do resto do tecido ovariano. Uma vez que um folículo primordial se ativa, inicia-se um longo processo de desenvolvimento que somente depois de vários meses (ao redor de cinco meses no caso dos bovinos) o levará a um estádio em que seu desenvolvimento posterior requer a presença das gonado-tropinas; daí que se diz que as primeiras etapas do desenvolvimento são independentes das gonadotropinas. Durante a fase independente de gonadotropinas, um folículo primordial que tenha sido ativado e tenha começado a crescer; passará primeiro para a etapa de folículo primá-rio, caracterizada por conter um ovócito primário que está rodeado, por sua vez, por uma capa de células da granulosa, que não são planas, e sim cúbicas. Depois, se o folículo continuar crescendo se transformará em um folículo secundário, ao qual as células da granulosa começam a proliferar (aumentando em número) e se organizam em duas ou mais capas que rodeiam o ovócito primário. Entre o ovócito e as células da granulosa que o rodeiam se forma nesta uma zona pelúcida; ainda assim o ovócito mantém contato direto com essas células, mediante o estabelecimento de pontes citoplasmáticas que atravessam a zona pelúcida. Através dessas pontes citoplasmáticas as células da granulosa podem passar nutrientes e informação ao ovócito primário. O volume e o diâmetro do ovócito primário aumentam ao mesmo tempo que as células da granulosa proliferam-se, para incrementar as capas ao redor do ovócito. De maneira gradual o citoplasma do ovócito primário aumenta até 50 vezes seu volume e a proliferação das células continua. Esses folículos que possuem cada vez mais células e portanto mais capas de células da granulosa se denominam folículos secundários. Para evitar confusões, há a necessidade de nomen-clatura ao qual o folículo vá mudando de nome de primordial a primário e logo, de secun-dário, a terciário, por sua vez, o ovócito que encontra-se em seu interior, a todo momento, segue sendo um ovócito primário. Durante a etapa dependente de gonadotropinas, os folículos secundários começam a formar um espaço cheio de líquido, o antro folicular, desse modo se convertem em folí-culos terciários. Com a utilização de outra nomenclatura, a formação do antro marca a transição entre folículos pré-antrais (sem antro) e folículos antrais (com antro). Em algum momento dessa transição entre folículo secundário e terciário, também aparece a depen-dência de folículos em direção as gonadotropinas, pelo qual somente podem seguir crescendo na presença do hormônio luteinizante (LH) e do hormônio folículo estimulante (FSH). Nos bovinos e em outras espécies (para seu estudo), os folículos antrais são dividi-dos em pequenos, médios e grandes. Embora todos eles possuam um antro folicular, dependendo do seu grau de desenvolvimento requerem diferentes concentrações de gona-dotropinas para continuar o crescimento. Os folículos antrais mais pequenos somente re-querem concentrações baixas de LH e FSH, pelo qual podem continuar crescendo em qualquer momento do ciclo estral inclusive em animais que não estão ciclando (fêmeas em anestro pré-puberal, gestacional, lactacional, estacional). Nas etapas posteriores os folículos antrais requerem primeiro concentrações elevadas de FSH, e nas etapas finais somente podem continuar crescendo na presença de pulsos frequentes de LH, pelo qual somente os folículos que encontram-se sob concentrações apropriadas desses hormônios podem seguir crescendo. Por essa razão, nos animais que se encontram em anestro de qualquer tipo somente é possível encontrar folículos antrais pequenos ou médios, segundo a espécie, e nos animais que se encontram ciclando (estro) o maior tamanho folicular encontrado em um determinado dia do ciclo dependerá das concentrações de FSH e LH presentes nesse momento e nos dias anteriores. Um folículo que chega ao estado máximo de desenvolvimento, conhecido como folículo pré-ovulatório, ao final, somente chegará a ovular se for exposto a um pico pré-ovulatório de LH. Como supracitado, cada dia na vida de uma fêmea inicia seu desenvolvimento um certo número de folículos; a grande maioria sofrem atresia, mas depois da puberdade em cada dia do ciclo estral um ou vários folículos vão encontrando ao longo do seu desenvol-vimento concentrações hormonais que lhes permite chegar na etapa de folículo pré-ovula-tório. Somente nestes folículos, e como consequência de um pico pré-ovulatório de LH, se reinicia e completa-se a primeira divisão meiótica do ovócito primário, produzindo duas células distintas. Uma delas é o ovócito secundário, que retém praticamente todo o citoplasma. Contém, assim mesmo, em seu núcleo um par de cromossomos duplos, a outra é o primeiro corpo polar, que é exclusivamente um núcleo com uma quantidade mínima de citoplasma. Na maioria das espécies ovula-se um ovócito secundário que se encontra, então, suspendido na segunda divisão meiótica. Esta segunda divisão meiótica somente reinicia-rá e completarar-se uma vez que o espermatozoide começa a penetrar sob o ovócito secundário. Ao concluir-se a divisão se forma o segundo corpo polar e completa-se a ovogênese com o qual se obtém o óvulo, célula 1n que constitui o gameta feminino. No entanto, o óvulo existe pouco tempo como tal, já que em poucos minutos/horas (depen-dendo da espécie) se produzirá a fusão do núcleo do mesmo (pró-núcleo feminino) com o do espermatozoide (pró-núcleo masculino), com o qual se completa a fertilização e se forma um novo indivíduo (o ovo ou zigoto). -/- Ondas foliculares -/- Como mencionado supra, todos os dias um determinado número de folículos pri-mordiais se ativam e começam a crescer, os quais crescem em um ritmo característico em cada espécie. Isso provoca que em qualquer momento existam nos ovários folículos pri-mordiais (que começam a crescer em alguns dias ou semanas), assim como folículos secundários em diversas etapas do desenvolvimento, os quais iniciaram seu desenvolvi-mento em semanas ou inclusive meses (segundo o grau de desenvolvimento atual). Também em qualquer momento poderá haver folículos antrais nas etapas iniciais de seu desenvolvimento (com antros que já se podem detectar em cortes histológicos mas não são visíveis macroscopicamente). Todos esses folículos chegaram até seu estado de de-senvolvimento atual (primário, secundário ou antral pequeno), independente da etapa do ciclo estral em que sejam observados ou encontrados. Nos bovinos, os folículos que chegam ao início da etapa antral iniciaram seu desenvolvimento cinco meses antes, e todavia requerem ao redor de 42 dias para chegar ao estado pré-ovulatório. Para continuar seu desenvolvimento, os folículos antrais pequenos devem encon-trar concentrações altas de FSH, que os estimulam para prosseguir o crescimento. Cada vez que se produz uma elevação nas concentrações de FSH, esse hormônio estimula o desenvolvimento de um grupo de folículos antrais pequenos, que começaram a crescer muito tempo antes e que o dia da elevação de FSH tenha alcançado o grau de desenvolvi-mento preciso para responder com eficiência a este hormônio, o qual atuará através de seus receptores nas células da granulosa para estimular a produção de estradiol, a secreção de inibina, a produção de líquido folicular e a proliferação das células da granulosa. Um grupo de folículos antrais pequenos é assim recrutado pelo FSH para acelerar seu cresci-mento e aumentar sua produção de estradiol e inibina (figura 12). Mediante um seguimento ultrassonográfico dos ovários é possível identificar pou-cos dias depois um certo número de folículos, que por haver sido recrutados começam um período de crescimento acelerado. Durante alguns dias vários folículos crescem juntos, porém depois um deles é selecionado para continuar crescendo, enquanto que o restante do grupo deixam de fazê-lo e terminam sofrendo atresia. Através da ultrassom é possível identificar o folículo selecionado, agora chamado folículo domi-nante, já que sua trajetória de crescimento sofre um desvio com respeito a seguida pelo restante do grupo. Os folículos que não foram selecionados deixam de crescer e sofrem atresia já que deixam de possuir o suporte gonadotrópico de FSH, uma vez que as concentrações desse hormônio são suprimidos pela inibina e o estradiol produzidos pelo conjunto de folículos que conformam a onda folicular (figura 12), porém o folículo mais desenvolvido do grupo se converterá em dominante. A inibina atua diretamente a nível hipofisário para reduzir a secreção de FSH. Figura 12: onda folicular e relação dos níveis de FSH, estradiol e LH. Fonte: ZARCO, 2018. -/- Figura 13: Recrutamento, seleção e dominação folicular na espécie ovina e influência do FSH e LH nas fases. Fonte: SILVA, E. I. C. da, 2019. -/- A razão pela qual o folículo dominante é capaz de continuar seu desenvolvimento apesar da baixa nas concentrações de FSH é que o folículo é o único que alcançou o grau de progresso necessário para que apareçam os receptores para LH em suas células da granulosa. Esse processo permite ao folículo dominante ser estimulado pela LH, e que requeira baixas concentrações de FSH para manter seu desenvolvimento. A secreção de LH em forma de pulsos de baixa frequência (um pulso a cada quatro a seis horas), característica da fase lútea do ciclo estral; é suficiente para permitir que um folículo dominante continue crescendo por mais dias depois da sua seleção e que mais tarde mantenha-se viável durante alguns dias embora não aumentem de tamanho. Contu-do, se durante o período viável desse folículo não seja finalizada a fase lútea e não diminuam as concentrações de progesterona, o folículo terminará sofrendo atresia devido a exigência de um padrão de secreção acelerada de LH (aproximadamente um pulso por hora) durante o desenvolvimento pré-ovulatório, que somente pode ser produzido com a ausência da progesterona. Uma vez que um folículo dominante sofre atresia deixa de produzir inibina, pelo qual as concentrações de FSH podem elevar-se novamente para iniciar o recrutamento de outro grupo de folículos a partir da qual se origina uma nova onda folicular. Durante o ciclo estral de uma vaca podem gerar-se dois ou três ondas foliculares; somente em raros casos quatro. A etapa de dominância folicular da primeira onda na grande maioria dos casos não coincide com a regressão do corpo lúteo, pelo qual o primei-ro folículo dominante quase invariavelmente termina em atresia. Em algumas vacas o fo-lículo dominante da segunda onda ainda está viável quando se produz a regressão do corpo lúteo e acelera-se a secreção de LH, pelo qual esse segundo folículo dominante se converte em folículo pré-ovulatório e, ao final ovula. Em outros animais o segundo folícu-lo dominante também perde a sua viabilidade antes da regressão do corpo lúteo, por onde nesses animais se inicia uma terceira onda folicular, da qual surge o folículo que finalmen-te ovulará depois de produzir-se a regressão do corpo lúteo. Sem importar a onda em que se origine, uma vez que um folículo dominante é ex-posto a alta frequência de secreção de LH que se produz depois da regressão do corpo lúteo, aumenta ainda mais sua secreção de estradiol até que as altas concentrações desse hormônio comecem a exercer um feedback positivo para a secreção do LH. Isso provoca-rá a aceleração da frequência de secreção do LH até que os pulsos são tão frequentes que começam a ficar por cima e produzir-se o pico pré-ovulatório de LH, que é responsável pela realização da ovulação e a maturação final do ovócito. -/- •___DIFERENÇAS ENTRE ESPERMATOGÊNESE E OVOGÊNESE -/- Enquanto que na fêmea a ovogênese inicia-se durante a vida fetal, no macho a es-permatogênese começa na puberdade. Na fêmea, a partir de um ovócito primário se origi-na um óvulo; no macho, de um espermatócito primário se produzem, teoricamente, quatro espermatozoides. Outra característica interessante é que enquanto a fêmea já conta desde o nasci-mento com todos os ovócitos que necessitará na vida adulta, o macho necessitará chegar a puberdade para iniciar o desenvolvimento das células sexuais, já que ao nascer somente possui gonócitos precursores das células germinais, células de Sertoli e intersticiais. Na vida adulta de uma fêmea, o número de células germinais desaparece paulati-namente. Uma vez iniciada a espermatogênese no macho, a cada ciclo do epitélio seminí-fero as células germinais são renovadas mantendo a provisão para toda a vida reprodutiva. Na fêmea, a meiose sofre duas interrupções em seu transcurso, e no macho é ininterrupta. Figura 14: representação em diagramação comparativa do desenvolvimento da gametogênese. -/- Principais pontos abordados sobre as diferenças entre a gametogênese masculina e feminina: ❙ Na ovogênese a meiose contêm-se em duas ocasiões esperando acontecimentos externos para prosseguir. Já na espermatogênese não existe a suspensão da meiose. ❙ A espermatogênese é um processo contínuo, enquanto que a ovogênese pode completar exclusivamente um óvulo em cada ciclo estral; já que só pode ser completada por mais de um nas espécies que ovulam vários ovócitos no caso das porcas, cadelas, gatas etc. ❙ Na espermatogênese existem células de reserva que permitem a continuação du-rante toda a vida, enquanto que na ovogênese o número de ovócitos primários é limitado. A fêmea somente conta com os que nasceu, e eles não se dividem. ❙ Na espermatogênese obtém-se até 256 espermatozoides para cada espermatogo-nia que inicia o processo, enquanto que na ovogênese somente se obtém um óvulo a partir de cada ovócito primário. ❙ Durante a espermatogênese se produz uma metamorfose que transforma as es-permátides em espermatozoides. Na ovogênese não ocorre um processo análogo. ❙ Na espermatogênese, durante a meiose produzem-se quatro espermátides a partir de cada espermatócito primário. Na ovogênese se produz somente um óvulo a partir de cada ovócito primário; produz, ademais, dois corpos polares. ❙ Todos os óvulos que se produzem durante a ovogênese contém um cromossomo X, enquanto que a metade dos espermatozoides possuem um cromossomo Y e a outra metade um cromossomo X. ❙ Na espermatogênese produzem-se centenas ou dezenas de milhões de esperma-tozoides por dia, enquanto que na ovogênese se produz um ou alguns óvulos a cada ciclo estral. ❙ A espermatogênese produz gametas macroscópicos e com motilidade própria, enquanto que a ovogênese produz gametas grandes e imóveis. -/- REFERÊNCIAS BIBLIOGRÁFICAS -/- ABDEL-RAOUF, Mohammed et al. The postnatal development of the reproductive organs in bullswith special reference to puberty.(Including growth of the hypophysis and the adrenals). Acta endocrinologica, n. Suppl No. 49, 1960. ADONA, Paulo Roberto et al. Ovogênese e foliculogênese em mamíferos. Journal of Health Sciences, v. 15, n. 3, 2013. AERTS, J. M. J.; BOLS, P. E. J. Ovarian follicular dynamics: a review with emphasis on the bovine species. Part I: Folliculogenesis and pre‐antral follicle development. Reproduction in domestic animals, v. 45, n. 1, p. 171-179, 2010. AERTS, J. M. J.; BOLS, P. E. J. Ovarian follicular dynamics. A review with emphasis on the bovine species. Part II: Antral development, exogenous influence and future prospects. Reproduction in domestic animals, v. 45, n. 1, p. 180-187, 2010. ALBERTINI, David F.; CARABATSOS, Mary Jo. Comparative aspects of meiotic cell cycle control in mammals. Journal of molecular medicine, v. 76, n. 12, p. 795-799, 1998. AUSTIN, Colin Russell; SHORT, R. Reproduction in mammals. Cambridge, 1972. BAKER, T. G. Oogenesis and ovulation. In. Reproduction in Mammals I Germ Cells and Fertilization, p. 29-30, 1972. BEARDEN, Henry Joe et al. Reproducción animal aplicada. México: Manual Moderno, 1982. BIGGERS, John D.; SCHUETZ, Allen W. Oogenesis. University Park Press, 1972. BINELLI, Mario; MURPHY, Bruce D. Coordinated regulation of follicle development by germ and somatic cells. Reproduction, Fertility and Development, v. 22, n. 1, p. 1-12, 2009. CHIARINI-GARCIA, Helio; RUSSELL, Lonnie D. High-resolution light microscopic characterization of mouse spermatogonia. Biology of reproduction, v. 65, n. 4, p. 1170-1178, 2001. CHOUDARY, J. B.; GIER, H. T.; MARION, G. B. Cyclic changes in bovine vesicular follicles. Journal of animal science, v. 27, n. 2, p. 468-471, 1968. CLERMONT, Yves; PEREY, Bernard. Quantitative study of the cell population of the seminiferous tubules in immature rats. American Journal of Anatomy, v. 100, n. 2, p. 241-267, 1957. COSTA, DEILER SAMPAIO; PAULA, T. A. R. Espermatogênese em mamíferos. Scientia, v. 4, 2003. CUNNINGHAM, James. Tratado de fisiologia veterinária. Elsevier Health Sciences, 2011. CUPPS, Perry T. (Ed.). Reproduction in domestic animals. Elsevier, 1991. DA SILVA, Emanuel Isaque Cordeiro. Fisiologia Clínica do Ciclo Estral de Vacas Leiteiras: Desenvolvimento Folicular, Corpo Lúteo e Etapas do Estro. 2020. Acervo pessoal. DA SILVA, Emanuel Isaque Cordeiro. Fisiologia da Reprodução Animal: Ovulação, Controle e Sincronização do Cio. 2020. Acervo pessoal. DUKES, Henry Hugh; SWENSON, Melvin J.; REECE, William O. Dukes fisiologia dos animais domésticos. Editora Guanabara Koogan, 1996. EPIFANO, Olga; DEAN, Jurrien. Genetic control of early folliculogenesis in mice. Trends in Endocrinology & Metabolism, v. 13, n. 4, p. 169-173, 2002. ERICKSON, B. H. Development and senescence of the postnatal bovine ovary. Journal of animal science, v. 25, n. 3, p. 800-805, 1966. REFERÊNCIAS BIBLIOGRÁFICAS -/- FELDMAN, Edward C. et al. Canine and feline endocrinology-e-book. Elsevier health sciences, 2014. FUSCO, Giuseppe; MINELLI, Alessandro. The Biology of Reproduction. Cambridge University Press, 2019. GALINA-HIDALGO, Carlos Salvador. A study of the development of testicular function and an evaluation of testicular biopsy in farm animals. 1971. Tese de Doutorado. Royal Veterinary College (University of London). GALLICANO, G. Ian. Composition, regulation, and function of the cytoskeleton in mammalian eggs and embryos. Front Biosci, v. 6, p. D1089-1108, 2001. GILBERT, Scott F. Biología del desarrollo. Ed. Médica Panamericana, 2005. GNESSI, Lucio; FABBRI, Andrea; SPERA, Giovanni. Gonadal peptides as mediators of development and functional control of the testis: an integrated system with hormones and local environment. Endocrine reviews, v. 18, n. 4, p. 541-609, 1997. HAFEZ, Elsayed Saad Eldin; HAFEZ, Bahaa. Reprodução animal. São Paulo: Manole, 2004. HEDGER, Mark P. Testicular leukocytes: what are they doing?. Reviews of reproduction, v. 2, n. 1, p. 38-47, 1997. HUTSON, James C. Testicular macrophages. In: International review of cytology. Academic Press, 1994. p. 99-143. HYTTEL, P. Gametogênese. In. HYTTEL, Poul; SINOWATZ, Fred; VEJLSTED, Morten. Embriologia veterinária. São Paulo: Elsevier Brasil, 2012. JOHNSON, Martin H. Essential reproduction. Nova Jersey: John Wiley & Sons, 2018. JONES, Richard E.; LOPEZ, Kristin H. Human reproductive biology. Academic Press, 2013. KIERSZENBAUM, Abraham L.; TRES, Laura L. Primordial germ cell‐somatic cell partnership: A balancing cell signaling act. Molecular Reproduction and Development: Incorporating Gamete Research, v. 60, n. 3, p. 277-280, 2001. MATZUK, Martin M. et al. Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science, v. 296, n. 5576, p. 2178-2180, 2002. MCLAREN, Anne. Germ and somatic cell lineages in the developing gonad. Molecular and cellular endocrinology, v. 163, n. 1-2, p. 3-9, 2000. MCKINNON, Angus O. et al. (Ed.). Equine reproduction. John Wiley & Sons, 2011. MERCHANT-LARIOS, Horacio; MORENO-MENDOZA, Norma. Onset of sex differentiation: dialog between genes and cells. Archives of medical research, v. 32, n. 6, p. 553-558, 2001. MINTZ, Beatrice et al. Embryological phases of mammalian gametogenesis. Embryological phases of mammalian gametogenesis., v. 56, n. Suppl. 1, p. 31-43, 1960. MORALES, M. E. et al. Gametogénesis. I. Revisión de la literatura, con enfoque en la ovogénesis. Medicina Universitaria, v. 8, n. 32, p. 183-9, 2006. NAKATSUJI, NORIO; CHUMA, SHINICHIRO. Differentiation of mouse primordial germ cells into female or male germ cells. International Journal of Developmental Biology, v. 45, n. 3, p. 541-548, 2002. NILSSON, Eric; PARROTT, Jeff A.; SKINNER, Michael K. Basic fibroblast growth factor induces primordial follicle development and initiates folliculogenesis. Molecular and cellular endocrinology, v. 175, n. 1-2, p. 123-130, 2001. REFERÊNCIAS BIBLIOGRÁFICAS -/- NORRIS, David O.; LOPEZ, Kristin H. The endocrinology of the mammalian ovary. In: Hormones and reproduction of vertebrates. Academic Press, 2011. p. 59-72. PEDERSEN, Torben. Follicle growth in the immature mouse ovary. European Journal of Endocrinology, v. 62, n. 1, p. 117-132, 1969. PINEDA, Mauricio H. et al. McDonald's veterinary endocrinology and reproduction. Iowa state press, 2003. ROSER, J. F. Endocrine and paracrine control of sperm production in stallions. Animal Reproduction Science, v. 68, n. 3-4, p. 139-151, 2001. RUSSELL, Lonnie D. et al. Histological and histopathological evaluation of the testis. International journal of andrology, v. 16, n. 1, p. 83-83, 1993. RÜSSE, I.; SINOWATZ, F. Gametogenese. Lehrbuch der Embryologie der Haustiere, p. 42-92, 1991. SAITOU, Mitinori; BARTON, Sheila C.; SURANI, M. Azim. A molecular programme for the specification of germ cell fate in mice. Nature, v. 418, n. 6895, p. 293-300, 2002. SALISBURY, Glenn Wade et al. Physiology of reproduction and artificial insemination of cattle. WH Freeman and Company., 1978. SAWYER, Heywood R. et al. Formation of ovarian follicles during fetal development in sheep. Biology of reproduction, v. 66, n. 4, p. 1134-1150, 2002. SCARAMUZZI, R. J.; MARTENSZ, N. D.; VAN LOOK, P. F. A. Ovarian morphology and the concentration of steroids, and of gonadotrophins during the breeding season in ewes actively immunized against oestradiol-17β or oestrone. Reproduction, v. 59, n. 2, p. 303-310, 1980. SEIDEL JR, G. E. et al. Control of folliculogenesis and ovulation in domestic animals: puberal and adult function. In: 9th International Congress on Animal Reproduction and Artificial Insemination, 16th-20th June 1980. II. Round tables. Editorial Garsi., 1980. p. 11-16. SKINNER, Michael K. Cell-cell interactions in the testis. Endocrine Reviews, v. 12, n. 1, p. 45-77, 1991. SMITZ, J. E.; CORTVRINDT, Rita G. The earliest stages of folliculogenesis in vitro. Reproduction, v. 123, n. 2, p. 185-202, 2002. SORENSEN, Anton Marinus. Reproducción animal: principios y prácticas. México, 1982. SUTOVSKY, Peter; MANANDHAR, Gaurishankar. Mammalian spermatogenesis and sperm structure: anatomical and compartmental analysis. In. The sperm cell: Production, maturation, fertilization, regeneration, p. 1-30, 2006. TAZUKE, Salli I. et al. A germline-specific gap junction protein required for survival of differentiating early germ cells. Development, v. 129, n. 10, p. 2529-2539, 2002. VAN STRAATEN, H. W. M.; WENSING, C. J. G. Leydig cell development in the testis of the pig. Biology of Reproduction, v. 18, n. 1, p. 86-93, 1978. TURNBULL, K. E.; BRADEN, A. W. H.; MATTNER, P. E. The pattern of follicular growth and atresia in the ovine ovary. Australian Journal of Biological Sciences, v. 30, n. 3, p. 229-242, 1977. WASSARMAN, Paul M. Gametogenesis. Londres: Academic Press, 2012. WROBEL, K.-H.; SÜß, Franz. Identification and temporospatial distribution of bovine primordial germ cells prior to gonadal sexual differentiation. Anatomy and embryology, v. 197, n. 6, p. 451-467, 1998. REFERÊNCIAS BIBLIOGRÁFICAS -/- ZARCO, L. Gametogénese. In. PORTA, L. R.; MEDRANO, J. H. H. Fisiología reproductiva de los animales domésticos. Cidade do México: FMVZ-UNAM, 2018. ZIRKIN, Barry R. et al. Endocrine and Paracrine Regulation of Mammalian Spermatogenesis. In: Hormones and Reproduction of Vertebrates. Academic Press, 2011. p. 45-57. -/- REALIZAÇÃO -/- . (shrink)
MANEJO NA AVICULTURA: POSTURA, ILUMINAÇÃO E INCUBAÇÃO DOS OVOS -/- MANAGEMENT IN POULTRY: POSTURE, ILUMINATION AND INCUBATION OF THE EGGS -/- 1. INTRODUÇÃO A produção de ovos no Brasil está próxima de 45 bilhões de unidades por ano, mantendo um desenvolvimento constante em todos os seus aspectos: genética, instalações, patologia, alimentação, etc. Ao longo do presente trabalho, pretende-se estabelecer os conceitos que estão ligados à produção de ovos, distribuição de ovoprodutos e refletir as ideias básicas sobre os programas de iluminação (...) nas galinhas. Num segundo bloco serão analisados aspectos relacionados com a incubação dos ovos, como a higiene e o manejo, o tratamento do ovo e, por último, a caracterização dos fatores envolvidos no processo da incubação. 2. PREPARAÇÃO/POSTURA DOS OVOS A galinha começa a ovulação normalmente a partir das 20-22 semanas de vida, se bem que mediante práticas de manejo (alimentação, programas de luz, etc.) pode-se adiantar ou atrasar o momento do início das primeiras ovulações. A genética tem, logicamente, um papel importante na idade em que se alcança a puberdade das aves. Mencionamos ritmos de postura por ser a oviposição facilmente verificável, já que nem toda ovulação é seguida de oviposição, como nos casos de queda da gema na cavidade intraperitoneal. Aos primeiros sinais de postura de ovos em frangas jovens, frequentemente observam-se certas irregularidades como: a) Postura irregular: longos intervalos entre dois ovos ou mais de um ovo por dia (geralmente são anormais). b) Ovos com casca mole («soft shelled eggs»), sem a adequada classificação de cálcio. c) Ovos com duas gemas. Talvez estes fenômenos sejam provenientes de uma excessiva estimulação do ovário e disfunções do oviduto. Em suma, tudo isto pode ser consequência da falta de sincronização dos complexos mecanismos que regulam o processo. Uma vez regularizada a postura dos ovos, verifica-se que a galinha coloca um número de ovos sucessivos, seguido de uma pausa ou descanso na postura (choco) de um ou vários dias. O número de ovos que põe seguidos é chamado de sequência ou série de postura. Normalmente, essa “pausa” acontece após uma sequência de quatro a seis ovos postos. A sequência de postura de uma galinha pode ser regular, ou seja, que se repete sucessivamente o número de ovos postos de forma contínua, ou irregular quando essa sequência não obedece ao padrão normal, sendo ela derivada. O mesmo aconteceria com os dias de descanso. Como exemplo podemos encontrar: XXXX - XXXX - série e repouso regular XXX — XX — série e descanso irregular O espaço de tempo entre dois ovos de cada série é um caráter individual. Verificações de Menher (1969) indicam que o intervalo médio entre dois ovos sucessivos de uma série depende da duração desta. Em grandes séries diminui o tempo entre dois ovos sucessivos. À medida que a idade da galinha aumenta, as séries diminuem. Também observa-se que o tempo transcorrido entre dois ovos sucessivos é menor na metade da série e máximo no final da série. Uma galinha com uma série regular do tipo: XXXX - XXXX durante um período de tempo concreto permite-nos estabelecer que tem uma intensidade de postura de 80%. A intensidade de postura é definida como a porcentagem de ovos de um efetivo de galinhas num determinado período de tempo. A evolução da porcentagem de postura ao longo da vida produtiva do rebanho nos dá a curva de postura com três fases: crescimento, constância retilínea e decrescente. Define-se como período de postura o intervalo de tempo entre o início da postura da galinha (20-22 semanas) e o fim da mesma. A duração deste período pode ser variável (entre 12 e 20 meses), dependendo de vários fatores. Se observarmos a hora de oviposição dos diferentes ovos de uma série de galinhas, verificaríamos que a mesma se atrasa dia após dia. Este é um fato lógico, tendo em conta que a formação do ovo é superior a 24 horas. Também se comprova que em nenhum caso há oviposições nos períodos de escuridão quando se mantêm programas clássicos de iluminação (porém, é frequente comprovar que uma porcentagem de ovos podem ser postos durante o período de escuridão). O controle dos mecanismos que regulam os ritmos de ovulação e que definirão as séries é muito complexo, então tento fazer um pequeno resumo. Uma vez produzida a ovulação, a presença de um ovo em formação colocaria em funcionamento um sistema «Feedback» negativo da seguinte forma: gema → gera estímulos nervosos → hipotálamo → suprime RH → sem estimulação da hipófise → bloqueio de uma nova ovulação Esta ideia não é tão simples e se desconhecem em profundidade os mecanismos que a regulam. Observe uma figura que detalha melhor a formação do ovo e a passagem pelos respectivos compartimentos reprodutivos da galinha. 3. DISTRIBUIÇÃO DAS OVIPOSIÇÕES Com programas de iluminação clássicos (17L:7N) já assinalámos que a oviposição na galinha realiza-se no período de luz, e que diariamente o momento de tal oviposição irá sendo regredido (atrasado). No entanto, existe algumas horas onde a frequência máxima de postura é concentrada, que normalmente coincide com as 2-4 horas após a iluminação. Se, experimentalmente, fornecermos 24 horas de luz às galinhas, a postura ocorre durante todo o período, seja de forma aleatória ou através os estímulos a determinados pontos de referência de fatores externos periódicos: ruídos, entradas, fala de pessoas, etc., então podemos estabelecer que existe um certo sincronismo. Quando os programas de iluminação que se seguem nas granjas de galinhas poedeiras não se ajustam às 24 horas ou que seguem programas fraccionados, a resposta é diversificada e deixamos sua avaliação até não conhecer os distintos programas especiais de iluminação. 4. BASES DA ILUMINAÇÃO PARA GALINHAS POEDEIRAS O estabelecimento de programas de iluminação começa na fase de recria da franga e dada a influência que a luz exerce sobre o desenvolvimento da maturidade sexual, os programas que se instauram terão um impacto sobre o futuro produtivo das frangas. As considerações que devem ser levadas em conta no estabelecimento dos programas de iluminação são as seguintes: a) Os programas devem ser considerados como uma "globalidade" durante toda a vida da galinha. A instauração de programas de iluminação das galinhas poedeiras deve estar em conformidade com o programa seguido durante a fase de recria. b) Os aumentos no fotoperíodo durante a fase de recria implica um adiantamento no aparecimento da maturidade sexual da galinha. Este efeito deve ser considerado prejudicial, uma vez que esta postura precoce é acompanhada de tamanhos inferiores de ovos (cuja avaliação no mercado é reduzida). Este avanço no início da postura pode levar a uma falta de harmonia entre puberdade e o desenvolvimento corporal (aponta-se para uma maior incidência de prolapsos). Também indica-se que uma maturidade sexual precoce pode ser acompanhada de irregularidades na postura, pior qualidade da casca e até a um maior índice de mortalidade. c) A redução do fotoperíodo durante a recria permite atrasar o momento do início da postura e a produção de ovos é de uma maior dimensão inicial, o que compensa a ligeira diminuição do número de ovos na sua vida produtiva. d) Estabelecido um programa e posto em prática não pode alterar-se o mesmo. e) Nunca diminuir o fotoperíodo na fase de produção de ovos. f) As alterações do fotoperíodo (aumentos ou diminuições) não passam de um conceito de sensibilidade ao fato do que da magnitude dessas alterações. g) As alterações no fotoperíodo afetam inicialmente o consumo de ração das frangas, mas estas adaptam-se rapidamente aos seus níveis de ingestão e suprimento de exigências ao novo fotoperíodo. h) Ações qualitativas (limitação de um nutriente) ou quantitativas na ração fornecida podem permitir, em si mesmas, o atraso da maturidade sexual das frangas, embora não se apliquem normalmente para este fim. O controle quantitativo do gênero alimentício obedece a estratégias destinadas a obter o peso ideal para uma determinada idade de acordo com as normas fornecidas pelo fornecedor das diferentes estirpes comerciais. i) Na decisão final, ao se definir um programa deve-se ter presente: Tipo de alojamento: — Galpão com ambiente controlado. — Galpão convencionais com janelas. Neste último caso a época de nascimento das frangas será um fator relevante a ser levado em consideração. Como aspectos a destacar poderíamos citar: — Durante os primeiros dias de vida da galinha convém fornecer-lhe luz durante as 24 horas, a fim de facilitar a adaptação ao seu novo habitat (localização de comedouros e bebedouros, etc.). — Durante a fase de recria devem ser evitadas falhas que estabeleçam períodos fotocrescentes, já que alterarão a resposta produtiva posterior de tais frangas (especialmente se altera-se na última fase do período decrescente). 4.1 Programas práticos de iluminação na recria Ao longo do trabalho consideraremos sempre uma recria de 20 semanas, embora este dado possa ser variável de acordo com: a) Melhoria genética das estirpes atuais, as quais tendem a ser mais precoces. b) Tentativa de uma maior produção de ovos. No caso de reprodutoras semipesadas, a duração do período de recria pode ser de 21-22 semanas. 4.1.1 Galpões convencionais com janelas Neste tipo de galpão a iluminação externa incide no interior do navio e devem ser estabelecidos programas para combater o aumento de luz natural que se apresenta de janeiro a junho. 1. Programa de fotoperíodo decrescente Para realizar este tipo de programa pode-se seguir esta rotina: a) Verificar na tabela as horas de luz natural (x) que vão dispor-se quando as frangas cumprirem as 20 semanas de vida. b) Aumentar em 6 horas o valor observado na tabela (x + 6 horas) e fornecê-las aos 4 ou 5 dias de vida. c) Diminuir semanalmente a iluminação artificial, de tal forma que quando chegarem às 20 semanas de vida, a luz fornecida coincida com a luz solar. Exemplo prático: frangas nascidas em 8 de janeiro: a) Observa-se em tabela que cumprirão as 20 semanas em 28 de maio, tendo um comprimento do dia de 14 horas e 45 minutos. b) aumentamos em 6 horas e fornecemos 20 horas e 45 minutos a partir do quarto dia. c) Diminuímos semanalmente 360 minutos/20 semanas = 18 minutos e quando cumprirem as 20 semanas de vida, o fotoperíodo de que dispõem (14 horas e 45 minutos) coincide com o comprimento do dia. 2. Programa de fotoperíodo constante a) Para levar a cabo este tipo de programa deve-se verificar na tabela o comprimento do dia mais longo durante as 20 semanas que dura a recria. b) Proporcionar essas horas de luz a partir dos primeiros 3-4 dias durante as 20 semanas. O uso de programas de luz constante em galpões convencionais com janelas não é muito frequente, apesar da certa poupança energética que acarreta. 4.1.2 Galpões com ambiente controlado Neste tipo de galpão considera-se que a luz solar não exerce nenhuma ação no interior do mesmo. No entanto, é necessário atentar-se para que o conceito de galpão totalmente escuro seja levado até às suas últimas consequências, evitando que por sistemas de ventilação, etc., possam existir fugas de luz que alterariam os programas de iluminação propostos. Nos galpões com ambiente controlado seguem-se dois tipos de programas: 1. Programa decrescente-constante Durante as primeiras semanas vai-se diminuindo o fotoperíodo paulatinamente (1 ou 2 horas) até chegar a 8 ou 10 horas, que ficariam constantes até as 20 semanas de idade. Uma variável deste programa consiste em ir diminuindo lentamente as horas de luz e por volta da 12ª semana fazer uma diminuição brusca, deixando um fotoperíodo de 7-8 horas, que se perduraria até às 20 semanas de vida. 2. Programa constante Consiste em proporcionar de 7 a 10 horas de luz constante durante toda a fase de recria (com exceção dos primeiros dias, os quais se consideram de adaptação). Na hora de estabelecer a intensidade luminosa nesta fase de recria nos encontramos com intervalos muito amplos. Diferentes fornecedores de frangas recomendam de 20 a 40 lux durante os primeiros dias e ir diminuindo de tal forma que ao primeiro mês de vida estejam a 10-20 lux. A partir da 5 semana e até 3-4 meses vem sendo recomendada 5-10 lux para que possa, assim, aumentar a intensidade a partir dessa data para níveis de 10-30 lux. 4.2 Programas clássicos de iluminação na fase de postura Uma vez que as frangas tenham atingido as 20 semanas de idade, é preciso estabelecer os programas de iluminação para o período de postura. É necessário considerar, como se fazia no período de recria, o tipo de galpão em que vão residir durante todo o período de postura, bem como o programa seguido na fase de recria. Recordando novamente que ao longo do período de postura nunca se deve diminuir a duração do fotoperíodo, passamos a definir os programas de iluminação mais usuais em função do tipo de galpão: 4.2.1 Galpões convencionais com janelas 1. Programa crescente Consiste em ir incrementando o fotoperíodo a partir da 20ª semana. Podem existir várias opções: a) Aumento do fotoperíodo semanal de forma constante até atingir as 16-17 horas de iluminação. b) Aumento brusco do fotoperíodo às 21 e 23 semanas até atingir as 15,5 horas de iluminação, que ficariam fixas em toda a fase de postura. Esta é uma recomendação clássica de algumas casas comerciais. Em galpões convencionais com janelas, os programas de iluminação constante não costumam ser utilizados. 4.2.2 Galpões de ambiente controlado Neste tipo de galpão deve ser instaurado um programa de fotoperíodo crescente. Às 20 semanas e em função do fotoperíodo que seguiram na fase de recria o incremento pode ser brusco (caso de frangas recriadas com 8-10 horas de iluminação, pode-se passar a 12-13 horas) e seguir posteriormente com incrementos de 20-30 minutos até atingir as 16-17 horas de iluminação. A intensidade da luz durante a fase de produção de ovos é unânime em considerar os valores de 10-15 lux como os mais adequados, desde que exista homogeneidade na sua distribuição. Atualmente, as recomendações das diferentes casas comerciais de estirpes de poedeiras são mais elevadas: na ordem de 20 a 30 lux. Níveis muito superiores não têm efeito sobre a produção de ovos e podem desencadear problemas de arranque de penas quando a intensidade é excessiva. 4.3 Outros programas de iluminação Em instalações de ambiente controlado os custos energéticos representam um capítulo importante dentro dos custos de uma exploração avícola. A fim de economizar energia, uma série de programas de iluminação vem sendo ensaiada, especialmente para a fase de postura, que poderíamos englobar em dois grupos: a) intermitentes ou fracionados. b) Não ajustados a 24 horas. 5. HIGIENE E MANEJO DA INCUBAÇÃO A higiene de todo o processo de incubação deve servir para estabelecer uma primeira medida de ruptura da cadeia de infecção. Há uma série de doenças como Marek, pulorose, encefalomielite aviária, micoplasmose, etc., que estão associadas ao processo de incubação. A higiene de todo o processo deve corresponder inicialmente ao controle na exploração, de tal forma que os reprodutores devem estar, do ponto de vista sanitário, em perfeitas condições e estendê-las ao manejo mecânico do ovo, regulação de entradas e saídas e igualmente a todas as instalações. Antes de continuar com o manejo do ovo para a incubadora, convém recordar alguns aspectos do desenvolvimento embrionário que ocorre dentro da própria galinha: o ovo é fertilizado na parte distal do infundíbulo cerca de 15 minutos após a ovulação, e quando se encontra no istmo (às 5 horas) já se produzem as primeiras divisões celulares. Às 9 horas da ovulação, o blastodermo cresce até um estágio de 256 células e antes da oviposição a formação do tubo digestivo (gastrulação) já está completada no embrião (PARKHURST e MOUNTNEY, 2012). As divisões celulares continuam após a oviposição, desde que as temperaturas estejam acima de 26,8ºC (zero fisiológico). 6. MANEJO DO OVO PARA A INCUBAÇÃO A colheita dos ovos nas explorações de reprodução deve ser efetuada com uma certa periodicidade (três a cinco vezes por dia), a fim de evitar problemas de roturas e de ovos sujos. Não devemos esquecer que a colocação em um mesmo ninho de vários ovos originam modificações nas temperaturas dos mesmos (superiores a zero fisiológico), que poderiam estar associadas a um reinício das divisões celulares no embrião. Uma vez recolhidos, os ovos devem ser instalados num armazém que permita manter uma temperatura de 15-18ºC (nunca inferior a 10ºC) e uma umidade de 70-75% para evitar uma perda de peso excessiva. A temperatura de armazenagem dos ovos para incubação pode variar em função do tempo em que permanecerão armazenados, pelo que é conveniente programar temperaturas mais baixas para um período de armazenagem mais longo. Alguns autores estabelecem que os ovos que permanecerem 3 dias na incubadora podem ser programados com temperaturas de 15ºC, enquanto que os que se armazenam por mais de 9 dias a temperatura recomendada é de 12ºC. Os ovos com problemas de casca, tais como calcificações defeituosas, quebra ou fissura, ovos com formas anormais e ovos com casca lisa e bem formada, devem ser eliminados na própria instalação. A uniformidade do tamanho dos ovos é um aspecto a destacar e o intervalo de peso mais adequado é de 55-65 g. Os ovos de maior tamanho sempre apresentam níveis mais elevados de problemas de casca e o período de incubação do mesmo é superior (até mais de 12 horas), por isso não é aconselhável introduzi-los na incubadora, assim como os ovos pequenos e os de gema dupla. Os trabalhos de Ron Jones (1978) evidenciam a importância do tamanho dos ovos ao considerar que as perdas de peso por evaporação são mais rápidas nos ovos de menor peso, e inclusive assinala que os ovos de casca branca são mais porosos, sugerindo sua incubação separada em função do tamanho. A desinfecção dos ovos (fumigação) com uma solução de formalina é prática corrente (45 ml de uma solução de formalina a 40% e 30 g de permanganato de potássio por metro cúbico de espaço ou 10 g/m3 de paraformaldeído aquecido num fumigador eléctrico), segundo as recomendações do Guia Cobb (1991). Um excesso de gás formaldeído pode ser neutralizado através da introdução de amoníaco líquido concentrado, 20 ml/m3. Pode também utilizar-se uma solução de cloro (500 ppm) a 43ºC durante 2 minutos, bem como produtos com amônio quaternário. Quando o tempo de armazenamento dos ovos para incubação é inferior a uma semana, a posição dos ovos para incubação dificilmente influencia a incubabilidade posterior. No entanto, quando o tempo de armazenamento excede 2 semanas, a incubabilidade dos ovos melhora se eles são virados diariamente. Romanoff, em 1960, estabeleceu os valores de incubabilidade dos ovos em função do tempo de armazenagem, verificando-se que, à medida que o período de tempo entre a postura dos ovos e a colocação na incubadora aumenta, os resultados de incubação diminuem, como pode ser observado na tabela 1: Tabela 1: Valores de incubalidade dos ovos em função do tempo de armazenamento -/- Período de armazenamento (dias) Incubalidade (%) 14 80 21 70 28 30 32 < 10 Fonte: ROMANOFF, 1960. Para evitar mudanças bruscas de temperatura (da sala de armazenamento da incubadora), que podem causar transpirações nos ovos, recomenda-se um aumento gradual da temperatura (12 a 18 horas antes de serem introduzidos na incubadora). Os ovos fecundados que são submetidos a longos percursos até chegarem ao incubatório devem ser mantidos no armazém durante 1 ou 2 dias antes de serem colocados nas incubadoras, melhorando assim os resultados de incubação. Através dos poros há uma troca de gases durante o armazenamento. O dióxido de carbono difunde-se no exterior e a sua concentração no ovo diminui rapidamente nas primeiras 12 horas após a postura. Se juntarmos as perdas de vapor de água, descobriremos que o armazenamento tem um impacto negativo nos resultados finais do processo de incubação. Experimentalmente, o tempo de armazenagem dos ovos fertilizados pode ser prolongado através da embalagem hermética em atmosfera de nitrogênio ou de anidrido carbônico, incluindo o revestimento de óleos. Alguns incubatórios testam o revestimento dos ovos com materiais plásticos para evitar tais perdas, todavia não é muito indicado, uma vez que lacra a passagem do oxigênio exterior para o embrião interior. No caso de nos depararmos com ovos sujos, e apesar dos condicionantes sanitários que vão associados, pode-se recorrer à sua limpeza e lavá-lo com água e algum desinfetante. Se a limpeza for excessiva, deve considerar-se a alteração que pode ter sofrido a cutícula da casca, pelo que não se recomenda a raspagem manual ou mecânica da mesma. De acordo com o estabelecido pelo Guia Cobb (1991), os efeitos mais importantes do armazenamento dos ovos são: a) O armazenamento prolonga o tempo de incubação e, em média, um dia de armazenamento prolonga o tempo de incubação por 1 hora. b) A armazenagem reduz a incubabilidade dos ovos. Este efeito, descrito acima, é quantificado de forma que a partir do quinto dia de armazenamento, cada dia de armazenamento adicional representa perdas de 0,5 a 1% na incubabilidade. c) O peso dos ovos pode diminuir quando o armazenamento dos ovos é de 14 dias ou mais. 6.1 Carregamento dos ovos na incubadora Embora ainda existam incubatórios que introduzem os ovos diretamente do armazém para a incubadora, recomenda-se um pré-aquecimento suave dos ovos até atingir temperaturas próximas dos 23ºC em 6 horas, independentemente da temperatura de partida. Duas horas antes de serem colocados na incubadora, a temperatura considerada ideal é de 28ºC. 6.2 Tempo de incubação Como já foi explicado acima, o tempo necessário para a incubação dos ovos de galinha deriva de uma função de vários fatores, de modo que os 21 dias e 4 horas (508 horas) que são definidos como tempo de referência podem ser ligeiramente modificados. 7. FATORES ENVOLVIDOS NO PROCESSO DE INCUBAÇÃO Os resultados obtidos por diferentes incubatórios variam consideravelmente de um para outros. As causas destas variações podem estar relacionadas ao manejo dos reprodutores, fertilidade dos ovos e na própria incubação. Cada empresa que dispõe de incubatórios desenvolve seu próprio método de operação no processo de incubação e seus padrões de qualidade exigidos nos pintainhos são geralmente variáveis. Vários fatores que desempenham um papel importante no processo de incubação já foram descritos ao comentar o manejo do ovo para incubação: uniformidade de pesos, qualidade de casca, armazenamento, etc., por isso é necessário assinalar os parâmetros a controlar na incubadora e no nascedouro. Em suma, podem ser estabelecidas as seguintes condições: Parâmetros Incubadora Nascedouro Temperatura (ºC) 37,5 – 37,7 37,1 Umidade relativa (%) 55 – 60 < 75 Ventilação (m3/minuto/1000 ovos) 0,14 0,23 – 0,28 Nível de CO2 0,3 – 0,4 0,5 – 0,6 Nível de O2 21 21 Número de viagens/dia < 4 – 6 — Tabela 2: Condições aceitas para a incubação dos ovos e nascimento dos pintainhos. 7.1 Manejo com os pintainhos de 1 dia – do incubatório para os galpões Numa sala convenientemente climatizada, 22-25 ºC e 70-80% de umidade, procedem-se as seguintes operações: a) Triagem dos pintainhos - Eliminando os que apresentem anomalias ou tenham pouca viabilidade/vitalidade, problemas nos membros, bico, olhos, se apresentam-se fracos, etc. b) Sexagem dos pintainhos - A separação dos sexos tem um interesse relativo no caso dos criadouros e criadores, mas é uma operação obrigatória quando o que interessa é produzir galinhas de postura ou reprodutores. Para o processo de separação por sexo podem ser utilizados dois sistemas: — Exame da cloaca, seguindo o método de Masui e Hashimoto, no qual é preciso evaginar a cloaca, mediante pressão, e através de uma luz direta observar as protuberâncias que correspondem a cada sexo. A aplicação desta técnica requer um elevado grau de especialização e os erros daí resultantes são insignificantes. Como regra a seguir, quando se aplica esta técnica, é que sua realização deve estar o mais próximo possível ao momento do nascimento. — Mediante o exame de caracteres ligados ao sexo, os caracteres usados para a determinação do sexo nas aves são vários: cores da plumagem (prateados frente a dourados: lisos frente a barrados), mas o mais empregado na atualidade faz referência à comparação dos comprimentos das penas primárias frente às de cobertura (quando as penas primárias são mais longas que as de cobertura, é uma fêmea). Esta técnica também é realizada dentro de poucas horas de nascimento. c) Vacinação dos pintainhos - Durante as primeiras horas de vida, as aves são normalmente alimentadas por via oral (spray) ou por injeção (com vacina manual ou automática). Vacina-se, também, contra várias doenças no primeiro dia de vida dos pintainhos, como a Marek, Gumboro e Bouba Aviária. d) Embalagem - Desenvolvidas as anteriores operações e já dentro da zona de expedição, realiza-se a última triagem e classificação (no caso dos reprodutores e das frangas, o processo pode ter conotações comerciais e podem apresentar-se no mercado várias classes em função da qualidade do produto, que, neste caso, é normalmente o peso), para posteriormente, contar e introduzi-las nas embalagens correspondentes, que podem ser retornáveis ou não. Nas embalagens normalmente introduz-se uma centena de aves (2 por 100) sem custo como regra de compensação às baixas iniciais. Em todas estas operações, o controle da temperatura e da humidade deve ser rigoroso, tal como descrito acima. e) Transporte - Os veículos de transporte devem estar equipados com sistemas auxiliares de calor e arrefecimento que permitam garantir condições estabelecidas, independentemente da situação atmosférica externa. A temperatura do ar fornecido no transporte deve ser de 28ºC quando as frangas estão em embalagens de plástico, enquanto que se forem de papelão a temperatura requerida pode ser bastante inferior (20ºC), segundo o Guia Cobb (1991). A distribuição da carga no transporte (para que a distribuição térmica seja homogénea), o controle contínuo das condições ambientais e os cuidados na condução e na descarga da mercadoria são os últimos aspectos importantes a assinalar. 8. RESUMO E PRIMEIRAS CONCLUSÕES No presente trabalho, tentou-se expor de forma sucinta os aspectos relacionados com a postura dos ovos: irregularidades no início da postura, sequência de postura, intensidade de postura, curva de postura, período de postura e distribuição de oviposições. O controle da iluminação, com seus diferentes programas, tanto em recria como em postura, é objeto de especial desenvolvimento. Uma terceira parte trata da questão da incubação artificial, começando pela higiene e manejo da incubação. É feita especial referência ao manejo dos ovos a serem incubados, e se resume os fatores que controlam o processo de incubação. -/- Emanuel Isaque Cordeiro da Silva – Departamento de Zootecnia da UFRPE. Recife, 2020. -/- REFERÊNCIAS BIBLIOGRÁFICAS -/- ABAD, M. et al. Reproducción e incubación en avicultura. Real Escuela de Avicultura. España, 2003. CAMPOS, Egladson João. Avicultura: razões, fatos e divergências. São Paulo: FEP-MVZ, 2000. COBB. Manual de manejo de frangos Cobb 500: guia de manejo. São Paulo: Cobb-Vantress Brasil, 2001 CONTO, L. A. Avicultura de postura. Avicultura Industrial, v. 1121, n. 95, 2004. ENSMINGER, M. Eugene. Zootecnia general. Buenos Aires: Centro Regional de Ayuda Técnica, 1973. ESTEBAN, José María Lasheras; ROCHA, Luís Oliveira. Manual de avicultura. Lisboa: Litexa, 1951. LANA, Geraldo Roberto Quintão. Avicultura. Recife: Livraria e Editora Rural Ltda, 2000. LOPES, Jackeline Cristina Ost. Caderno Didático de Avicultura (UFRN/UFPI). Cadernos Pronatec Goiás, v. 1, n. 1, p. 74-173, 2018. MENHER, A. La gallina. Zaragoza: Acribia, 1969. MACARI, Marcos. Manejo da incubação. Campinas: Facta, 2003. MALAQUIAS, Jessica Dantas. Manejo de galinhas poedeiras. 2019. Trabalho de Conclusão de Curso. Graduação em Zootecnia, UFRPE. 42f. Brasil. MALAVAZZI, Gilberto. Avicultura: manual prático. São Paulo: NBL Editora, 1983. PARKHURST, Carmen; MOUNTNEY, George J. Poultry meat and egg production. Berlim: Springer Science & Business Media, 2012. ROMANOFF, A.L. The Avian Embryo. New York: The Macmillan Co., 1960. RON JONES. A closer look at incubation. Poultry International. Vol 17. n° 2. ROSE, S. P. et al. Principles of poultry science. Nova Iorque: CAB International, 1997. WHITE, Fred N.; KINNEY, James L. Avian incubation. Science, v. 186, n. 4159, p. 107-115, 1974. (shrink)
Despite the closure of virtually all original grindhouse cinemas, ‘grindhouse’ lives on as a conceptual term. This article contends that the prevailing conceptualization of ‘grindhouse’ is problematized by a widening gap between the original grindhouse context (‘past’) and the DVD/home-viewing context (present). Despite fans’ and filmmakers’ desire to preserve this part of exploitation cinema history, the world of the grindhouse is now little more than a blurry set of tall-tales and faded phenomenal experiences, which are subject to present-bias. The continuing (...) usefulness of grindhouse-qua-concept requires that one should pay heed to the contemporary contexts in which ‘grindhouse’ is evoked. (shrink)
Dans notre société de plus en plus digitalisée, avons-nous vraiment le choix d’adopter ou non les technologies? Comment cette digitalisation impacte-t-elle les personnes âgées en particulier et son écosystème? Quels sont les enjeux éthiques soulevés par cette digitalisation? Ce texte vise à amener des éléments de réflexions en lien avec ces enjeux selon le point de vue de divers experts des domaines de la technologie, du vieillissement et de la bioéthique. Ces experts se sont rencontrés lors d’un symposium ayant eu (...) lieu à Angers, France, en octobre 2019. Le texte est un compte-rendu des échanges et points de vue de ces experts, ainsi que des discussions ouvertes qu’ils ont eues avec l’assistance, portant sur les principaux enjeux soulevés par cette digitalisation selon la perspective des personnes âgées, des proches-aidants, des soignants, de la société et de la recherche. (shrink)
Research on research ethics—regarding both the governance and practice of the ethical review of human subjects research—has a tumultuous history in North America and Europe. Much of the academic literature focuses on issues to do with regulating the conduct and quality of ethics review of research protocols by ethics committees (research ethics boards (REBs) in Canada and institutional review boards (IRBs) in the United States). In addition, some of the literature attends to issues particular to the review of qualitative research, (...) and still other literature addresses the challenges posed by and the need for research on REBs/IRBs. It is this third group of literature within which our article is situated. (shrink)
Antimicrobial resistance is a growing public health concern and is associated with the over - or inappropriate use of antimicrobials in both humans and agriculture. While there has been recognition of this problem on the part of agricultural and public health authorities, there has nonetheless been significant difficulty in translating policy recommendations into practical guidelines. In this paper, we examine the process of public health policy development in Quebec agriculture, with a focus on the case of pork production and the (...) role of food animal veterinarians in policy making. We argue that a tendency to employ strictly techno- scientific risk analyses of antimicro- bial use ignores the fundamental social, economic and political realities of key stakeholders and so limits the applicability of policy recommendations developed by government advisory groups. In particular, we suggest that veterinarians’ personal and professional interests, and their ethical norms of practice, are key factors to both the problem of and the solution to the current over -reliance on antimicrobials in food production. (shrink)
This case study examines some of the challenges, and in particular conflicts of interest, that professors face in writing letters of reference for their students.
Antimicrobial resistance is a growing public health concern and is associated with the over- or inappropriate use of antimicrobials in both humans and agriculture. While there has been reco- gnition of this problem on the part of agricultural and public health authorities, there has none- theless been significant difficulty in translating policy recommendations into practical guidelines. In this paper, we examine the process of public health policy development in Quebec agriculture, with a focus on the case of pork production and (...) the role of food animal veterinarians in policy making. We argue that a tendency to employ strictly techno-scientific risk analyses of antimicro- bial use ignores the fundamental social, economic and political realities of key stakeholders and so limits the applicability of policy recommendations developed by government advisory groups. In particular, we suggest that veterinarians’ personal and professional interests, and their ethi- cal norms of practice, are key factors to both the problem of and the solution to the current over-reliance on antimicrobials in food production. (shrink)
The case of Andrew Gobea, the first child to receive experimental gene therapy for SCID, and a reflection on the associated ethical implications of gene therapy research.
Ongoing research in the fields of genetics and biotechnology hold the promise of improved diagnosis and treatment of genetic diseases, and potentially the development of individually tailored pharmaceuticals and gene therapies. Difficulty, however, arises in determining how these services are to be evaluated and integrated equitably into public health care systems such as Canada's. The current context is one of increasing fiscal restraint on the part of governments, limited financial resources being dedicated to health care, and rising costs for new (...) health care services and technologies. This has led to increasing public debate in the last few years about how to reform public health care, and whether we should prohibit, permit or perhaps even encourage private purchase of health care services. ;In Canada, some of these concerns have crystallized around the issue of gene patents and commercial genetic testing, in particular as illustrated by the case of Myriad Genetics' patented BRACAnalysis test for hereditary breast and ovarian cancer. While most Canadians who currently access genetic services do so through the public health care system, for those with the means, private purchase is becoming an option. This situation raises serious concerns---about justice in access to health care; about continued access to safe and reliable genetic testing supported by unbiased patient information; and about the broader effects of commercialization for ongoing research and the Canadian public health care system. Commercial genetic testing presents a challenge to health care professionals, policy analysts, and academics concerned with the social, ethical and policy implications of new genetic technologies. Using the Myriad case as an exemplar, tools from moral philosophy, the social sciences, and health policy and law will be brought to bear on the larger issues of how as a society we should regulate commercial research and product development, and more coherently decide which services to cover under public health insurance and which to leave to private purchase. Generally, the thesis is concerned with the question of "how best to bring capital, morality, and knowledge into a productive and ethical relationship". (shrink)
What is absolutely unrestricted quantification? We distinguish two theoretical roles and identify two conceptions of absolute generality: maximally strong generality and maximally inclusive generality. We also distinguish two corresponding kinds of absolute domain. A maximally strong domain contains every potential counterexample to a generalisation. A maximally inclusive domain is such that no domain extends it. We argue that both conceptions of absolute generality are legitimate and investigate the relations between them. Although these conceptions coincide in standard settings, we show how (...) they diverge under more complex assumptions about the structure of meaningful predication, such as cumulative type theory. We conclude by arguing that maximally strong generality is the more theoretically valuable conception. (shrink)
The language of phenomenology includes terms such as intentionality, phenom- enon, insight, analysis, sense, not to mention the key term of Edmund Husserl’s manifesto, “the things themselves” to return to . But what does the “things them- selves” properly mean? How come the term is replaced by the “findings” over time? And what are the findings for? The investigation begins by looking at the tricky legacy of the modern turn, trying to clarify ties to past masters, including Francis- co Suárez (...) and Augustine of Hippo . The former, because his influence goes beyond René Descartes reaching undoubtedly Franz Brentano and his students, as well as Martin Heidegger . The latter, because Augustine gives a personal component to the Greek inheritance, marked by the “inward turn .” However, it would not be possible to review the history of thought without the help offered by Jan Patočka's analyses . Patočka discloses the “care” of the Greek philosophers, Plato and Dem- ocritus among others, “for the soul”, we would say with Patočka for “being,” whose sense “does not leave us indifferent” as the leitmotiv of Ancient Philosophy . Nev- ertheless, in his lectures on Plato and Europe, Patočka points out that you must be careful not to confuse the phenomena of things, of existens, with the phenomena of being . Finally, Patočka’s legacy is found in the efforts to reconcile the life-feeling with the modern construction of reality, which means “a radical reconstruction of the naive and natural world of common sense .” In some ways, intentionality is to be revised . (shrink)
In seeking to clarify the concept of conflict of interest (COI) in debates about physician–industry relationships, Howard Brody (2011) highlights the extent to which the prob- lem turns on a common pejorative understanding of COI. Whether it is the academic or public policy “pharmapologists” or “pharmascolds” talking about COI, there is often a straightforward and overly simplistic correlation made: that is, a conflict of interest—by definition—leads to fraudulent or corrupt behavior. The same type of reasoning is com- monly found in (...) discussions about COI outside the health sciences, most notably in news stories about the awarding of government contracts or the behaviour of corporate executives. The problem is that in focusing on dramatic failures to manage COI (e.g., around Vioxx), there is a tendency to strongly associate COI with extreme forms of financial and even criminal misconduct, leaving the public, policymakers, academics, and professionals with a skewed and limited understanding of the concept. (shrink)
In recent years, educational institutions have started using the tools of commercial data analytics in higher education. By gathering information about students as they navigate campus information systems, learning analytics “uses analytic techniques to help target instructional, curricular, and support resources” to examine student learning behaviors and change students’ learning environments. As a result, the information educators and educational institutions have at their disposal is no longer demarcated by course content and assessments, and old boundaries between information used for assessment (...) and information about how students live and work are blurring. Our goal in this paper is to provide a systematic discussion of the ways in which privacy and learning analytics conflict and to provide a framework for understanding those conflicts. -/- We argue that there are five crucial issues about student privacy that we must address in order to ensure that whatever the laudable goals and gains of learning analytics, they are commensurate with respecting students’ privacy and associated rights, including (but not limited to) autonomy interests. First, we argue that we must distinguish among different entities with respect to whom students have, or lack, privacy. Second, we argue that we need clear criteria for what information may justifiably be collected in the name of learning analytics. Third, we need to address whether purported consequences of learning analytics (e.g., better learning outcomes) are justified and what the distributions of those consequences are. Fourth, we argue that regardless of how robust the benefits of learning analytics turn out to be, students have important autonomy interests in how information about them is collected. Finally, we argue that it is an open question whether the goods that justify higher education are advanced by learning analytics, or whether collection of information actually runs counter to those goods. (shrink)
There is increasing concern about “surveillance capitalism,” whereby for-profit companies generate value from data, while individuals are unable to resist (Zuboff 2019). Non-profits using data-enabled surveillance receive less attention. Higher education institutions (HEIs) have embraced data analytics, but the wide latitude that private, profit-oriented enterprises have to collect data is inappropriate. HEIs have a fiduciary relationship to students, not a narrowly transactional one (see Jones et al, forthcoming). They are responsible for facets of student life beyond education. In addition (...) to classrooms, learning management systems, and libraries, HEIs manage dormitories, gyms, dining halls, health facilities, career advising, police departments, and student employment. HEIs collect and use student data in all of these domains, ostensibly to understand learner behaviors and contexts, improve learning outcomes, and increase institutional efficiency through “learning analytics” (LA). ID card swipes and Wi-Fi log-ins can track student location, class attendance, use of campus facilities, eating habits, and friend groups. Course management systems capture how students interact with readings, video lectures, and discussion boards. Application materials provide demographic information. These data are used to identify students needing support, predict enrollment demands, and target recruiting efforts. These are laudable aims. However, current LA practices may be inconsistent with HEIs’ fiduciary responsibilities. HEIs often justify LA as advancing student interests, but some projects advance primarily organizational welfare and institutional interests. Moreover, LA advances a narrow conception of student interests while discounting privacy and autonomy. Students are generally unaware of the information collected, do not provide meaningful consent, and express discomfort and resigned acceptance about HEI data practices, especially for non-academic data (see Jones et al. forthcoming). The breadth and depth of student information available, combined with their fiduciary responsibility, create a duty that HEIs exercise substantial restraint and rigorous evaluation in data collection and use. (shrink)
Despite the recent proliferation of scientific, clinical, and narrative accounts of auditory verbal hallucinations, the phenomenology of voice hearing remains opaque and undertheorized. In this article, we outline an interdisciplinary approach to understanding hallucinatory experiences which seeks to demonstrate the value of the humanities and social sciences to advancing knowledge in clinical research and practice. We argue that an interdisciplinary approach to the phenomenology of AVH utilizes rigorous and context-appropriate methodologies to analyze a wider range of first-person accounts of AVH (...) at 3 contextual levels: cultural, social, and historical; experiential; and biographical. We go on to show that there are significant potential benefits for voice hearers, clinicians, and researchers. These include informing the development and refinement of subtypes of hallucinations within and across diagnostic categories; “front-loading” research in cognitive neuroscience; and suggesting new possibilities for therapeutic intervention. In conclusion, we argue that an interdisciplinary approach to the phenomenology of AVH can nourish the ethical core of scientific enquiry by challenging its interpretive paradigms, and offer voice hearers richer, potentially more empowering ways to make sense of their experiences. (shrink)
The rapidly declining biosphere integrity, representing one of the core planetary boundaries, is alarming. One of the most widely accepted measures to halt the rate of biodiversity loss is to maintain and expand protected areas that are effectively managed. However, it requires substantial finance derived from nature-based tourism, specifically visitors from urban areas. Using the Bayesian Mindsponge Framework (BMF) on 535 Vietnamese urban residents, the current study examined how their biodiversity loss perceptions can affect their willingness to pay for the (...) entrance fee and conservation in protected areas. We found that perceived environmental degradation, loss of economic growth, loss of nature-based recreation opportunity, and loss of knowledge as consequences of biodiversity loss has indirect effects on paying willingness through the mediation of the attitude towards conservation. Especially, the perceived knowledge loss also has a direct positive influence on the willingness to pay for the entrance fee and conservation. In contrast, perceived loss of health is negatively associated with the attitude towards conservation. Based on these findings, we suggest that building an eco-surplus culture among urban residents can be a promising way to generate more finance from nature-based tourism for conservation in protected areas and ease the domestic government's and international organizations' funding allocations problems. (shrink)
This essay explores the philosophical significance of Anthony Burgess’s 1960s novel "A Clockwork Orange." Specific themes in this novel are developed through character and situation, in a way which takes cognisance of important problems in the history of philosophy. The essay looks at two particular themes in this context. The first relates to the epistemological question of the distinction between truth and illusion. The novel thematizes the demarcation between truth and illusion, or truth and appearance, and raises the issue of (...) whether we can have a knowledge or epistemological foundation for such a distinction. Second, the novel addresses a question at the heart of ethics, that is, the issue of whether there is a clear distinction between good and evil. Moreover, it develops this question in relation to the further issue of the explanation for the seeming attractiveness of evil, if good is an acknowledged superior value. In the novel these questions are addressed especially through the main character of Alex, whose incarceration and rehabilitation treatment by psychiatry comes centre stage. Additionally, the text itself is adapted for film by Stanley Kubrick in 1971 and the essay explores how Kubrick’s interpretation of the original novel is distinct from that of Burgess (this difference being added to by the medium of film). Kubrick’s different interpretation nonetheless builds on the original novel and thus brings new insights in terms of the reading of the primary themes, while also complexifying the hermeneutics. (shrink)
One of the leading cognitive models of auditory verbal hallucinations (AVHs) proposes such experiences result from a disturbance in the process by which inner speech is attributed to the self. Research in this area has, however, proceeded in the absence of thorough cognitive and phenomenological investigations of the nature of inner speech, against which AVHs are implicitly or explicitly defined. In this paper we begin by introducing philosophical phenomenology and highlighting its relevance to AVHs, before briefly examining the evolving literature (...) on the relation between inner experiences and AVHs. We then argue for the need for philosophical phenomenology (Phenomenology) and the traditional empirical methods of psychology for studying inner experience (phenomenology) to mutually inform each other to provide a richer and more nuanced picture of both inner experience and AVHs than either could on its own. A critical examination is undertaken of the leading model of AVHs derived from phenomenological philosophy, the ipseity disturbance model. From this we suggest issues that future work in this vein will need to consider, and examine how interdisciplinary methodologies may contribute to advances in our understanding of AVHs. Detailed suggestions are made for the direction and methodology of future work into AVHs, which we suggest should be undertaken in a context where phenomenology and physiology are both necessary, but neither sufficient. (shrink)
How micro- and macroevolutionary evolutionary processes produce phenotypic change is without question one of the most intriguing and perplexing issues facing evolutionary biologists. We believe that roadblocks to progress lie A) in the underestimation of the role of the environment, and in particular, that of the interaction of genotypes with environmental factors, and B) in the continuing lack of incorporation of development into the evolutionary synthesis. We propose the integration of genetic, environmental and developmental perspectives on the evolution of the (...) phenotype in the form of the concept of the developmental reaction norm (DRN) The DRN represents the set of multivariate ontogenies that can be produced by a single genotype when it is exposed to environmental variation. It encompasses: 1) the processes that alter the phenotype throughout the ontogenetic trajectory, 2) the recognition that different aspects of the phenotype are (and must be) correlated and 3) the ability of a genotype to produce phenotypes in different environments. This perspective necessitates the explicit study of character expression during development, the evaluation of associations between pairs or groups of characters (e.g., multivariate allometries), and the exploration of reaction norms and phenotypic plasticity. We explicitly extend the concept of the DRN to encompass adjustments made in response to changes in the internal environment as well. Thus, ‘typical’ developmental sequences (e.g., cell fate determination) and plastic responses are simply manifestations of different scales of ‘environmental’ effects along a continuum. We present: (1) a brief conceptual review of three fundamental aspects of the generation and evolution of phenotypes: the changes in the trajectories describing growth and differentiation (ontogeny), the multivariate relationships among characters (allometry), and the effect of the environment (plasticity); (2) a discussion of how these components are merged in the concept of the developmental reaction norm; and (3) a reaction norm perspective of major determinants of phenotypes: epigenesis, selection and constraint. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.