Bio-ontologies are essential tools for accessing and analyzing the rapidly growing pool of plant genomic and phenomic data. Ontologies provide structured vocabularies to support consistent aggregation of data and a semantic framework for automated analyses and reasoning. They are a key component of the Semantic Web. This paper provides background on what bio-ontologies are, why they are relevant to botany, and the principles of ontology development. It includes an overview of ontologies and related resources that are relevant to plant science, (...) with a detailed description of the Plant Ontology (PO). We discuss the challenges of building an ontology that covers all green plants (Viridiplantae). Key results: Ontologies can advance plant science in four keys areas: 1. comparative genetics, genomics, phenomics, and development, 2. taxonomy and systematics, 3. semantic applications and 4. education. Conclusions: Bio-ontologies offer a flexible framework for comparative plant biology, based on common botanical understanding. As genomic and phenomic data become available for more species, we anticipate that the annotation of data with ontology terms will become less centralized, while at the same time, the need for cross-species queries will become more common, causing more researchers in plant science to turn to ontologies. (shrink)
The Plant Ontology (PO; http://www.plantontology.org/) is a publicly-available, collaborative effort to develop and maintain a controlled, structured vocabulary (“ontology”) of terms to describe plant anatomy, morphology and the stages of plant development. The goals of the PO are to link (annotate) gene expression and phenotype data to plant structures and stages of plant development, using the data model adopted by the Gene Ontology. From its original design covering only rice, maize and Arabidopsis, the scope of the PO has been expanded (...) to include all green plants. The PO was the first multi-species anatomy ontology developed for the annotation of genes and phenotypes. Also, to our knowledge, it was one of the first biological ontologies that provides translations (via synonyms) in non-English languages such as Japanese and Spanish. There are about 2.2 million annotations linking PO terms to over 110,000 unique data objects representing genes or gene models, proteins, RNAs, germplasm and Quantitative Traits Loci (QTLs) from 22 plant species. In this paper, we focus on the plant anatomical entity branch of the PO, describing the organizing principles, resources available to users, and examples of how the PO is integrated into other plant genomics databases and web portals. We also provide two examples of comparative analyses, demonstrating how the ontology structure and PO-annotated data can be used to discover the patterns of expression of the LEAFY (LFY) and terpene synthase (TPS) gene homologs. (shrink)
The study of biodiversity spans many disciplines and includes data pertaining to species distributions and abundances, genetic sequences, trait measurements, and ecological niches, complemented by information on collection and measurement protocols. A review of the current landscape of metadata standards and ontologies in biodiversity science suggests that existing standards such as the Darwin Core terminology are inadequate for describing biodiversity data in a semantically meaningful and computationally useful way. Existing ontologies, such as the Gene Ontology and others in the Open (...) Biological and Biomedical Ontologies (OBO) Foundry library, provide a semantic structure but lack many of the necessary terms to describe biodiversity data in all its dimensions. In this paper, we describe the motivation for and ongoing development of a new Biological Collections Ontology, the Environment Ontology, and the Population and Community Ontology. These ontologies share the aim of improving data aggregation and integration across the biodiversity domain and can be used to describe physical samples and sampling processes (for example, collection, extraction, and preservation techniques), as well as biodiversity observations that involve no physical sampling. Together they encompass studies of: 1) individual organisms, including voucher specimens from ecological studies and museum specimens, 2) bulk or environmental samples (e.g., gut contents, soil, water) that include DNA, other molecules, and potentially many organisms, especially microbes, and 3) survey-based ecological observations. We discuss how these ontologies can be applied to biodiversity use cases that span genetic, organismal, and ecosystem levels of organization. We argue that if adopted as a standard and rigorously applied and enriched by the biodiversity community, these ontologies would significantly reduce barriers to data discovery, integration, and exchange among biodiversity resources and researchers. (shrink)
Biological ontologies are used to organize, curate, and interpret the vast quantities of data arising from biological experiments. While this works well when using a single ontology, integrating multiple ontologies can be problematic, as they are developed independently, which can lead to incompatibilities. The Open Biological and Biomedical Ontologies Foundry was created to address this by facilitating the development, harmonization, application, and sharing of ontologies, guided by a set of overarching principles. One challenge in reaching these goals was that the (...) OBO principles were not originally encoded in a precise fashion, and interpretation was subjective. Here we show how we have addressed this by formally encoding the OBO principles as operational rules and implementing a suite of automated validation checks and a dashboard for objectively evaluating each ontology’s compliance with each principle. This entailed a substantial effort to curate metadata across all ontologies and to coordinate with individual stakeholders. We have applied these checks across the full OBO suite of ontologies, revealing areas where individual ontologies require changes to conform to our principles. Our work demonstrates how a sizable federated community can be organized and evaluated on objective criteria that help improve overall quality and interoperability, which is vital for the sustenance of the OBO project and towards the overall goals of making data FAIR. Competing Interest StatementThe authors have declared no competing interest. (shrink)
Plants from a handful of species provide the primary source of food for all people, yet this source is vulnerable to multiple stressors, such as disease, drought, and nutrient deficiency. With rapid population growth and climate uncertainty, the need to produce crops that can tolerate or resist plant stressors is more crucial than ever. Traditional plant breeding methods may not be sufficient to overcome this challenge, and methods such as highOthroughput sequencing and automated scoring of phenotypes can provide significant new (...) insights. Ontologies are essential tools for accessing and analysing the large quantities of data that come with these newer methods. As part of a larger project to develop ontologies that describe plant phenotypes and stresses, we are developing a plant disease extension of the Infectious Disease Ontology (IDOPlant). The IDOPlant is envisioned as a reference ontology designed to cover any plant infectious disease. In addition to novel terms for infectious diseases, IDOPlant includes terms imported from other ontologies that describe plants, pathogens, and vectors, the geographic location and ecology of diseases and hosts, and molecular functions and interactions of hosts and pathogens. To encompass this range of data, we are suggesting inOhouse ontology development complemented with reuse of terms from orthogonal ontologies developed as part of the Open Biomedical Ontologies (OBO) Foundry. The study of plant diseases provides an example of how an ontological framework can be used to model complex biological phenomena such as plant disease, and how plant infectious diseases differ from, and are similar to, infectious diseases in other organism. (shrink)
The Plant Ontology (PO) is a community resource consisting of standardized terms, definitions, and logical relations describing plant structures and development stages, augmented by a large database of annotations from genomic and phenomic studies. This paper describes the structure of the ontology and the design principles we used in constructing PO terms for plant development stages. It also provides details of the methodology and rationale behind our revision and expansion of the PO to cover development stages for all plants, particularly (...) the land plants (bryophytes through angiosperms). As a case study to illustrate the general approach, we examine variation in gene expression across embryo development stages in Arabidopsis and maize, demonstrating how the PO can be used to compare patterns of expression across stages and in developmentally different species. Although many genes appear to be active throughout embryo development, we identified a small set of uniquely expressed genes for each stage of embryo development and also between the two species. Evaluating the different sets of genes expressed during embryo development in Arabidopsis or maize may inform future studies of the divergent developmental pathways observed in monocotyledonous versus dicotyledonous species. The PO and its annotation databasemake plant data for any species more discoverable and accessible through common formats, thus providing support for applications in plant pathology, image analysis, and comparative development and evolution. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.