Results for 'Plant Ontology (PO)'

5 found
Order:
  1. The Plant Ontology: A common reference ontology for plants.L. Walls Ramona, D. Cooper Laurel, Elser Justin, W. Stevenson Dennis, Barry Smith, Mungall Chris, A. Gandolfo Maria & Jaiswal Pankaj - 2010 - In Walls Ramona L., Cooper Laurel D., Justin Elser, Stevenson Dennis W., Smith Barry, Chris Mungall, Gandolfo Maria A. & Pankaj Jaiswal (eds.), Proceedings of the Workshop on Bio-Ontologies, ISMB, Boston, July, 2010.
    The Plant Ontology (PO) (http://www.plantontology.org) (Jaiswal et al., 2005; Avraham et al., 2008) was designed to facilitate cross-database querying and to foster consistent use of plant-specific terminology in annotation. As new data are generated from the ever-expanding list of plant genome projects, the need for a consistent, cross-taxon vocabulary has grown. To meet this need, the PO is being expanded to represent all plants. This is the first ontology designed to encompass anatomical structures as well (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. The Plant Ontology facilitates comparisons of plant development stages across species.Ramona Lynn Walls, Laurel Cooper, Justin Lee Elser, Maria Alejandra Gandolfo, Christopher J. Mungall, Barry Smith, Dennis William Stevenson & Pankaj Jaiswal - 2019 - Frontiers in Plant Science 10.
    The Plant Ontology (PO) is a community resource consisting of standardized terms, definitions, and logical relations describing plant structures and development stages, augmented by a large database of annotations from genomic and phenomic studies. This paper describes the structure of the ontology and the design principles we used in constructing PO terms for plant development stages. It also provides details of the methodology and rationale behind our revision and expansion of the PO to cover development (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  3. The Plant Ontology as a Tool for Comparative Plant Anatomy and Genomic Analyses.Laurel Cooper, Ramona Walls, Justin Elser, Maria A. Gandolfo, Dennis W. Stevenson, Barry Smith & Others - 2013 - Plant and Cell Physiology 54 (2):1-23..
    The Plant Ontology (PO; http://www.plantontology.org/) is a publicly-available, collaborative effort to develop and maintain a controlled, structured vocabulary (“ontology”) of terms to describe plant anatomy, morphology and the stages of plant development. The goals of the PO are to link (annotate) gene expression and phenotype data to plant structures and stages of plant development, using the data model adopted by the Gene Ontology. From its original design covering only rice, maize and Arabidopsis, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  4. Ontologies as Integrative Tools for Plant Science.Ramona Walls, Balaji Athreya, Laurel Cooper, Justin Elser, Maria A. Gandolfo, Pankaj Jaiswal, Christopher J. Mungall, Justin Preece, Stefan Rensing, Barry Smith & Dennis W. Stevenson - 2012 - American Journal of Botany 99 (8):1263–1275.
    Bio-ontologies are essential tools for accessing and analyzing the rapidly growing pool of plant genomic and phenomic data. Ontologies provide structured vocabularies to support consistent aggregation of data and a semantic framework for automated analyses and reasoning. They are a key component of the Semantic Web. This paper provides background on what bio-ontologies are, why they are relevant to botany, and the principles of ontology development. It includes an overview of ontologies and related resources that are relevant to (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  5. A plant disease extension of the Infectious Disease Ontology.Ramona Walls, Barry Smith, Elser Justin, Goldfain Albert, W. Stevenson Dennis & Pankaj Jaiswal - 2012 - In Walls Ramona, Smith Barry, Justin Elser, Albert Goldfain & Stevenson Dennis W. (eds.), Proceeedings of the Third International Conference on Biomedical Ontology (CEUR 897). pp. 1-5.
    Plants from a handful of species provide the primary source of food for all people, yet this source is vulnerable to multiple stressors, such as disease, drought, and nutrient deficiency. With rapid population growth and climate uncertainty, the need to produce crops that can tolerate or resist plant stressors is more crucial than ever. Traditional plant breeding methods may not be sufficient to overcome this challenge, and methods such as highOthroughput sequencing and automated scoring of phenotypes can provide (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation