Abstract -/- This paper contains the philosophy and metaphysics of space and time and its connections with modern physics and psychology. I don’t claim to defend any novel position in that controversy, or to defend any standard positions in a novel way. Still less do I pretend to offer some promising surveys in the nature of time by standing in a position and accessing some methods to correlate those in the light of physics. My motive includes addressing (...) some general problems of time in different perspectives of human epistemology. One among them is the divergence of physical and common sense view of time which then addresses the issue of the psychological time, the one I am curious about. -/- Since physics deals only with the notion of ‘objective time’, I find it necessary to include the subjective sense also in to the four dimensional space-time. With such an understanding of metric it is possible extend the philosophy of physics in Galilean relativity beyond that of Einstenian one. This is achieved by solving the problem of causality in special relativity and by respecting the observer in action. In this current investigation of time, what I am looking is for temporal points in complex number plane where different observers differ not only when they are in motion but also when they are in rest such that the physical and psychological domain converges with the information carried out by light signals in two different time axes. (shrink)
I offer an alternative account of the relationship of Hobbesian geometry to natural philosophy by arguing that mixed mathematics provided Hobbes with a model for thinking about it. In mixed mathematics, one may borrow causal principles from one science and use them in another science without there being a deductive relationship between those two sciences. Natural philosophy for Hobbes is mixed because an explanation may combine observations from experience (the ‘that’) with causal principles from geometry (the ‘why’). My (...) argument shows that Hobbesian natural philosophy relies upon suppositions that bodies plausibly behave according to these borrowed causal principles from geometry, acknowledging that bodies in the world may not actually behave this way. First, I consider Hobbes's relation to Aristotelian mixed mathematics and to Isaac Barrow's broadening of mixed mathematics in Mathematical Lectures (1683). I show that for Hobbes maker's knowledge from geometry provides the ‘why’ in mixed-mathematical explanations. Next, I examine two explanations from De corpore Part IV: (1) the explanation of sense in De corpore 25.1-2; and (2) the explanation of the swelling of parts of the body when they become warm in De corpore 27.3. In both explanations, I show Hobbes borrowing and citing geometrical principles and mixing these principles with appeals to experience. (shrink)
A survey of popular textbooks and websites on philosophy produces a remarkable consensus on the great problems facing philosophers from ancient to modern times. They typically include metaphysics - what is there?, the problem of knowledge - how do we know what exists?, the mind/body problem - can an immaterial mind move the material body?, the “hard problem” of consciousness, freedom of the will, theories of ethics - is there an objective universal Good?, and problems from theology - does (...) God exist?, is God responsible for evil? This book introduces the Information Philosopher website, a work in progress on several classic questions in philosophy that logical positivists and analytic language philosophers thought they could dis-solve as logical puzzles, pseudo-problems, or conceptual errors. (shrink)
This paper discusses the late Michael Dummett’s characterization of the estrangement between physics and philosophy. It argues against those physicists who hold that modern physics, rather than philosophy, can answer traditional metaphysical questions such as why there is something rather than nothing. The claim is that physics cannot solve metaphysical problems since metaphysical issues are in principle empirically underdetermined. The paper closes with a critical discussion of the assumption of some cosmologists that the Universe was (...) created out of nothing: In contrast to this misleading assumption, it is proposed that the Universe has a necessary existence and that the present epoch after the Big Bang is a contingent realization of the Universe. (shrink)
In this paper I reconstruct the birth, blossoming and decline of an eighteenth century program, namely “Moral Newtonianism”. I reconstruct the interaction, or co-existence, of different levels: positive theories, methodology, worldviews and trace the presence of scattered items of the various levels in the work of Hume, Adam Smith, Adam Ferguson, Dugald Stewart. I highlight how Mirowski’s reconstruction of the interaction between physics and economics may be extended to the eighteenth century in an interesting way once the outdated reconstruction (...) of Adam Smith that has been adopted by Mirowski is updated. I show how general methodological ideas, such as the distinction between ultimate causes or essences and intermediate principles, that originated in a context where the issue was the interaction between natural science and theology, proved useful when transferred to social theory in encouraging a kind of “experimental” approach to social phenomena. I discuss finally the genesis of frozen metaphors such as equilibrium, circulation, and value, arguing that Canguilhem’s lesson – namely that scientific change is produced not only by similarity but also by opposition – may be applied also to the history of economic thought. I take as an example Adam Smith’s ‘discovery’ of social mechanisms vis-à-vis his sceptical mistrust of neo-Stoic and Platonic views of a world-order. (shrink)
The paper explicates the stages of the author’s philosophical evolution in the light of Kopnin’s ideas and heritage. Starting from Kopnin’s understanding of dialectical materialism, the author has stated that category transformations of physics has opened from conceptualization of immutability to mutability and then to interaction, evolvement and emergence. He has connected the problem of physical cognition universals with an elaboration of the specific system of tools and methods of identifying, individuating and distinguishing objects from a scientific theory domain. (...) The role of vacuum conception and the idea of existence (actual and potential, observable and nonobservable, virtual and hidden) types were analyzed. In collaboration with S.Crymski heuristic and regulative functions of categories of substance, world as a whole as well as postulates of relativity and absoluteness, and anthropic and self-development principles were singled out. Elaborating Kopnin’s view of scientific theories as a practically effective and relatively true mapping of their domains, the author in collaboration with M. Burgin have originated the unified structure-nominative reconstruction (model) of scientific theory as a knowledge system. According to it, every scientific knowledge system includes hierarchically organized and complex subsystems that partially and separately have been studied by standard, structuralist, operationalist, problem-solving, axiological and other directions of the current philosophy of science. 1) The logico-linguistic subsystem represents and normalizes by means of different, including mathematical, languages and normalizes and logical calculi the knowledge available on objects under study. 2) The model-representing subsystem comprises peculiar to the knowledge system ways of their modeling and understanding. 3) The pragmatic-procedural subsystem contains general and unique to the knowledge system operations, methods, procedures, algorithms and programs. 4) From the viewpoint of the problem-heuristic subsystem, the knowledge system is a unique way of setting and resolving questions, problems, puzzles and tasks of cognition of objects into question. It also includes various heuristics and estimations (truth, consistency, beauty, efficacy, adequacy, heuristicity etc) of components and structures of the knowledge system. 5) The subsystem of links fixes interrelations between above-mentioned components, structures and subsystems of the knowledge system. The structure-nominative reconstruction has been used in the philosophical and comparative case-studies of mathematical, physical, economic, legal, political, pedagogical, social, and sociological theories. It has enlarged the collection of knowledge structures, connected, for instance, with a multitude of theoreticity levels and with an application of numerous mathematical languages. It has deepened the comprehension of relations between the main directions of current philosophy of science. They are interpreted as dealing mainly with isolated subsystems of scientific theory. This reconstruction has disclosed a variety of undetected knowledge structures, associated also, for instance, with principles of symmetry and supersymmetry and with laws of various levels and degrees. In cooperation with the physicist Olexander Gabovich the modified structure-nominative reconstruction is in the processes of development and justification. Ideas and concepts were also in the center of Kopnin’s cognitive activity. The author has suggested and elaborated the triplet model of concepts. According to it, any scientific concept is a dependent on cognitive situation, dynamical, multifunctional state of scientist’s thinking, and available knowledge system. A concept is modeled as being consisted from three interrelated structures. 1) The concept base characterizes objects falling under a concept as well as their properties and relations. In terms of volume and content the logical modeling reveals partially only the concept base. 2) The concept representing part includes structures and means (names, statements, abstract properties, quantitative values of object properties and relations, mathematical equations and their systems, theoretical models etc.) of object representation in the appropriate knowledge system. 3) The linkage unites a structures and procedures that connect components from the abovementioned structures. The partial cases of the triplet model are logical, information, two-tired, standard, exemplar, prototype, knowledge-dependent and other concept models. It has introduced the triplet classification that comprises several hundreds of concept types. Different kinds of fuzziness are distinguished. Even the most precise and exact concepts are fuzzy in some triplet aspect. The notions of relations between real scientific concepts are essentially extended. For example, the definition and strict analysis of such relations between concepts as formalization, quantification, mathematization, generalization, fuzzification, and various kinds of identity are proposed. The concepts «PLANET» and «ELEMENTARY PARTICLE» and some of their metamorphoses were analyzed in triplet terms. The Kopnin’s methodology and epistemology of cognition was being used for creating conception of the philosophy of law as elaborating of understanding, justification, estimating and criticizing legal system. The basic information on the major directions in current Western philosophy of law (legal realism, feminism, criticism, postmodernism, economical analysis of law etc.) is firstly introduced to the Ukrainian audience. The classification of more than fifty directions in modern legal philosophy is suggested. Some results of historical, linguistic, scientometric and philosophic-legal studies of the present state of Ukrainian academic science are given. (shrink)
This report reviews what quantum physics and information theory have to tell us about the age-old question, How come existence? No escape is evident from four conclusions: (1) The world cannot be a giant machine, ruled by any preestablished continuum physical law. (2) There is no such thing at the microscopic level as space or time or spacetime continuum. (3) The familiar probability function or functional, and wave equation or functional wave equation, of standard quantum theory provide mere continuum (...) idealizations and by reason of this circumstance conceal the information-theoretic source from which they derive. (4) No element in the description of physics shows itself as closer to primordial than the elementary quantum phenomenon, that is, the elementary device-intermediated act of posing a yes-no physical question and eliciting an answer or, in brief, the elementary act of observer-participancy. Otherwise stated, every physical quantity, every it, derives its ultimate significance from bits, binary yes-or-no indications, a conclusion which we epitomize in the phrase, it from bit. (shrink)
This paper explores the question of Leibniz’s contribution to the rise of modern ‘science’. To be sure, it is now generally agreed that the modern category of ‘science’ did not exist in the early modern period. At the same time, this period witnessed a very important stage in the process from which modern science eventually emerged. My discussion will be aimed at uncovering the new enterprise, and the new distinctions which were taking shape in the early modern period under the (...) banner of the old Aristotelian terminology. I will argue that Leibniz begins to theorize a distinction between physics and metaphysics that tracks our distinction between the autonomous enterprise of science in its modern meaning, and the enterprise of philosophy. I will try to show that, for Leibniz, physics proper is the study of natural phenomena in mathematical and mechanical terms without recourse for its explanations to metaphysical notions. This autonomy, however, does not imply for Leibniz that physics can say on its own all that there is to be said about the natural world. Quite the opposite. Leibniz inherits from the Aristotelian tradition the view that physics needs metaphysical roots or a metaphysical grounding. For Leibniz, what is ultimately real is reached by metaphysics, not by physics. This is, in my view, Leibniz’s chief insight: the new mathematical physics is an autonomous enterprise which offers its own kind of explanations but does not exhaust what can (and should) be said about the natural world. (shrink)
Philosophy of science is seen by most as a meta-discipline – one that takes science as its subject matter, and seeks to acquire knowledge and understanding about science without in any way affecting, or contributing to, science itself. Karl Popper’s approach is very different. His first love is natural philosophy or, as he would put it, cosmology. This intermingles cosmology and the rest of natural science with epistemology, methodology and metaphysics. Paradoxically, however, one of his best known contributions, (...) his proposed solution to the problem of demarcation, helps to maintain the gulf that separates science from metaphysics, thus fragmenting cosmology into falsifiable science on the one hand, untestable philosophy on the other. This has damaging repercussions for a number of issues Popper tackles, from the problem of induction to simplicity of theory and quantum theory. But his proposed solution to the demarcation problem is untenable. Metaphysical assumptions are an integral part of scientific knowledge, inherent in the persistent acceptance of unified theories against the evidence. Once this is appreciated, it becomes obvious that natural philosophy, a synthesis of science and philosophy, is both more rigorous and of greater intellectual value than the two dissociated components we have today. What Popper sought for could come to full fruition. Problems that Popper tackled, from the problem of induction, to the problem of unity of theory, problems of quantum theory, and problems concerning the scope and limits of physics, all receive more adequate resolution within the new, fully-fledged natural philosophy. (shrink)
This book gives an account of work that I have done over a period of decades that sets out to solve two fundamental problems of philosophy: the mind-body problem and the problem of induction. Remarkably, these revolutionary contributions to philosophy turn out to have dramatic implications for a wide range of issues outside philosophy itself, most notably for the capacity of humanity to resolve current grave global problems and make progress towards a better, wiser world. A key (...) element of the proposed solution to the first problem is that physics is about only a highly specialized aspect of all that there is – the causally efficacious aspect. Once this is understood, it ceases to be a mystery that natural science says nothing about the experiential aspect of reality, the colours we perceive, the inner experiences we are aware of. That natural science is silent about the experiential aspect of reality is no reason whatsoever to hold that the experiential does not objectively exist. A key element of the proposed solution to the second problem is that physics, in persistently accepting unified theories only, thereby makes a substantial metaphysical assumption about the universe: it is such that a unified pattern of physical law runs through all phenomena. We need a new conception, and kind, of physics that acknowledges, and actively seeks to improve, metaphysical presuppositions inherent in the methods of physics. The problematic aims and methods of physics need to be improved as physics proceeds. These are the ideas that have fruitful implications, I set out to show, for a wide range of issues: for philosophy itself, for physics, for natural science more generally, for the social sciences, for education, for the academic enterprise as a whole and, most important of all, for the capacity of humanity to learn how to solve the grave global problems that menace our future, and thus make progress to a better, wiser world. It is not just science that has problematic aims; in life too our aims, whether personal, social or institutional, are all too often profoundly problematic, and in urgent need of improvement. We need a new kind of academic enterprise which helps humanity put aims-and-methods improving meta-methods into practice in personal and social life, so that we may come to do better at achieving what is of value in life, and make progress towards a saner, wiser world. This body of work of mine has met with critical acclaim. Despite that, astonishingly, it has been ignored by mainstream philosophy. In the book I discuss the recent work of over 100 philosophers on the mind-body problem and the metaphysics of science, and show that my earlier, highly relevant work on these issues is universally ignored, the quality of subsequent work suffering as a result. My hope, in publishing this book, is that my fellow philosophers will come to appreciate the intellectual value of my proposed solutions to the mind-body problem and the problem of induction, and will, as a result, join with me in attempting to convince our fellow academics that we need to bring about an intellectual/institutional revolution in academic inquiry so that it takes up its proper task of helping humanity learn how to solve problems of living, including global problems, and make progress towards as good, as wise and enlightened a world as possible. (shrink)
In his consideration of thought development August Comte has been proposed a three stage model of thinking development. The way that led to any new type of think may repeat itself to produce another new type. So the way that led to philosophy of science may be repeated. It perhaps to attribute the mechanism of thought evolution to a process of accumulation of unanswered questions which is flowed by a declination in that type of thinking interest. One can say (...) that the accumulation of unverified huge new physics theories and ideas; leads to a declination in physics interest and that may lead to a new type of philosophy. The proposed new type is the philosophy of technology, and probably can be considered as the fourth stage according to Comte model. (shrink)
The Special Theory of Relativity (STR) holds sway as a theory of time due to its apparently successful predictive structure regarding time-related phenomena such as the increased life spans of mesons or retarded clocks on jets circling the globe, and due to the relativization of simultaneity intrinsic to this theoretical structure. Yet the very structure of the theory demands that such very real physical effects be construed as non-ontological. The scope and depth of this contradiction is explored and, if these (...) time-changes are indeed viewed as ontological effects within STR, an additional problem for the theory is introduced in the context of perception. The origins of this confused situation arise as a result of the fact that STR is an expression of a classical, spatial metaphysic – a framework that equally underpins current discussions of the hard problem. This metaphysic holds an inadequate concept of time and a failure to acknowledge the reality of simultaneous causal flows. These problems are developed against the background of an alternative, namely, the temporal metaphysic of Bergson – a framework that provides a profoundly different base for viewing both relativity and consciousness. (shrink)
There is a need to bring about a revolution in the philosophy of science, interpreted to be both the academic discipline, and the official view of the aims and methods of science upheld by the scientific community. At present both are dominated by the view that in science theories are chosen on the basis of empirical considerations alone, nothing being permanently accepted as a part of scientific knowledge independently of evidence. Biasing choice of theory in the direction of simplicity, (...) unity or explanatory power does not permanently commit science to the thesis that nature is simple or unified. This current ‘paradigm’ is, I argue, untenable. We need a new paradigm, which acknowledges that science makes a hierarchy of metaphysical assumptions concerning the comprehensibility and knowability of the universe, theories being chosen partly on the basis of compatibility with these assumptions. Eleven arguments are given for favouring this new ‘paradigm’ over the current one. (shrink)
Modern science began as natural philosophy. In the time of Newton, what we call science and philosophy today – the disparate endeavours – formed one mutually interacting, integrated endeavour of natural philosophy: to improve our knowledge and understanding of the universe, and to improve our understanding of ourselves as a part of it. Profound, indeed unprecedented discoveries were made. But then natural philosophy died. It split into science on the one hand, and philosophy on the (...) other. This happened during the 18th and 19th centuries, and the split is now built into our intellectual landscape. But the two fragments, science and philosophy, are defective shadows of the glorious unified endeavour of natural philosophy. Rigour, sheer intellectual good sense and decisive argument demand that we put the two together again, and rediscover the immense merits of the integrated enterprise of natural philosophy. This requires an intellectual revolution, with dramatic implications for how we understand our world, how we understand and do science, and how we understand and do philosophy. There are dramatic implications, too, for education, and for the entire academic endeavour, and its capacity to help us discover how to tackle more successfully our immense global problems. (shrink)
The relevance of analytic metaphysics has come under criticism: Ladyman & Ross, for instance, have suggested do discontinue the field. French & McKenzie have argued in defense of analytic metaphysics that it develops tools that could turn out to be useful for philosophy of physics. In this article, we show first that this heuristic defense of metaphysics can be extended to the scientific field of applied ontology, which uses constructs from analytic metaphysics. Second, we elaborate on a parallel (...) by French & McKenzie between mathematics and metaphysics to show that the whole field of analytic metaphysics, being useful not only for philosophy but also for science, should continue to exist as a largely autonomous field. (shrink)
We philosophers of science have before us an important new task that we need urgently to take up. It is to convince the scientific community to adopt and implement a new philosophy of science that does better justice to the deeply problematic basic intellectual aims of science than that which we have at present. Problematic aims evolve with evolving knowledge, that part of philosophy of science concerned with aims and methods thus becoming an integral part of science itself. (...) The outcome of putting this new philosophy into scientific practice would be a new kind of science, both more intellectually rigorous, and one that does better justice to the best interests of humanity. (shrink)
This paper argues that philosophers of science have before them an important new task that they urgently need to take up. It is to convince the scientific community to adopt and implement a new philosophy of science that does better justice to the deeply problematic basic intellectual aims of science than that which we have at present. Problematic aims evolve with evolving knowledge, that part of philosophy of science concerned with aims and methods thus becoming an integral part (...) of science itself. The outcome of putting this new philosophy into scientific practice would be a new kind of science, both more intellectually rigorous and one that does better justice to the best interests of humanity. (shrink)
Over 40 years ago, I put forward a new philosophy of science based on the argument that physics, in only ever accepting unified theories, thereby makes a substantial metaphysical presupposition about the universe, to the effect it possesses an underlying unity. I argued that a new conception of scientific method is required to subject this problematic presupposition to critical attention so that it may be improved as science proceeds. This view has implications for the study of the metaphysics (...) of science. The view has however been ignored by recent contributions to the field. I indicate broader implications of the view, and consider reasons why the view has been neglected. (shrink)
The central thesis of this book is that we need to reform philosophy and join it to science to recreate a modern version of natural philosophy; we need to do this in the interests of rigour, intellectual honesty, and so that science may serve the best interests of humanity. Modern science began as natural philosophy. In the time of Newton, what we call science and philosophy today – the disparate endeavours – formed one mutually interacting, integrated (...) endeavour of natural philosophy: to improve our knowledge and understanding of the universe, and to improve our understanding of ourselves as a part of it. Profound discoveries were made, indeed one should say unprecedented discoveries. It was a time of quite astonishing intellectual excitement and achievement. And then natural philosophy died. It split into science on the one hand, and philosophy on the other. This happened during the 18th and 19th centuries, and the split is now built into our intellectual landscape. But the two fragments, science and philosophy, are defective shadows of the glorious unified endeavour of natural philosophy. Rigour, sheer intellectual good sense and decisive argument demand that we put the two together again, and rediscover the immense merits of the integrated enterprise of natural philosophy. This requires an intellectual revolution, with dramatic implications for how we understand our world, how we understand and do science, and how we understand and do philosophy. There are dramatic implications, too, for education. And it does not stop there. For, as I show in the final chapter, resurrected natural philosophy has dramatic, indeed revolutionary methodological implications for social science and the humanities, indeed for the whole academic enterprise. It means academic inquiry needs to be reorganized so that it comes to take, as its basic task, to seek and promote wisdom by rational means, wisdom being the capacity to realize what is of value in life, for oneself and others, thus including knowledge, technological know-how and understanding, but much else besides. The outcome is institutions of learning rationally designed and devoted to helping us tackle our immense global problems in increasingly cooperatively rational ways, thus helping us make progress towards a good world – or at least as good a world as possible. (shrink)
In this paper I will argue that if physics is to become a coherent metaphysics of nature it needs an “interpretation”. As I understand it, an interpretation of a physical theory amounts to offering (1) a precise formulation of its ontological claims and (2) a clear account of how such claims are related to the world of our experience. Notably, metaphysics enters importantly in both tasks: in (1), because interpreting our best physical theories requires going beyond a merely instrumentalist (...) view of science and therefore using our best metaphysical theories; in (2), because a philosophical elaboration of the theories of the world that are implicit in our experience is one of the tasks of analytic metaphysics, and bridging possible explanatory gaps or even conflicts between the physical image and the manifest image of the world is a typical philosophical task that involves science and metaphysics. (shrink)
Dark Matter was not matter at all. It was a theoretical brainteaser that finally philosophy had to unscramble. Scientists of today do not like this idea but philosophy is capable to deal with theoretical conundrums like dark matter. First chapter which is like a combat between mathematical counterintuitive physics and human commonsense, explains that human commonsense equipped with proper philosophical approach is capable to deal with the problem of dark matter. -/- After making a case for philosophical (...) method, this book then challenges the fundamental convictions of the established Cosmology and explains that even many visible galaxies are located at (light travel) distance of many hundred billion light years. There is no dark matter in any of the so-called 'proofs' of the existence of dark matter and MOND is also an engineered and artificial solution. -/- This book has solved Galactic Rotation problem using Newton's theory and have shown that available theory was capable to explain the flat rotation curves of galaxies without necessitating the existence of dark matter. Thus theory itself is not challenged, blamed or modified. However understanding of scientists of their so-called counterintuitive theories is blamed. For example, to deal with the Galactic Rotation problem, the relevant part of Newton's Principia Mathematica was Proposition LXXIII, Theorem XXXIII. Whereas to deal with this problem, scientists had wrongfully applied Proposition LXXI, Theorem XXXI. Obviously, inaccurate application of available theory resulted in a fake problem and dark matter only served as a ghost solution to that bogus problem. -/- Not only the Galactic Rotation, other so-called indicators of Dark Matter like Cluster Dynamics, Gravitational Lensing, Bullet Cluster, Dark Matter Ring, Fluctuations in CMB Temperature and Structures Formation etc. also have been explained without requiring the need for Dark Matter. -/- Overall this book has presented a strong case of the failure of counterintuitive regime of established Cosmology and Physics. (shrink)
Book Review for Reading Natural Philosophy: Essays in the History and Philosophy of Science and Mathematics, La Salle, IL: Open Court, 2002. Edited by David Malament. This volume includes thirteen original essays by Howard Stein, spanning a range of topics that Stein has written about with characteristic passion and insight. This review focuses on the essays devoted to history and philosophy of physics.
Mereological nihilism is the philosophical position that there are no items that have parts. If there are no items with parts then the only items that exist are partless fundamental particles, such as the true atoms (also called philosophical atoms) theorized to exist by some ancient philosophers, some contemporary physicists, and some contemporary philosophers. With several novel arguments I show that mereological nihilism is the correct theory of reality. I will also discuss strong similarities that mereological nihilism has with empirical (...) results in quantum physics. And I will discuss how mereological nihilism vindicates a few other theories, such as a very specific theory of philosophical atomism, which I will call quantum abstract atomism. I will show that mereological nihilism also is an interpretation of quantum mechanics that avoids the problems of other interpretations, such as the widely known, metaphysically generated, quantum paradoxes of quantum physics, which ironically are typically accepted as facts about reality. I will also show why it is very surprising that mereological nihilism is not a widely held theory, and not the premier theory in philosophy. (shrink)
There are many branches of philosophy called “the philosophy of X,” where X = disciplines ranging from history to physics. The philosophy of artificial intelligence has a long history, and there are many courses and texts with that title. Surprisingly, the philosophy of computer science is not nearly as well-developed. This article proposes topics that might constitute the philosophy of computer science and describes a course covering those topics, along with suggested readings and assignments.
When Bruno was burned at the stake in 1600, philosophers were still inclined to offer natural explanations in Aristotelian terms. Neither the physical proposals of Bruno himself, nor those of other prominent non-Aristotelians like Paracelsus had diminished the power of the explanatory model offered by the scholastics. For those philosophers watching the demise of Bruno in the Campo dei Fiori in Rome, the burning of the wood and its subsequent effects would have been explained adequately in terms of matter and (...) substantial form. For such Aristotelian philosophers, all natural objects are constituted of matter and form, and natural events are explained in terms of the actualization of the potency of these two “principles of nature.” By the time Kenelm Digby composed his Two Treatises of 1644 and Thomas Hobbes his De Corpore in 1655, there was a new explanatory model available to explain such events, one that had greatly diminished the power of the scholastic model. According to the mechanical philosophy, nature is composed of matter—whether the res extensa of Descartes, the atoms of Gassendi, or one of the many less popular accounts of corporeity—whose actions and interactions cause and explain all the phenomena of nature. For the mechanist, therefore, all physical phenomena are to be explained in terms of some kind of matter and motion. Although these thinkers disagreed about how to define the material component in nature, they all took it to be entirely devoid of substantial forms. For our purposes here, it will be helpful to distinguish between first wave and second wave mechanists. A first wave mechanist is someone like Descartes, Galileo, Hobbes, or Gassendi who proposed a version of the mechanical explanatory model before 1650. A second wave mechanist is a philosopher working in the second half of the seventeenth century who accepts the mechanical explanatory model. For our purposes, it is important that many second wave mechanists were prepared to reject the scholastic explanatory model, replace it with the mechanical one, and yet were not content to accept the metaphysical grounding of the mechanical physics offered by the first wave mechanists. (shrink)
Descartes was both metaphysician and natural philosopher. He used his metaphysics to ground portions of his physics. However, as should be a commonplace but is not, he did not think he could spin all of his physics out of his metaphysics a priori, and in fact he both emphasized the need for appeals to experience in his methodological remarks on philosophizing about nature and constantly appealed to experience in describing his own philosophy of nature. During the 1630s, (...) he offered empirical support for the basic principles of his natural philosophy, while also promising to provide a metaphysical justification. He offered the metaphysical justification in the Meditations and Principles. and claimed absolute certainty for it. At the same time, he recognized that the particular postulated mechanisms of his natural philosophy did not reach that standard of certainty. These mechanisms were supported by empirical testing or confirming of causes through observed effects. (shrink)
"Understanding Scientific Progress constitutes a potentially enormous and revolutionary advancement in philosophy of science. It deserves to be read and studied by everyone with any interest in or connection with physics or the theory of science. Maxwell cites the work of Hume, Kant, J.S. Mill, Ludwig Bolzmann, Pierre Duhem, Einstein, Henri Poincaré, C.S. Peirce, Whitehead, Russell, Carnap, A.J. Ayer, Karl Popper, Thomas Kuhn, Imre Lakatos, Paul Feyerabend, Nelson Goodman, Bas van Fraassen, and numerous others. He lauds Popper for (...) advancing beyond verificationism and Hume’s problem of induction, but faults both Kuhn and Popper for being unable to show that and how their work could lead nearer to the truth." —Dr. Lloyd Eby teaches philosophy at The George Washington University and The Catholic University of America, in Washington, DC. (shrink)
Introduction to the Special Volume, “Method, Science and Mathematics: Neo-Kantianism and Analytic Philosophy,” edited by Scott Edgar and Lydia Patton. At its core, analytic philosophy concerns urgent questions about philosophy’s relation to the formal and empirical sciences, questions about philosophy’s relation to psychology and the social sciences, and ultimately questions about philosophy’s place in a broader cultural landscape. This picture of analytic philosophy shapes this collection’s focus on the history of the philosophy of (...) mathematics, physics, and psychology. The following essays uncover, reflect on, and exemplify modes of philosophy that are engaged with these allied disciplines. They make the case that, to the extent that analytic philosophers are still concerned with philosophy’s ties to these disciplines, we would do well to pay attention to neo-Kantian views on those ties. (shrink)
‘The Union of Cause and Effect in Aristotle : Physics III 3’, Oxford Studies in Ancient Philosophy, 32, pp. 205-232, May 2007.: I argue that Aristotle introduced a unique realist account of causation, which has not hitherto been appreciated in the history of philosophy: causal realism without a causal relation. In his account, cause and effect are unified by the ectopic actualization of the agent’s potentiality in the patient. His solution consists in the introduction of a property (...) that belongs to one subject but is realized in another subject on whose state this realization depends. I identify and analyze the multiple ontological dependencies between the causal state of the agent and that of the patient during their causal activity. (shrink)
Neurosis can be interpreted as a methodological condition which any aim-pursuing entity can suffer from. If such an entity pursues a problematic aim B, represents to itself that it is pursuing a different aim C, and as a result fails to solve the problems associated with B which, if solved, would lead to the pursuit of aim A, then the entity may be said to be "rationalistically neurotic". Natural science is neurotic in this sense in so far as a basic (...) aim of science is represented to be to improve knowledge of factual truth as such, when actually the aim of science is to improve knowledge of explanatory truth. Science does not suffer too much from this neurosis, but philosophy of science does. Much more serious is the rationalistic neurosis of the social sciences, and of academic inquiry more generally. Freeing social science and academic inquiry from neurosis would have far reaching, beneficial, intellectual, institutional and cultural consequences. (shrink)
Karl Popper (1902-1994) was one of the most influential philosophers of science of the 20th century. He made significant contributions to debates concerning general scientific methodology and theory choice, the demarcation of science from non-science, the nature of probability and quantum mechanics, and the methodology of the social sciences. His work is notable for its wide influence both within the philosophy of science, within science itself, and within a broader social context. Popper’s early work attempts to solve the problem (...) of demarcation and offer a clear criterion that distinguishes scientific theories from metaphysical or mythological claims. Popper’s falsificationist methodology holds that scientific theories are characterized by entailing predictions that future observations might reveal to be false. When theories are falsified by such observations, scientists can respond by revising the theory, or by rejecting the theory in favor of a rival or by maintaining the theory as is and changing an auxiliary hypothesis. In either case, however, this process must aim at the production of new, falsifiable predictions. While Popper recognizes that scientists can and do hold onto theories in the face of failed predictions when there are no predictively superior rivals to turn to. He holds that scientific practice is characterized by its continual effort to test theories against experience and make revisions based on the outcomes of these tests. By contrast, theories that are permanently immunized from falsification by the introduction of untestable ad hoc hypotheses can no longer be classified as scientific. Among other things, Popper argues that his falsificationist proposal allows for a solution of the problem of induction, since inductive reasoning plays no role in his account of theory choice. Along with his general proposals regarding falsification and scientific methodology, Popper is notable for his work on probability and quantum mechanics and on the methodology of the social sciences. Popper defends a propensity theory of probability, according to which probabilities are interpreted as objective, mind-independent properties of experimental setups. Popper then uses this theory to provide a realist interpretation of quantum mechanics, though its applicability goes beyond this specific case. With respect to the social sciences, Popper argued against the historicist attempt to formulate universal laws covering the whole of human history and instead argued in favor of methodological individualism and situational logic. Table of Contents 1. Background 2. Falsification and the Criterion of Demarcation a. Popper on Physics and Psychoanalysis b. Auxiliary and Ad Hoc Hypotheses c. Basic Sentences and the Role of Convention d. Induction, Corroboration, and Verisimilitude 3. Criticisms of Falsificationism 4. Realism, Quantum Mechanics, and Probability 5. Methodology in the Social Sciences 6. Popper’s Legacy 7. References and Further Reading a. Primary Sources b. Secondary Sources -/- . (shrink)
The discovery of a letter in the Niels Bohr archives written by Bohr to a Danish schoolteacher in which he reveals his early knowledge of the Daodejing led the present author on a search to unveil the influence of the philosophy of Yin-Yang on Bohr's famed complementarity principle in Western physics. This paper recounts interviews with his son, Hans, who recalls Bohr reading a translated copy of Laozi, as well as Hanna Rosental, close friend and associate who also (...) confirms the influence of ancient Chinese philosophy on this major figure in Western physics. As with Bohr’s dual perspective approach to the wave-particle, in which describing matter as either wave or particle is not considered inherently contradictory, this article likewise argues that Eastern and Western perspectives about philosophy, reality and life in general need not antagonize one another as is the case in Hegelian dialecticism. Through developing a globally accessible, harmonized system of Eastern and Western thought, this article suggests that individuals can more easily overcome limitations arising from cultural singularity in conventional philosophical approaches and, in turn, achieve a greater degree of social harmony and depth of philosophical understanding, all in the same stroke. (shrink)
INTERNATIONAL STUDIES IN THE PHILOSOPHY OF SCIENCE Vol. 5, number 1, Autumn 1991, pp. 79-87. R.M. Nugayev. -/- The fundamental laws of physics can tell the truth. -/- Abstract. Nancy Cartwright’s arguments in favour of phenomenological laws and against fundamental ones are discussed. Her criticisms of the standard cjvering-law account are extended using Vyacheslav Stepin’s analysis of the structure of fundamental theories. It is argued that Cartwright’s thesis 9that the laws of physics lie) is too radical to (...) accept. A model of theory change is proposed which demonstrates how the fundamental laws of physics can, in fact, be confronted with experience. -/- . (shrink)
A COMPANION STUDY TO MARTÍN LÓPEZ CORREDOIRA’S THE TWILIGHT OF THE SCIENTIFIC AGE. The last decade has seen a growing flood of complaints against the corruption and failure of scientific culture, not from radicalised social critics or anti-science extremists, but from leading figures within the scientific establishment itself. In The Twilight of the Scientific Age (2013, Brown Walker), Martín López Corredoira has written a vivid and scathing analysis of the state of modern science. In Part 1 of this essay I (...) begin by reviewing López Corredoira’s key themes. In Part 2 I extend López Corredoira’s critique of peer review, exhibiting detailed examples from physics and philosophy of science. In Part 3 I review the wider context, analysing bureaucratisation and the drives to corporatisation of the large institutions that now dehumanise the lives of individuals, and undermine a viable future for our society. I conclude that the neo-liberal legalistic bureaucratic ‘business model’ of organisation that has become rampant throughout all our institutions has destroyed our capacity to use knowledge for meaningful purposes, and spells the death of science. As much as we are talking of the death of science, we are also talking of a deep failure of the institutions of our civilisation. I finally discuss the place of the independent scientist, and the broader responses we might have to this crisis. The final section contains a series of pertinent exhibits, from a range of authors, illustrating themes of the debate. (Note the text provided here is a full extract of Part 1. The full text is due for publication in book form in June 2016.). (shrink)
This paper examines the almost ineradicable misconception of Wittgenstein's alleged antagonism to science as evidenced through some characteristic disparaging comments by world-renowned scientists, notably by Anton Zeilinger. Above all, he criticizes Wittgenstein on the basis of the opening sentence of the Tractatus Logico-Philosophicus, "The world is all that is the case", which he regards as expressing *"the naive world-view"*1 of a *"typical philosopher of classical physics"*. He proposes an extension in agreement with the findings of quantum theory, namely by (...) the clause *"… and all that can be the case"* (Zeilinger 2003, 231). -/- It will become apparent, however, that this amplification is redundant, that Wittgenstein was in tune with modern physics, that a surprising number of his philosophical concepts are in agreement with it, and that various quantum pundits consider them to be relevant. (shrink)
This paper centers on the implicit metaphysics beyond the Theory of Relativity and the Principle of Indeterminacy – two revolutionary theories that have changed 20th Century Physics – using the perspective of Husserlian Transcedental Phenomenology. Albert Einstein (1879-1955) and Werner Heisenberg (1901-1976) abolished the theoretical framework of Classical (Galilean- Newtonian) physics that has been complemented, strengthened by Cartesian metaphysics. Rene Descartes (1596- 1850) introduced a separation between subject and object (as two different and self- enclosed substances) while Galileo (...) and Newton did the “mathematization” of the world. Newtonian physics, however, had an inexplicable postulate of absolute space and absolute time – a kind of geometrical framework, independent of all matter, for the explication of locality and acceleration. Thus, Cartesian modern metaphysics and Galilean- Newtonian physics go hand in hand, resulting to socio- ethical problems, materialism and environmental destruction. Einstein got rid of the Newtonian absolutes and was able to provide a new foundation for our notions of space and time: the four (4) dimensional space- time; simultaneity and the constancy of velocity of light, and the relativity of all systems of reference. Heisenberg, following the theory of quanta of Max Planck, told us of our inability to know sub- atomic phenomena and thus, blurring the line between the Cartesian separation of object and subject, hence, initiating the crisis of the foundations of Classical Physics. But the real crisis, according to Edmund Husserl (1859-1930) is that Modern (Classical) Science had “idealized” the world, severing nature from what he calls the Lebenswelt (life- world), the world that is simply there even before it has been reduced to mere mathematical- logical equations. Husserl thus, aims to establish a new science that returns to the “pre- scientific” and “non- mathematized” world of rich and complex phenomena: phenomena as they “appear to human consciousness”. To overcome the Cartesian equation of subject vs. object (man versus environment), Husserl brackets the external reality of Newtonian Science (epoché = to put in brackets, to suspend judgment) and emphasizes (1) the meaning of “world” different from the “world” of Classical Physics, (2) the intentionality of consciousness (L. in + tendere = to tend towards, to be essentially related to or connected to) which means that even before any scientific- logical description of the external reality, there is always a relation already between consciousness and an external reality. The world is the equiprimordial existence of consciousness and of external reality. My paper aims to look at this new science of the pre- idealized phenomena started by Husserl (a science of phenomena as they appear to conscious, human, lived experience, hence he calls it phenomenology), centering on the life- world and the intentionality of consciousness, as providing a new way of looking at ourselves and the world, in short, as providing a new metaphysics (as an antidote to Cartesian metaphysics) that grounds the revolutionary findings of Einstein and Heisenberg. The environmental destruction, technocracy, socio- ethical problems in the modern world are all rooted in this Galilean- Newtonian- Cartesian interpretation of the relationship between humans and the world after the crumbling of European Medieval Ages. Friedrich Nietzsche (1844-1900) comments that the modern world is going toward a nihilism (L. nihil = nothingness) at the turn of the century. Now, after two World Wars and the dropping of Atomic bomb, the capitalism and imperialism on the one hand, and on the other hand the poverty, hunger of the non- industrialized countries alongside destruction of nature (i.e., global warming), Nietzsche might be correct: unless humanity changes the way it looks at humanity and the kosmos. The works of Einstein, Heisenberg and Husserl seem to be pointing the way for us humans to escape nihilism by a “great existential transformation.” What these thinkers of post- modernity (after Cartesian/ Newtonian/ Galilean modernity) point to are: a) a new therapeutic way of looking at ourselves and our world (metaphysics) and b) a new and corrective notion of “rationality” (different from the objectivist, mathematico- logical way of thinking). This paper is divided into four parts: 1) A summary of Classical Physics and a short history of Quantum Theory 2) Einstein’s Special and General Relativity and Heisenberg’s Indeterminacy Principle 3) Husserl’s discussion of the Crisis of Europe, the life- world and intentionality of consciousness 4) A Metaphysics of Relativity and Indeterminacy and a Corrective notion of Rationality in Husserl’s Phenomenology . (shrink)
Chemistry and physics are two sciences that are hard to connect. Yet there is significant overlap in their aims, methods, and theoretical approaches. In this book, the reduction of chemistry to physics is defended from the viewpoint of a naturalised Nagelian reduction, which is based on a close reading of Nagel's original text. This naturalised notion of reduction is capable of characterising the inter-theory relationships between theories of chemistry and theories of physics. The reconsideration of reduction also (...) leads to a new characterisation of chemical theories. This book is primarily aimed at philosophers of chemistry and chemists with an interest in philosophy, but is also of interest to the general philosopher of science. (shrink)
The writings of Joseph Henry Woodger (1894–1981) are often taken to exemplify everything that was wrongheaded, misguided, and just plain wrong with early twentieth-century philosophy of biology. Over the years, commentators have said of Woodger: (a) that he was a fervent logical empiricist who tried to impose the explanatory gold standards of physics onto biology, (b) that his philosophical work was completely disconnected from biological science, (c) that he possessed no scientific or philosophical credentials, and (d) that his (...) work was disparaged – if not altogether ignored – by the biologists and philosophers of his era. In this paper, we provide the first systematic examination of Woodger’s oeuvre, and use it to demonstrate that the four preceding claims are false. We argue that Woodger’s ideas have exerted an important influence on biology and philosophy, and submit that the current consensus on his legacy stems from a highly selective reading of his works. By rehabilitating Woodger, we hope to show that there is no good reason to continue to disregard the numerous contributions to the philosophy of biology produced in the decades prior to the professionalization of the discipline. (shrink)
Most scientists would hold that science has not established that the cosmos is physically comprehensible – i.e. such that there is some as-yet undiscovered true physical theory of everything that is unified. This is an empirically untestable, or metaphysical thesis. It thus lies beyond the scope of science. Only when physics has formulated a testable unified theory of everything which has been amply corroborated empirically will science be in a position to declare that it has established that the cosmos (...) is physically comprehensible. But this argument presupposes a widely accepted but untenable conception of science which I shall call standard empiricism. According to standard empiricism, in science theories are accepted solely on the basis of evidence. Choice of theory may be influenced for a time by considerations of simplicity, unity, or explanatory capacity, but not in such a way that the universe itself is permanently assumed to be simple, unified or physically comprehensible. In science, no thesis about the universe can be accepted permanently as a part of scientific knowledge independently of evidence. Granted this view, it is clear that science cannot have established that the universe is physically comprehensible. Standard empiricism is, however, as I have indicated, untenable. Any fundamental physical theory, in order to be accepted as a part of theoretical scientific knowledge, must satisfy two criteria. It must be sufficiently empirically successful, and sufficiently unified. Given any accepted theory of physics, endlessly many empirically more successful disunified rivals can always be concocted – disunified because they assert that different dynamical laws govern the diverse phenomena to which the theory applies. These disunified rivals are not considered for a moment in physics, despite their greater empirical success. This persistent rejection of empirically more successful but disunified rival theories means, I argue, that a big, highly problematic, implicit assumption is made by science about the cosmos, to the effect, at least, that the cosmos is such that all seriously disunified theories are false. Once this point is recognized, it becomes clear, I argue, that we need a new conception of science which makes explicit, and so criticizable and improvable the big, influential, and problematic assumption that is at present implicit in physics in the persistent preference for unified theories. This conception of science, which I call aim-oriented empiricism, represents the assumption of physics in the form of a hierarchy of assumptions. As one goes up the hierarchy, the assumptions become less and less substantial, and more and more nearly such that their truth is required for science, or the pursuit of knowledge, to be possible at all. At each level, that assumption is accepted which best accords with the next one up, and has, associated with it the most empirically progressive research programme in physics, or holds out the greatest hope of leading to such an empirically progressive research programme. In this way a framework of relatively insubstantial, unproblematic, fixed assumptions and associated methods is created, high up in the hierarchy, within which much more substantial and problematic assumptions and associated methods, low down in the hierarchy, can be changed, and indeed improved, as scientific knowledge improves. One assumption in this hierarchy of assumptions, I argue, is that the cosmos is physically comprehensible – that is, such that some yet-to-be-discovered unified theory of everything is true. Hence the conclusion: improve our ideas about the nature of science and it becomes apparent that science has already established that the cosmos is physically comprehensible – in so far as science can ever establish anything theoretical. (shrink)
Although the main focus of Hume’s career was in the humanities, his work also has an observable role in the historical development of natural sciences after his time. To show this, I shall center on the relation between Hume and two major figures in the history of the natural sciences: Charles Darwin (1809–1882) and Albert Einstein (1879–1955). Both of these scientists read Hume. They also found parts of Hume’s work useful to their sciences. Inquiring into the relations between Hume and (...) the two scientists shows that his philosophical positions had a partial but constructive role in the formation of modern biology and physics. This is accordingly a clear indication of Hume’s impact on the scientific tradition. Before proceeding to analyze Hume’s contribution to the history of science, it is important to address his broader role in the history of philosophy of science. Hume’s discussions concerning the topics of causation, induction, the distinction between mathematical and empirical propositions, and laws of nature have been important for the philosophy of science of the nineteenth and twentieth centuries. (shrink)
Rudyard Kipling, the famous english author of « The Jungle Book », born in India, wrote one day these words: « Oh, East is East and West is West, and never the twain shall meet ». In my paper I show that Kipling was not completely right. I try to show the common ground between buddhist philosophy and quantum physics. There is a surprising parallelism between the philosophical concept of reality articulated by Nagarjuna and the physical concept of (...) reality implied by quantum physics. For neither is there a fundamental core to reality, rather reality consists of systems of interacting objects. Such concepts of reality cannot be reconciled with the substantial, subjective, holistic or instrumentalistic concepts of reality which underlie modern modes of thought. (shrink)
This chapter outlines improvements and developments made to aim-oriented empiricism since "From Knowledge to Wisdom" was first published in 1984. It argues that aim-oriented empiricism enables us to solve three fundamental problems in the philosophy of science: the problems of induction and verisimilitude, and the problem of what it means to say of a physical theory that it is unified.
Physical reality is all the reality we have, and so physical theory in the standard sense is all the ontology we need. This, at least, was an assumption taken almost universally for granted by the advocates of exact philosophy for much of the present century. Every event, it was held, is a physical event, and all structure in reality is physical structure. The grip of this assumption has perhaps been gradually weakened in recent years as far as the sciences (...) of mind are concerned. When it comes to the sciences of external reality, however, it continues to hold sway, so that contemporary philosophers B even while devoting vast amounts of attention to the language we use in describing the world of everyday experience B still refuse to see this world as being itself a proper object of theoretical concern. Here, however, we shall argue that the usual conception of physical reality as constituting a unique bedrock of objectivity reflects a rather archaic view as to the nature of physics itself and is in fact incompatible with the development of the discipline since Newton. More specifically, we shall seek to show that the world of qualitative structures, for example of colour and sound, or the commonsense world of coloured and sounding things, can be treated scientifically (ontologically) on its own terms, and that such a treatment can help us better to understand the structures both of physical reality and of cognition. (shrink)
Rudyard Kipling, the famous english author of « The Jungle Book », born in India, wrote one day these words: « Oh, East is East and West is West, and never the twain shall meet ». In my paper I show that Kipling was not completely right. I try to show the common ground between buddhist philosophy and quantum physics. There is a surprising parallelism between the philosophical concept of reality articulated by Nagarjuna and the physical concept of (...) reality implied by quantum physics. For neither is there a fundamental core to reality, rather reality consists of systems of interacting objects. Such concepts of reality cannot be reconciled with the substantial, subjective, holistic or instrumentalistic concepts of reality which underlie modern modes of thought. (shrink)
The biological sciences have always proven a fertile ground for philosophical analysis, one from which has grown a rich tradition stemming from Aristotle and flowering with Darwin. And although contemporary philosophy is increasingly becoming conceptually entwined with the study of the empirical sciences with the data of the latter now being regularly utilised in the establishment and defence of the frameworks of the former, a practice especially prominent in the philosophy of physics, the development of that tradition (...) hasn’t received the wider attention it so thoroughly deserves. This review will briefly introduce some recent significant topics of debate within the philosophy of biology, focusing on those whose metaphysical themes (in everything from composition to causation) are likely to be of wide-reaching, cross-disciplinary interest. (shrink)
In my book Understanding Scientific Progress, I argue that fundamental philosophical problems about scientific progress, above all the problem of induction, cannot be solved granted standard empiricism (SE), a doctrine which most scientists and philosophers of science take for granted. A key tenet of SE is that no permanent thesis about the world can be accepted as a part of scientific knowledge independent of evidence. For a number of reasons, we need to adopt a rather different conception of science which (...) I call aim-oriented empiricism (AOE). This holds that we need to construe physics as accepting, as a part of theoretical scientific knowledge, a hierarchy of metaphysical theses about the comprehensibility and knowability of the universe, these theses becoming increasingly insubstantial as we go up the hierarchy. Fundamental philosophical problems about scientific progress, including the problems of induction, theory unity, verisimilitude and scientific discovery, which cannot be solved granted SE, can be solved granted AOE. In his review of Understanding Scientific Progress, Moti Mizrahi makes a number of criticisms, almost all of which are invalid in quite elementary ways. (shrink)
This paper examines Hobbes’s criticisms of Robert Boyle’s air-pump experiments in light of Hobbes’s account in _De Corpore_ and _De Homine_ of the relationship of natural philosophy to geometry. I argue that Hobbes’s criticisms rely upon his understanding of what counts as “true physics.” Instead of seeing Hobbes as defending natural philosophy as “a causal enterprise … [that] as such, secured total and irrevocable assent,” 1 I argue that, in his disagreement with Boyle, Hobbes relied upon his (...) understanding of natural philosophy as a mixed mathematical science. In a mixed mathematical science one can mix facts from experience with causal principles borrowed from geometry. Hobbes’s harsh criticisms of Boyle’s philosophy, especially in the _Dialogus Physicus, sive De natura aeris_, should thus be understood as Hobbes advancing his view of the proper relationship of natural philosophy to geometry in terms of mixing principles from geometry with facts from experience. Understood in this light, Hobbes need not be taken to reject or diminish the importance of experiment/experience; nor should Hobbes’s criticisms in _Dialogus Physicus_ be understood as rejecting experimenting as ignoble and not befitting a philosopher. Instead, Hobbes’s viewpoint is that experiment/experience must be understood within its proper place – it establishes the ‘that’ for a mixed mathematical science explanation. (shrink)
“If you find it strange that, in setting out these elements, I do not use those qualities called heat, cold, moistness, and dryness, as do the philosophers, I shall say to you that these qualities appear to me to be themselves in need of explanation. Indeed, unless I am mistaken, not only these four qualities, but also all the others (indeed all the forms of inanimate bodies) can be explained without the need of supposing for that purpose any other thing (...) in their matter than the motion, size, shape, and arrangement of its parts.” So does Descartes, in his The World, or Treatise on Light [Le Monde ou Traité de la Lumière], express the uniphenomenal principle of the physical world, which is the basis - or foundation - of his great cosmic synthesis. The uniphenomenal character of Cartesian physics - namely, explaining all phenomena and appearances from a single primordial phenomenon (and substance) - has such a great semantic and intuitive value for the structure of the human mind that Plato, even before Aristotle’s hyle, had come to contemplate his concept of chora, the cosmic and universal matrix at the base of all phenomena, existing before and beyond the coming into existence of the elements and of sensible things. Even the physics of Democritus is uniphenomenal. A perfect example of uniphenomenal physics in our time is the Spacio-fluido-dynamics of the scientist Marco Todeschini (Bergamo, 1899 - 1988) who, with his monumental Teoria delle apparenze [Theory of Appearances] of ’49 tried to clear a path towards the hope of reaching a Cartesian kind of unified cosmic synthesis. (We accept only the fundamental concept of Todeschi’s theory here, that is, the uniphenomenal character of his physics, without occupying ourselves with criteria such as the value or the plausibility of his hypotheses.) This concept of uniphenomenal physics will serve as an ultra-clear instrument to dissipate the epistemological fog of AI (Artificial Intelligence). (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.