Non-commuting quantities and hidden parameters – Wave-corpuscular dualism and hidden parameters – Local or nonlocal hidden parameters – Phase space in quantum mechanics – Weyl, Wigner, and Moyal – Von Neumann’s theorem about the absence of hidden parameters in quantum mechanics and Hermann – Bell’s objection – Quantum-mechanical and mathematical incommeasurability – Kochen – Specker’s idea about their equivalence – The notion of partial algebra – Embeddability of a qubit into a bit – Quantum computer is (...) not Turing machine – Is continuality universal? – Diffeomorphism and velocity – Einstein’s general principle of relativity – „Mach’s principle“ – The Skolemian relativity of the discrete and the continuous – The counterexample in § 6 of their paper – About the classical tautology which is untrue being replaced by the statements about commeasurable quantum-mechanical quantities – Logical hidden parameters – The undecidability of the hypothesis about hidden parameters – Wigner’s work and и Weyl’s previous one – Lie groups, representations, and psi-function – From a qualitative to a quantitative expression of relativity − psi-function, or the discrete by the random – Bartlett’s approach − psi-function as the characteristic function of random quantity – Discrete and/ or continual description – Quantity and its “digitalized projection“ – The idea of „velocity−probability“ – The notion of probability and the light speed postulate – Generalized probability and its physical interpretation – A quantum description of macro-world – The period of the as-sociated de Broglie wave and the length of now – Causality equivalently replaced by chance – The philosophy of quantum information and religion – Einstein’s thesis about “the consubstantiality of inertia ant weight“ – Again about the interpretation of complex velocity – The speed of time – Newton’s law of inertia and Lagrange’s formulation of mechanics – Force and effect – The theory of tachyons and general relativity – Riesz’s representation theorem – The notion of covariant world line – Encoding a world line by psi-function – Spacetime and qubit − psi-function by qubits – About the physical interpretation of both the complex axes of a qubit – The interpretation of the self-adjoint operators components – The world line of an arbitrary quantity – The invariance of the physical laws towards quantum object and apparatus – Hilbert space and that of Minkowski – The relationship between the coefficients of -function and the qubits – World line = psi-function + self-adjoint operator – Reality and description – Does a „curved“ Hilbert space exist? – The axiom of choice, or when is possible a flattening of Hilbert space? – But why not to flatten also pseudo-Riemannian space? – The commutator of conjugate quantities – Relative mass – The strokes of self-movement and its philosophical interpretation – The self-perfection of the universe – The generalization of quantity in quantum physics – An analogy of the Feynman formalism – Feynman and many-world interpretation – The psi-function of various objects – Countable and uncountable basis – Generalized continuum and arithmetization – Field and entanglement – Function as coding – The idea of „curved“ Descartes product – The environment of a function – Another view to the notion of velocity-probability – Reality and description – Hilbert space as a model both of object and description – The notion of holistic logic – Physical quantity as the information about it – Cross-temporal correlations – The forecasting of future – Description in separable and inseparable Hilbert space – „Forces“ or „miracles“ – Velocity or time – The notion of non-finite set – Dasein or Dazeit – The trajectory of the whole – Ontological and onto-theological difference – An analogy of the Feynman and many-world interpretation − psi-function as physical quantity – Things in the world and instances in time – The generation of the physi-cal by mathematical – The generalized notion of observer – Subjective or objective probability – Energy as the change of probability per the unite of time – The generalized principle of least action from a new view-point – The exception of two dimensions and Fermat’s last theorem. (shrink)
The violation of Bell inequalities by quantum physical experiments disproves all relativistic micro causal, classically real models, short Local Realistic Models (LRM). Non-locality, the infamous “spooky interaction at a distance” (A. Einstein), is already sufficiently ‘unreal’ to motivate modifying the “realistic” in “local realistic”. This has led to many worlds and finally many minds interpretations. We introduce a simple many world model that resolves the Einstein Podolsky Rosen paradox. The model starts out as a classical LRM, (...) thus clarifying that the many worlds concept alone does not imply quantum physics. Some of the desired ‘non-locality’, e.g. anti-correlation at equal measurement angles, is already present, but Bell’s inequality can of course not be violated. A single and natural step turns this LRM into a quantum model predicting the correct probabilities. Intriguingly, the crucial step does obviously not modify locality but instead reality: What before could have still been a direct realism turns into modal realism. This supports the trend away from the focus on non-locality in quantum mechanics towards a mature structural realism that preserves micro causality. (shrink)
David Lewis is a natural target for those who believe that findings in quantum physics threaten the tenability of traditional metaphysical reductionism. Such philosophers point to allegedly holistic entities they take both to be the subjects of some claims of quantum mechanics and to be incompatible with Lewisian metaphysics. According to one popular argument, the non-separability argument from quantum entanglement, any realist interpretation of quantum theory is straightforwardly inconsistent with the reductive conviction that the complete physical (...) state of the world supervenes on the intrinsic properties of and spatio-temporal relations between its point-sized constituents. Here I defend Lewis's metaphysical doctrine, and traditional reductionism more generally, against this alleged threat from quantum holism. After presenting the non-separability argument from entanglement, I show that Bohmian mechanics, an interpretation of quantum mechanics explicitly recognized as a realist one by proponents of the non-separability argument, plausibly rejects a key premise of that argument. Another holistic worry for Humeanism persists, however, the trouble being the apparently holistic character of the Bohmian pilot wave. I present a Humean strategy for addressing the holistic threat from the pilot wave by drawing on resources from the Humean best system account of laws. (shrink)
A case study of quantum mechanics is investigated in the framework of the philosophical opposition “mathematical model – reality”. All classical science obeys the postulate about the fundamental difference of model and reality, and thus distinguishing epistemology from ontology fundamentally. The theorems about the absence of hidden variables in quantum mechanics imply for it to be “complete” (versus Einstein’s opinion). That consistent completeness (unlike arithmetic to set theory in the foundations of mathematics in Gödel’s opinion) can be interpreted (...) furthermore as the coincidence of model and reality. The paper discusses the option and fact of that coincidence it its base: the fundamental postulate formulated by Niels Bohr about what quantum mechanics studies (unlike all classical science). Quantum mechanics involves and develops further both identification and disjunctive distinction of the global space of the apparatus and the local space of the investigated quantum entity as complementary to each other. This results into the analogical complementarity of model and reality in quantum mechanics. The apparatus turns out to be both absolutely “transparent” and identically coinciding simultaneously with the reflected quantum reality. Thus, the coincidence of model and reality is postulated as necessary condition for cognition in quantum mechanics by Bohr’s postulate and further, embodied in its formalism of the separable complex Hilbert space, in turn, implying the theorems of the absence of hidden variables (or the equivalent to them “conservation of energy conservation” in quantum mechanics). What the apparatus and measured entity exchange cannot be energy (for the different exponents of energy), but quantum information (as a certain, unambiguously determined wave function) therefore a generalized law of conservation, from which the conservation of energy conservation is a corollary. Particularly, the local and global space (rigorously justified in the Standard model) share the complementarity isomorphic to that of model and reality in the foundation of quantum mechanics. On that background, one can think of the troubles of “quantum gravity” as fundamental, direct corollaries from the postulates of quantum mechanics. Gravity can be defined only as a relation or by a pair of non-orthogonal separable complex Hilbert space attachable whether to two “parts” or to a whole and its parts. On the contrary, all the three fundamental interactions in the Standard model are “flat” and only “properties”: they need only a single separable complex Hilbert space to be defined. (shrink)
A longstanding issue in attempts to understand the Everett (Many-Worlds) approach to quantum mechanics is the origin of the Born rule: why is the probability given by the square of the amplitude? Following Vaidman, we note that observers are in a position of self-locating uncertainty during the period between the branches of the wave function splitting via decoherence and the observer registering the outcome of the measurement. In this period it is tempting to regard each branch as equiprobable, (...) but we argue that the temptation should be resisted. Applying lessons from this analysis, we demonstrate (using methods similar to those of Zurek's envariance-based derivation) that the Born rule is the uniquely rational way of apportioning credence in Everettian quantum mechanics. In doing so, we rely on a single key principle: changes purely to the environment do not affect the probabilities one ought to assign to measurement outcomes in a local subsystem. We arrive at a method for assigning probabilities in cases that involve both classical and quantum self-locating uncertainty. This method provides unique answers to quantum Sleeping Beauty problems, as well as a well-defined procedure for calculating probabilities in quantum cosmological multiverses with multiple similar observers. (shrink)
McQueen and Vaidman argue that the Many Worlds Interpretation (MWI) of quantum mechanics provides local causal explanations of the outcomes of experiments in our experience that is due to the total effect of all the worlds together. We show that although the explanation is local in one world, it requires a causal influence that travels across different worlds. We further argue that in the MWI the local nature of our experience is not derivable from the Hilbert space structure, (...) but has to be added to it as an independent postulate. This is due to what we call the factorisation-symmetry and basis-symmetry of Hilbert space. (shrink)
One of the most prospective directions of study of C.G. Jung’s synchronicity phenomenon is reviewed considering the latest achievements of modern science. The attention is focused mainly on the quantum entanglement and related phenomena – quantum coherence and quantumsuperposition. It is shown that the quantum non-locality capable of solving the Einstein-Podolsky-Rosen paradox represents one of the most adequate physical mechanisms in terms of conformity with the Jung’s synchronicity hypothesis. An attempt is made on psychophysiological (...) substantiation of synchronicity within the context of molecular biology. An original concept is proposed, stating that biological molecules involved in cell division during mitosis and meiosis, particularly DNA may be considered material carriers of consciousness. This assumption may be formulated on the basis of phenomenology of Jung’s analytical psychology. (shrink)
Despite the widespread assumptions on the compatibility between non-relativistic quantum mechanics and special relativity, there still remains a considerable amount of unresolved problems to which few authors explicitly pay attention. Most of them involve the aim of coherently achieving a relativistic description of quantum collapses and quantum entanglements. These processes seem to challenge our present picture of the physical world in terms of space-time structures.
We review a recent approach to the foundations of quantum mechanics inspired by quantum information theory. The approach is based on a general framework, which allows one to address a large class of physical theories which share basic information-theoretic features. We first illustrate two very primitive features, expressed by the axioms of causality and purity-preservation, which are satisfied by both classical and quantum theory. We then discuss the axiom of purification, which expresses a strong version of the (...) Conservation of Information and captures the core of a vast number of protocols in quantum information. Purification is a highly non-classical feature and leads directly to the emergence of entanglement at the purely conceptual level, without any reference to the superposition principle. Supplemented by a few additional requirements, satisfied by classical and quantum theory, it provides a complete axiomatic characterization of quantum theory for finite dimensional systems. (shrink)
We argue from conceptual point of view the relationship between quantum entanglement and many-worlds interpretation of quantum mechanics, the debate is still open, but we retain the objective Bayesian interpretation of quantum probability could be an interesting approach to solve this fundamental question.
The cognition of quantum processes raises a series of questions about ordering and information connecting the states of one and the same system before and after measurement: Quantum measurement, quantum in-variance and the non-locality of quantum information are considered in the paper from an epistemological viewpoint. The adequate generalization of ‘measurement’ is discussed to involve the discrepancy, due to the fundamental Planck constant, between any quantum coherent state and its statistical representation as a statistical ensemble (...) after measurement. Quantum in-variance designates the relation of any quantum coherent state to the corresponding statistical ensemble of measured results. A set-theory corollary is the curious in-variance to the axiom of choice: Any coherent state excludes any well-ordering and thus excludes also the axiom of choice. However the above equivalence requires it to be equated to a well-ordered set after measurement and thus requires the axiom of choice for it to be able to be obtained. Quantum in-variance underlies quantum information and reveals it as the relation of an unordered quantum “much” (i.e. a coherent state) and a well-ordered “many” of the measured results (i.e. a statistical ensemble). It opens up to a new horizon, in which all physical processes and phenomena can be interpreted as quantum computations realizing relevant operations and algorithms on quantum information. All phenomena of entanglement can be described in terms of the so defined quantum information. Quantum in-variance elucidates the link between general relativity and quantum mechanics and thus, the problem of quantum gravity. The non-locality of quantum information unifies the exact position of any space-time point of a smooth trajectory and the common possibility of all space-time points due to a quantum leap. This is deduced from quantum in-variance. Epistemology involves the relation of ordering and thus a generalized kind of information, quantum one, to explain the special features of the cognition in quantum mechanics. (shrink)
Many researchers determine the question “Why anything rather than nothing?” as the most ancient and fundamental philosophical problem. Furthermore, it is very close to the idea of Creation shared by religion, science, and philosophy, e.g. as the “Big Bang”, the doctrine of “first cause” or “causa sui”, the Creation in six days in the Bible, etc. Thus, the solution of quantum mechanics, being scientific in fact, can be interpreted also philosophically, and even religiously. However, only the philosophical interpretation (...) is the topic of the text. The essence of the answer of quantum mechanics is: 1. The creation is necessary in a rigorous mathematical sense. Thus, it does not need any choice, free will, subject, God, etc. to appear. The world exists in virtue of mathematical necessity, e.g. as any mathematical truth such as 2+2=4. 2. The being is less than nothing rather than more than nothing. So, the creation is not an increase of nothing, but the decrease of nothing: it is a deficiency in relation of nothing. Time and its “arrow” are the way of that diminishing or incompleteness to nothing. (shrink)
A non-relativistic quantum mechanical theory is proposed that describes the universe as a continuum of worlds whose mutual interference gives rise to quantum phenomena. A logical framework is introduced to properly deal with propositions about objects in a multiplicity of worlds. In this logical framework, the continuum of worlds is treated in analogy to the continuum of time points; both “time” and “world” are considered as mutually independent modes of existence. The theory combines elements of Bohmian mechanics and (...) of Everett’s many-worlds interpretation; it has a clear ontology and a set of precisely defined postulates from where the predictions of standard quantum mechanics can be derived. Probability as given by the Born rule emerges as a consequence of insufficient knowledge of observers about which world it is that they live in. The theory describes a continuum of worlds rather than a single world or a discrete set of worlds, so it is similar in spirit to many-worlds interpretations based on Everett’s approach, without being actually reducible to these. In particular, there is no splitting of worlds, which is a typical feature of Everett-type theories. Altogether, the theory explains (1) the subjective occurrence of probabilities, (2) their quantitative value as given by the Born rule, and (3) the apparently random “collapse of the wavefunction” caused by the measurement, while still being an objectively deterministic theory. (shrink)
This thesis inquires what it means to interpret non-relativistic quantum mechanics (QM), and the philosophical limits of this interpretation. In pursuit of a scientific-realist stance, a metametaphysical method is expanded and applied to evaluate rival interpretations of QM, based on the conceptual distinction between ontology and metaphysics, for objective theory choice in metaphysical discussions relating to QM. Three cases are examined, in which this metametaphysical method succeeds in indicating what are the wrong alternatives to interpret QM in metaphysical terms. (...) The first two cases failed in doing so due to different kinds of underdetermination. In the third case, unlike underdetermination, where there are many choices to be made, a “null-determination” is proposed where there may be no metaphysical choices in the available metaphysical literature. Considering what has been discussed, an agnostic philosophic position is adopted concerning the possibility of interpreting QM from a scientific-realistic point of view. (shrink)
We study the conservation of energy, or lack thereof, when measurements are performed in quantum mechanics. The expectation value of the Hamiltonian of a system changes when wave functions collapse in accordance with the standard textbook treatment of quantum measurement, but one might imagine that the change in energy is compensated by the measuring apparatus or environment. We show that this is not true; the change in the energy of a state after measurement can be arbitrarily large, independent (...) of the physical measurement process. In Everettian quantum theory, while the expectation value of the Hamiltonian is conserved for the wave function of the universe, it is not constant within individual worlds. It should therefore be possible to experimentally measure violations of conservation of energy, and we suggest an experimental protocol for doing so. (shrink)
Although quantum mechanics can accurately predict the probability distribution of outcomes in an ensemble of identical systems, it cannot predict the result of an individual system. All the local and global hidden variable theories attempting to explain individual behavior have been proved invalid by experiments (violation of Bell’s inequality) and theory. As an alternative, Schrodinger and others have hypothesized existence of free will in every particle which causes randomness in individual results. However, these free will theories have failed to (...) quantitatively explain the quantum mechanical results. In this paper, we take the clue from quantum biology to get the explanation of quantum mechanical distribution. Recently it was reported that mutations (which are quantum processes) in DNA of E. coli bacteria instead of being random were biased in a direction such that the chance of survival of the bacteria is increased. Extrapolating it, we assume that all the particles including inanimate fundamental particles have a will and that is biased to satisfy the collective goals of the ensemble. Using this postulate, we mathematically derive the correct spin probability distribution without using quantum mechanical formalism (operators and Born’s rule) and exactly reproduce the quantum mechanical spin correlation in entangled pairs. Using our concept, we also mathematically derive the form of quantum mechanical wave function of free particle which is conventionally a postulate of quantum mechanics. Thus, we prove that the origin of quantum mechanical results lies in the will (or consciousness) of the objects biased by the collective goal of ensemble or universe. This biasing by the group on individuals can be called as “coherence” which directly represents the extent of life present in the ensemble. So, we can say that life originates out of establishment of coherence in a group of inanimate particles. (shrink)
We provide a derivation of the Born Rule in the context of the Everett (Many-Worlds) approach to quantum mechanics. Our argument is based on the idea of self-locating uncertainty: in the period between the wave function branching via decoherence and an observer registering the outcome of the measurement, that observer can know the state of the universe precisely without knowing which branch they are on. We show that there is a uniquely rational way to apportion credence in such (...) cases, which leads directly to the Born Rule. Our analysis generalizes straightforwardly to cases of combined classical and quantum self-locating uncertainty, as in the cosmological multiverse. (shrink)
The most part of the debates on Quantum Mechanics (QM) interpretation come out from the remains of a classical language based upon waves and particles. Such problems can find a decisive clarification in Quantum Field Theory (QFT), where the concept of “classical object” is replaced by an interaction networks. On the other hand, it is simpler to discuss about non-locality in QM than in QFT. We propose here the concept of transaction as a connection between theQM and QFT (...) language as well as the possibility to introduce quantum non-locality ab initio.We also mention the cosmological consequence of a non-local archaic vacuum here defined. (shrink)
A potentially new interpretation of quantum mechanics posits the state of the universe as a consistent set of facts that are instantiated in the correlations among entangled objects. A fact (or event) occurs exactly when the number or density of future possibilities decreases, and a quantumsuperposition exists if and only if the facts of the universe are consistent with the superposition. The interpretation sheds light on both in-principle and real-world predictability of the universe.
In this paper I investigate, within the framework of realistic interpretations of the wave function in nonrelativistic quantum mechanics, the mathematical and physical nature of the wave function. I argue against the view that mathematically the wave function is a two-component scalar field on configuration space. First, I review how this view makes quantum mechanics non- Galilei invariant and yields the wrong classical limit. Moreover, I argue that interpreting the wave function as a ray, in agreement many (...) physicists, Galilei invariance is preserved. In addition, I discuss how the wave function behaves more similarly to a gauge potential than to a field. Finally I show how this favors a nomological rather than an ontological view of the wave function. (shrink)
The persistent interpretation problem for quantum mechanics may indicate an unwillingness to consider unpalatable assumptions that could open the way toward progress. With this in mind, I focus on the work of David Bohm, whose earlier work has been more influential than that of his later. As I’ll discuss, I believe two assumptions play a strong role in explaining the disparity: 1) that theories in physics must be grounded in mathematical structure and 2) that consciousness must supervene on material (...) processes. I’ll argue that the first assumption appears to lead us toward Everett’s many worlds interpretation, which suggests a red flag. I’ll also argue that the second assumption is suspect due to the persistent explanatory gap for consciousness. Later, I explore ways that Bohm’s later work holds some promise in providing a better fit with our world, both phenomenologically and empirically. Also, I’ll address the possible problem of realism. (shrink)
Scientific realism is the view that our best scientific theories can be regarded as (approximately) true. This is connected with the view that science, physics in particular, and metaphysics could (and should) inform one another: on the one hand, science tells us what the world is like, and on the other hand, metaphysical principles allow us to select between the various possible theories which are underdetermined by the data. Nonetheless, quantum mechanics has always been regarded as, at best, puzzling, (...) if not contradictory. As such, it has been considered for a long time at odds with scientific realism, and thus a naturalized quantum metaphysics was deemed impossible. Luckily, now we have manyquantum theories compatible with a realist interpretation. However, scientific realists assumed that the wave-function, regarded as the principal ingredient of quantum theories, had to represent a physical entity, and because of this they struggled with quantum superpositions. In this paper I discuss a particular approach which makes quantum mechanics compatible with scientific realism without doing that. In this approach, the wave-function does not represent matter which is instead represented by some spatio-temporal entity dubbed the primitive ontology: point-particles, continuous matter fields, space-time events. I argue how within this framework one develops a distinctive theory-construction schema, which allows to perform a more informed theory evaluation by analyzing the various ingredients of the approach and their inter-relations. (shrink)
This paper puts forward the hypothesis that the distinctive features of quantum statistics are exclusively determined by the nature of the properties it describes. In particular, all statistically relevant properties of identical quantum particles in many-particle systems are conjectured to be irreducible, ‘inherent’ properties only belonging to the whole system. This allows one to explain quantum statistics without endorsing the ‘Received View’ that particles are non-individuals, or postulating that quantum systems obey peculiar probability distributions, or (...) assuming that there are primitive restrictions on the range of states accessible to such systems. With this, the need for an unambiguously metaphysical explanation of certain physical facts is acknowledged and satisfied. (shrink)
Nagarjuna and Quantum physics Eastern and Western Modes of Thought Christian Thomas Kohl -/- Nagarjuna (2nd century) is known in the history of Buddhism by the keyword sunyata. This word is translated into English by the term emptiness. The translation and the traditional interpretations give the impression that Nagarjuna declares the objects as empty, illusionary, not real or not existing. Many questions could be asked at this point. What is the assertion made by this interpretation? Is it that (...) nothing can be found or, that there is nothing or, that nothing exists? Was Nagarjuna denying the external world? Did he wish to refute what evidently is? Did he want to call into question the world in which we live? Did he wish to deny the presence of things which arise? I submit two moves to provide an answer to these queries. The first move refutes the traditional translation and interpretation. The second move is to transcribes sunyata by rendering “dependence” in line with Nagarjuna’s writings. His central view could be called “interdependence of things”. Nagarjuna was not looking for an object to be declared as fundamental reality. His fundamental reality of this world is not an immaterial or material object. It is a relation between objects including sentient beings and its main exponent: human beings. This is a relational and non-foundational view of reality which considers reality as dynamics within a wide open space. ENGLISH AND CHINESE . (shrink)
The paper addresses the problem, which quantum mechanics resolves in fact. Its viewpoint suggests that the crucial link of time and its course is omitted in understanding the problem. The common interpretation underlain by the history of quantum mechanics sees discreteness only on the Plank scale, which is transformed into continuity and even smoothness on the macroscopic scale. That approach is fraught with a series of seeming paradoxes. It suggests that the present mathematical formalism of quantum mechanics (...) is only partly relevant to its problem, which is ostensibly known. The paper accepts just the opposite: The mathematical solution is absolute relevant and serves as an axiomatic base, from which the real and yet hidden problem is deduced. Wave-particle duality, Hilbert space, both probabilistic and many-worlds interpretations of quantum mechanics, quantum information, and the Schrödinger equation are included in that base. The Schrödinger equation is understood as a generalization of the law of energy conservation to past, present, and future moments of time. The deduced real problem of quantum mechanics is: “What is the universal law describing the course of time in any physical change therefore including any mechanical motion?”. (shrink)
I have read many recent discussions of the limits of computation and the universe as computer, hoping to find some comments on the amazing work of polymath physicist and decision theorist David Wolpert but have not found a single citation and so I present this very brief summary. Wolpert proved some stunning impossibility or incompleteness theorems (1992 to 2008-see arxiv.org) on the limits to inference (computation) that are so general they are independent of the device doing the computation, and (...) even independent of the laws of physics, so they apply across computers, physics, and human behavior. They make use of Cantor's diagonalization, the liar paradox and worldlines to provide what may be the ultimate theorem in Turing Machine Theory, and seemingly provide insights into impossibility,incompleteness, the limits of computation,and the universe as computer, in all possible universes and all beings or mechanisms, generating, among other things,a non-quantum mechanical uncertainty principle and a proof of monotheism. (shrink)
I have read many recent discussions of the limits of computation and the universe as computer, hoping to find some comments on the amazing work of polymath physicist and decision theorist David Wolpert but have not found a single citation and so I present this very brief summary. Wolpert proved some stunning impossibility or incompleteness theorems (1992 to 2008-see arxiv dot org) on the limits to inference (computation) that are so general they are independent of the device doing the (...) computation, and even independent of the laws of physics, so they apply across computers, physics, and human behavior. They make use of Cantor's diagonalization, the liar paradox and worldlines to provide what may be the ultimate theorem in Turing Machine Theory, and seemingly provide insights into impossibility, incompleteness, the limits of computation, and the universe as computer, in all possible universes and all beings or mechanisms, generating, among other things, a non- quantum mechanical uncertainty principle and a proof of monotheism. There are obvious connections to the classic work of Chaitin, Solomonoff, Komolgarov and Wittgenstein and to the notion that no program (and thus no device) can generate a sequence (or device) with greater complexity than it possesses. One might say this body of work implies atheism since there cannot be any entity more complex than the physical universe and from the Wittgensteinian viewpoint, ‘more complex’ is meaningless (has no conditions of satisfaction, i.e., truth-maker or test). Even a ‘God’ (i.e., a ‘device’with limitless time/space and energy) cannot determine whether a given ‘number’ is ‘random’, nor find a certain way to show that a given ‘formula’, ‘theorem’ or ‘sentence’ or ‘device’ (all these being complex language games) is part of a particular ‘system’. -/- Those wishing a comprehensive up to date framework for human behavior from the modern two systems view may consult my book ‘The Logical Structure of Philosophy, Psychology, Mind and Language in Ludwig Wittgenstein and John Searle’ 2nd ed (2019). Those interested in more of my writings may see ‘Talking Monkeys--Philosophy, Psychology, Science, Religion and Politics on a Doomed Planet--Articles and Reviews 2006-2019 2nd ed (2019) and Suicidal Utopian Delusions in the 21st Century 4th ed (2019) . (shrink)
Two of the most difficult problems in the foundations of physics are (1) what gives rise to the arrow of time and (2) what the ontology of quantum mechanics is. I propose a unified 'Humean' solution to the two problems. Humeanism allows us to incorporate the Past Hypothesis and the Statistical Postulate into the best system, which we then use to simplify the quantum state of the universe. This enables us to confer the nomological status to the (...) class='Hi'>quantum state in a way that adds no significant complexity to the best system and solves the ''supervenient-kind problem'' facing the original version of the Past Hypothesis. We call the resultant theory the Humean unification. It provides a unified explanation of time asymmetry and quantum entanglement. On this theory, what gives rise to time's arrow is also responsible for quantum phenomena. The new theory has a separable mosaic, a best system that is simple and non-vague, less tension between quantum mechanics and special relativity, and a higher degree of theoretical and dynamical unity. The Humean unification leads to new insights that can be useful to Humeans and non-Humeans alike. (shrink)
The Born’s rule to interpret the square of wave function as the probability to get a specific value in measurement has been accepted as a postulate in foundations of quantum mechanics. Although there have been so many attempts at deriving this rule theoretically using different approaches such as frequency operator approach, many-world theory, Bayesian probability and envariance, literature shows that arguments in each of these methods are circular. In view of absence of a convincing theoretical proof, recently (...) some researchers have carried out experiments to validate the rule up-to maximum possible accuracy using multi-order interference (Sinha et al, Science, 329, 418 [2010]). But, a convincing analytical proof of Born’s rule will make us understand the basic process responsible for exact square dependency of probability on wave function. In this paper, by generalizing the method of calculating probability in common experience into quantum mechanics, we prove the Born’s rule for statistical interpretation of wave function. (shrink)
One of the most serious challenges (if not the most serious challenge) for interactive psycho-physical dualism (henceforth interactive dualism or ID) is the so-called ‘interaction problem’. It has two facets, one of which this article focuses on, namely the apparent tension between interactions of non-physical minds in the physical world and physical laws of nature. One family of approaches to alleviate or even dissolve this tension is based on a collapse solution (‘consciousness collapse/CC) of the measurement problem in quantum (...) mechanics (QM). The idea is that the mind brings about the collapse of a superposed wave function onto one of its eigenstates. Thus, it is claimed, can the mind change the course of things without violating any law figuring in physical theory. I will first show that this hope is premature because energy and momentum are probably not conserved in collapse processes, and that even if this can be dealt with, the violations are either severe or produce further ontological problems. Second, I point out several conceptual difficulties for interactionist CC. I will also present solutions for those problems, but it will become clear that those solutions come at a high cost. Third, I shall briefly list some empirical problems which make life even harder for interactionist CC. I conclude with remarks about why no- collapse interpretations of QM don’t help either and what the present study has shown is the real issue for ID: namely to find a plausible integrative view of dualistic mental causation and laws of nature. (shrink)
The text is a continuation of the article of the same name published in the previous issue of Philosophical Alternatives. The philosophical interpretations of the Kochen- Specker theorem (1967) are considered. Einstein's principle regarding the,consubstantiality of inertia and gravity" (1918) allows of a parallel between descriptions of a physical micro-entity in relation to the macro-apparatus on the one hand, and of physical macro-entities in relation to the astronomical mega-entities on the other. The Bohmian interpretation ( 1952) of quantum mechanics (...) proposes that all quantum systems be interpreted as dissipative ones and that the theorem be thus derstood. The conclusion is that the continual representation, by force or (gravitational) field between parts interacting by means of it, of a system is equivalent to their mutual entanglement if representation is discrete. Gravity (force field) and entanglement are two different, correspondingly continual and discrete, images of a single common essence. General relativity can be interpreted as a superluminal generalization of special relativity. The postulate exists of an alleged obligatory difference between a model and reality in science and philosophy. It can also be deduced by interpreting a corollary of the heorem. On the other hand, quantum mechanics, on the basis of this theorem and of V on Neumann's (1932), introduces the option that a model be entirely identified as the modeled reality and, therefore, that absolutely reality be recognized: this is a non-standard hypothesis in the epistemology of science. Thus, the true reality begins to be understood mathematically, i.e. in a Pythagorean manner, for its identification with its mathematical model. A few linked problems are highlighted: the role of the axiom of choice forcorrectly interpreting the theorem; whether the theorem can be considered an axiom; whether the theorem can be considered equivalent to the negation of the axiom. (shrink)
Non-locality is one of the great mysteries of quantum mechanics (qm). There is a new realist interpretation of qm on the table whose notion of time incorporates both of McTaggart's A-series and B-series. In this philosophically motivated interpretation there is no fact of the matter as to whether the 'now' of one system is the 'now' of another system, until measurement. But this reproduces the idea that the spins of a Bell pair of electrons do not become definite 'until' (...) measurement. And this almost trivially allows for non-locality. (shrink)
Physical systems can store information and their informational properties are governed by the laws of information. In particular, the amount of information that a physical system can convey is limited by the number of its degrees of freedom and their distinguishable states. Here we explore the properties of the physical systems with absolutely one degree of freedom. The central point in these systems is the tight limitation on their information capacity. Discussing the implications of this limitation we demonstrate that such (...) systems exhibit a number of features, such as randomness, no-cloning, and non-commutativity, which are peculiarities attributed to quantum mechanics (QM). After demonstrating many astonishing parallels to quantum behavior, we postulate an interpretation of quantum physics as the physics of systems with a single degree of freedom. We then show how a number of other quantum conundrum can be understood by considering the informational properties of the systems and also resolve the EPR paradox. In the present work, we assume that the formalism of the QM is correct and well-supported by experimental verification and concentrate on the interpretational aspects of the theory. (shrink)
In this thought-provoking book, Richard Healey proposes a new interpretation of quantum theory inspired by pragmatist philosophy. Healey puts forward the interpretation as an alternative to realist quantum theories on the one hand such as Bohmian mechanics, spontaneous collapse theories, and many-worlds interpretations, which are different proposals for describing what the quantum world is like and what the basic laws of physics are, and non-realist interpretations on the other hand such as quantum Bayesianism, which proposes (...) to understand quantum theory as describing agents’ subjective epistemic states. The central idea of Healey’s proposal is to understand quantum theory as providing not a description of the physical world but a set of authoritative and objectively correct prescriptions about how agents should act. The book provides a detailed development and defense of that idea, and it contains interesting discussions about a wide range of philosophical issues such as representation, probability, explanation, causation, objectivity, meaning, and fundamentality. (shrink)
We investigate the validity of the field explanation of the wave function by analyzing the mass and charge density distributions of a quantum system. It is argued that a charged quantum system has effective mass and charge density distributing in space, proportional to the square of the absolute value of its wave function. This is also a consequence of protective measurement. If the wave function is a physical field, then the mass and charge density will be distributed in (...) space simultaneously for a charged quantum system, and thus there will exist a remarkable electrostatic self-interaction of its wave function, though the gravitational self-interaction is too weak to be detected presently. This not only violates the superposition principle of quantum mechanics but also contradicts experimental observations. Thus we conclude that the wave function cannot be a description of a physical field. In the second part of this paper, we further analyze the implications of these results for the main realistic interpretations of quantum mechanics, especially for de Broglie-Bohm theory. It has been argued that de Broglie-Bohm theory gives the same predictions as quantum mechanics by means of quantum equilibrium hypothesis. However, this equivalence is based on the premise that the wave function, regarded as a Ψ-field, has no mass and charge density distributions, which turns out to be wrong according to the above results. For a charged quantum system, both Ψ-field and Bohmian particle have charge density distribution. This then results in the existence of an electrostatic self-interaction of the field and an electromagnetic interaction between the field and Bohmian particle, which contradicts both the predictions of quantum mechanics and experimental observations. Therefore, de Broglie-Bohm theory as a realistic interpretation of quantum mechanics is probably wrong. Lastly, we suggest that the wave function is a description of some sort of ergodic motion (e.g. random discontinuous motion) of particles, and we also briefly analyze the implications of this suggestion for other realistic interpretations of quantum mechanics including many-worlds interpretation and dynamical collapse theories. (shrink)
Arthur Clark and Michael Kube–McDowell (“The Triger”, 2000) suggested the sci-fi idea about the direct transformation from a chemical substance to another by the action of a newly physical, “Trigger” field. Karl Brohier, a Nobel Prize winner, who is a dramatic persona in the novel, elaborates a new theory, re-reading and re-writing Pauling’s “The Nature of the Chemical Bond”; according to Brohier: “Information organizes and differentiates energy. It regularizes and stabilizes matter. Information propagates through matter-energy and mediates the interactions of (...) matter-energy.” Dr Horton, his collaborator in the novel replies: “If the universe consists of energy and information, then the Trigger somehow alters the information envelope of certain substances –“. “Alters it, scrambles it, overwhelms it, destabilizes it” Brohier adds. There is a scientific debate whether or how far chemistry is fundamentally reducible to quantum mechanics. Nevertheless, the fact that many essential chemical properties and reactions are at least partly representable in terms of quantum mechanics is doubtless. For the quantum mechanics itself has been reformulated as a theory of a special kind of information, quantum information, chemistry might be in turn interpreted in the same terms. Wave function, the fundamental concept of quantum mechanics, can be equivalently defined as a series of qubits, eventually infinite. A qubit, being defined as the normed superposition of the two orthogonal subspaces of the complex Hilbert space, can be interpreted as a generalization of the standard bit of information as to infinite sets or series. All “forces” in the Standard model, which are furthermore essential for chemical transformations, are groups [U(1),SU(2),SU(3)] of the transformations of the complex Hilbert space and thus, of series of qubits. One can suggest that any chemical substances and changes are fundamentally representable as quantum information and its transformations. If entanglement is interpreted as a physical field, though any group above seems to be unattachable to it, it might be identified as the “Triger field”. It might cause a direct transformation of any chemical substance by from a remote distance. Is this possible in principle? (shrink)
A new constructivist approach to modeling in economics and theory of consciousness is proposed. The state of elementary object is defined as a set of its measurable consumer properties. A proprietor's refusal or consent for the offered transaction is considered as a result of elementary economic measurement. We were also able to obtain the classical interpretation of the quantum-mechanical law of addition of probabilities by introducing a number of new notions. The principle of “local equity” assumes the transaction completed (...) (regardless of the result) of the states of transaction partners are not changed in connection with the reception of new information on proposed offers or adopted decisions (consent or refusal of the transaction). However it has no relation to the paradoxes of quantum theory connected with non-local interaction of entangled states. In the economic systems the mechanism of entangling has a classical interpretation, while the quantum-mechanical formalism of the description of states appears as a result of idealization of the selection mechanism in the proprietor's consciousness. (shrink)
I show in this paper why the universality of quantum mechanics at all scales, which implies the possibility of Schrodinger's Cat and Wigner's Friend thought experiments, cannot be experimentally confirmed, and why macroscopic superpositions in general cannot be observed or measured, even in principle. Through the relativity of quantumsuperposition and the transitivity of correlation, it is shown that from the perspective of an object that is in quantumsuperposition relative to a macroscopic measuring device (...) and observer, the observer is already sufficiently well correlated to the measuring device that once the object correlates to the measuring device, there is no time period in which the observer can perform an appropriate interference experiment to show that the measuring device is in a superposition. (shrink)
The way, in which quantum information can unify quantum mechanics (and therefore the standard model) and general relativity, is investigated. Quantum information is defined as the generalization of the concept of information as to the choice among infinite sets of alternatives. Relevantly, the axiom of choice is necessary in general. The unit of quantum information, a qubit is interpreted as a relevant elementary choice among an infinite set of alternatives generalizing that of a bit. The invariance (...) to the axiom of choice shared by quantum mechanics is introduced: It constitutes quantum information as the relation of any state unorderable in principle (e.g. any coherent quantum state before measurement) and the same state already well-ordered (e.g. the well-ordered statistical ensemble of the measurement of the quantum system at issue). This allows of equating the classical and quantum time correspondingly as the well-ordering of any physical quantity or quantities and their coherent superposition. That equating is interpretable as the isomorphism of Minkowski space and Hilbert space. Quantum information is the structure interpretable in both ways and thus underlying their unification. Its deformation is representable correspondingly as gravitation in the deformed pseudo-Riemannian space of general relativity and the entanglement of two or more quantum systems. The standard model studies a single quantum system and thus privileges a single reference frame turning out to be inertial for the generalized symmetry [U(1)]X[SU(2)]X[SU(3)] “gauging” the standard model. As the standard model refers to a single quantum system, it is necessarily linear and thus the corresponding privileged reference frame is necessary inertial. The Higgs mechanism U(1) → [U(1)]X[SU(2)] confirmed enough already experimentally describes exactly the choice of the initial position of a privileged reference frame as the corresponding breaking of the symmetry. The standard model defines ‘mass at rest’ linearly and absolutely, but general relativity non-linearly and relatively. The “Big Bang” hypothesis is additional interpreting that position as that of the “Big Bang”. It serves also in order to reconcile the linear standard model in the singularity of the “Big Bang” with the observed nonlinearity of the further expansion of the universe described very well by general relativity. Quantum information links the standard model and general relativity in another way by mediation of entanglement. The linearity and absoluteness of the former and the nonlinearity and relativeness of the latter can be considered as the relation of a whole and the same whole divided into parts entangled in general. (shrink)
In a quantum universe with a strong arrow of time, we postulate a low-entropy boundary condition to account for the temporal asymmetry. In this paper, I show that the Past Hypothesis also contains enough information to simplify the quantum ontology and define a unique initial condition in such a world. First, I introduce Density Matrix Realism, the thesis that the quantum universe is described by a fundamental density matrix that represents something objective. This stands in sharp contrast (...) to Wave Function Realism, the thesis that the quantum universe is described by a wave function that represents something objective. Second, I suggest that the Past Hypothesis is sufficient to determine a unique and simple density matrix. This is achieved by what I call the Initial Projection Hypothesis: the initial density matrix of the universe is the normalized projection onto the special low-dimensional Hilbert space. Third, because the initial quantum state is unique and simple, we have a strong case for the \emph{Nomological Thesis}: the initial quantum state of the universe is on a par with laws of nature. This new package of ideas has several interesting implications, including on the harmony between statistical mechanics and quantum mechanics, the dynamic unity of the universe and the subsystems, and the alleged conflict between Humean supervenience and quantum entanglement. (shrink)
The primary quantum mechanical equation of motion entails that measurements typically do not have determinate outcomes, but result in superpositions of all possible outcomes. Dynamical collapse theories (e.g. GRW) supplement this equation with a stochastic Gaussian collapse function, intended to collapse the superposition of outcomes into one outcome. But the Gaussian collapses are imperfect in a way that leaves the superpositions intact. This is the tails problem. There are several ways of making this problem more precise. But (...) class='Hi'>many authors dismiss the problem without considering the more severe formulations. Here I distinguish four distinct tails problems. The first (bare tails problem) and second (structured tails problem) exist in the literature. I argue that while the first is a pseudo-problem, the second has not been adequately addressed. The third (multiverse tails problem) reformulates the second to account for recently discovered dynamical consequences of collapse. Finally the fourth (tails problem dilemma) shows that solving the third by replacing the Gaussian with a non-Gaussian collapse function introduces new conflict with relativity theory. (shrink)
The violation of Bell inequalities seems to establish an important fact about the world: that it is non-local. However, this result relies on the assumption of the statistical independence of the measurement settings with respect to potential past events that might have determined them. Superdeterminism refers to the view that a local, and determinist, account of Bell inequalities violations is possible, by rejecting this assumption of statistical independence. We examine and clarify various problems with superdeterminism, looking in particular at its (...) consequences on the nature of scientific laws and scientific reasoning. We argue that the view requires a neo-Humean account of at least some laws, and creates a significant problem for the use of statistical independence in other parts of physics and science more generally. (shrink)
The file on this site provides the slides for a lecture given in Hangzhou in May 2018, and the lecture itself is available at the URL beginning 'sms' in the set of links provided in connection with this item. -/- It is commonly assumed that regular physics underpins biology. Here it is proposed, in a synthesis of ideas by various authors, that in reality structures and mechanisms of a biological character underpin the world studied by physicists, in principle supplying detail (...) in the domain that according to regular physics is of an indeterminate character. In regular physics mathematical equations are primary, but this constraint leads to problems with reconciling theory and reality. Biology on the other hand typically does not characterise nature in quantitative terms, instead investigating in detail important complex interrelationships between parts, leading to an understanding of the systems concerned that is in some respects beyond that which prevails in regular physics. It makes contact with quantum physics in various ways, for example in that both involve interactions between observer and observed, an insight that explains what is special about processes involving observation, justifying in the quantum physics context the replacement of the unphysical many-worlds picture by one involving collapse. The link with biology furthermore clarifies Wheeler’s suggestion that a multiplicity of observations can lead to the ‘fabrication of form’, including the insight that this process depends on very specific ‘structures with power’ related to the 'semiotic scaffolding' of the application of sign theory to biology known as biosemiotics. -/- The observer-observed 'circle' of Wheeler and Yardley is a special case of a more general phenomenon, oppositional dynamics, related to the 'intra-action' of Barad's Agential Realism, involving cooperating systems such as mind and matter, abstract and concrete, observer and observed, that preserve their identities while interacting with one another in such a way as to act as a unit. A third system may also be involved, the mediating system of Peirce linking the two together. Such a situation of changing connections and separations may plausibly lead in the future to an understanding of how complex systems are able to evolve to produce 'life, the universe and everything'. -/- (Added 1 July 2018) The general structure proposed here as an alternative to a mathematics-based physics can be usefully characterised by relating it to different disciplines and the specialised concepts utilised therein. In theoretical physics, the test for the correctness of a theory typically involves numerical predictions, corresponding to which theories are expressed in terms of equations, that is to say assertions that two quantities have identical values. Equations have a lesser significance in biology which typically talks in terms of functional mechanisms, dependent for example on details of chemistry and concepts such as genes, natural selection, signals and geometrical or topologically motivated concepts such as the interconnections between systems and the unfolding of DNA. Biosemiotics adds to this the concept of signs and their interpretation, implying novel concepts such as semiotic scaffolding and the semiosphere, code duality, and appreciation of the different types of signs, including symbols and their capacity for abstraction and use in language systems. Circular Theory adds to this picture, as do the ideas of Barad, considerations such as the idea of oppositional dynamics. The proposals in this lecture can be regarded as the idea that concepts such as those deriving from biosemiotics have more general applicability than just conventional biology and may apply, in some circumstances, to nonlinear systems generally, including the domain new to science hypothesised to underlie the phenomena of present-day physics. -/- The task then has to be to restore the mathematical aspect presumed, in this picture, not to be fundamental as it is in conventional theory. Deacon has invoked a complex sequence of evolutionary steps to account for the emergence over time of human language systems, and correspondingly mathematical behaviour can be subsumed under the general evolutionary mechanisms of biosemiotics (cf. also the proposals of Davis and Hersh regarding the nature of mathematics), so that the mathematical behaviour of physical systems is consistent with the proposed scheme. In conclusion, it is suggested that theoretical physicists should cease expecting to find some universal mathematical ‘theory of everything’, and focus instead on understanding in more detail complex systems exhibiting behaviour of a biological character, extending existing understanding. This may in time provide a more fruitful understanding of the natural world than does the regular approach. The essential concepts have an observational basis from both biology and the little-known discipline of cymatics (a discipline concerned with the remarkable patterns that specific waveforms can give rise to), while again computer simulations also offer promise in providing insight into the complex behaviours involved in the above proposals. -/- References -/- Jesper Hoffmeyer, Semiotic Scaffolding of Living Systems. Commens, a Digital Companion to C. S. Peirce (on Commens web site). Terrence Deacon, The Symbolic Species, W.W. Norton & Co. Karen Barad, Meeting the Universe Halfway: Quantum Physics and the Entanglement of Matter and Meaning, Duke University Press. Philip Davis and Reuben Hersh, The Mathematical Experience, Penguin. Ilexa Yardley, Circular Theory. (shrink)
Tim Maudlin has influentially argued that Humeanism about laws of nature stands in conflict with quantum mechanics. Specifically Humeanism implies the principle Separability: the complete physical state of a world is determined by the intrinsic physical state of each space-time point. Maudlin argues Separability is violated by the entangled states posited by QM. We argue that Maudlin only establishes that a stronger principle, which we call Strong Separability, is in tension with QM. Separability is not in tension with QM. (...) Moreover, while the Humean requires Separability to capture the core tenets of her view, there's no Humean-specific motivation for accepting Strong Separability. We go on to give a Humean account of entangled states which satisfies Separability. The core idea is that certain quantum states depend upon the Humean mosaic in much the same way as the laws do. In fact, we offer a variant of the Best System account on which the systemization procedure that generates the laws also serves to ground these states. We show how this account works by applying it to the example of Bohmian Mechanics. The 3N-dimensional configuration space, the world particle in it and the wave function on it are part of the best system of the Humean mosaic, which consists of N particles moving in 3-dimensional space. We argue that this account is superior to the Humean account of Bohmian Mechanics defended by Loewer and Albert, which takes the 3N-dimensional space, and its inhabitants, as fundamental. (shrink)
This report reviews what quantum physics and information theory have to tell us about the age-old question, How come existence? No escape is evident from four conclusions: (1) The world cannot be a giant machine, ruled by any preestablished continuum physical law. (2) There is no such thing at the microscopic level as space or time or spacetime continuum. (3) The familiar probability function or functional, and wave equation or functional wave equation, of standard quantum theory provide mere (...) continuum idealizations and by reason of this circumstance conceal the information-theoretic source from which they derive. (4) No element in the description of physics shows itself as closer to primordial than the elementary quantum phenomenon, that is, the elementary device-intermediated act of posing a yes-no physical question and eliciting an answer or, in brief, the elementary act of observer-participancy. Otherwise stated, every physical quantity, every it, derives its ultimate significance from bits, binary yes-or-no indications, a conclusion which we epitomize in the phrase, it from bit. (shrink)
*A shortened version of this paper will appear in Current Controversies in Philosophy of Science, Dasgupta and Weslake, eds. Routledge.* This paper describes the case that can be made for a high-dimensional ontology in quantum mechanics based on the virtues of avoiding both nonseparability and non locality.
Fragmentalism was originally introduced as a new A-theory of time. It was further refined and discussed, and different developments of the original insight have been proposed. In a celebrated paper, Jonathan Simon contends that fragmentalism delivers a new realist account of the quantum state—which he calls conservative realism—according to which: the quantum state is a complete description of a physical system, the quantum state is grounded in its terms, and the superposition terms are themselves grounded in (...) local goings-on about the system in question. We will argue that fragmentalism, at least along the lines proposed by Simon, does not offer a new, satisfactory realistic account of the quantum state. This raises the question about whether there are some other viable forms of quantum fragmentalism. (shrink)
We discuss the no-go theorem of Frauchiger and Renner based on an "extended Wigner's friend" thought experiment which is supposed to show that any single-world interpretation of quantum mechanics leads to inconsistent predictions if it is applicable on all scales. We show that no such inconsistency occurs if one considers a complete description of the physical situation. We then discuss implications of the thought experiment that have not been clearly addressed in the original paper, including a tension between relativity (...) and nonlocal effects predicted by quantum mechanics. Our discussion applies in particular to Bohmian mechanics. (shrink)
This brief paper argue about a possible philosophical description of the implicate order starting from a simple theoretical experiment. Utilizing an EPR source and the human eyes of a "single" person, we try to investigate the philosophical and physical implications of quantum entanglement in terms of implicate order. We know, that most specialists still disagree on the exact number of photons required to trigger a neural response, although there will be many technical challenges, we assume that neural response (...) will be achieved in some way. The objective of paper is to investigate possible links between: quantum mechanics, quantum cognitive science, brain and mind. At the moment, the questions are more than the answers. We argue that we are perennially immersed in the implicate order and that the "real path" of quantum entanglement process is from the implicate order towards explicate order, not vice versa. Finally, we speculate about the common ground between the implicate order and chitta. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.