Results for 'Riemann Series Theorem'

999 found
Order:
  1. Numerical Infinities Applied for Studying Riemann Series Theorem and Ramanujan Summation.Yaroslav Sergeyev - 2018 - In AIP Conference Proceedings 1978. AIP. pp. 020004.
    A computational methodology called Grossone Infinity Computing introduced with the intention to allow one to work with infinities and infinitesimals numerically has been applied recently to a number of problems in numerical mathematics (optimization, numerical differentiation, numerical algorithms for solving ODEs, etc.). The possibility to use a specially developed computational device called the Infinity Computer (patented in USA and EU) for working with infinite and infinitesimal numbers numerically gives an additional advantage to this approach in comparison with traditional methodologies studying (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  2. Øystein Vs Archimedes: A Note on Linnebo’s Infinite Balance.Daniel Hoek - forthcoming - Erkenntnis:1-6.
    Using Riemann’s Rearrangement Theorem, Øystein Linnebo (2020) argues that, if it were possible to apply an infinite positive weight and an infinite negative weight to a working scale, the resulting net weight could end up being any real number, depending on the procedure by which these weights are applied. Appealing to the First Postulate of Archimedes’ treatise on balance, I argue instead that the scale would always read 0 kg. Along the way, we stop to consider an infinitely (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3.  32
    Riemann, Metatheory, and Proof, Rev.3.Michael Lucas Monterey & Michael Lucas-Monterey - manuscript
    The work provides comprehensively definitive, unconditional proofs of Riemann's hypothesis, Goldbach's conjecture, the 'twin primes' conjecture, the Collatz conjecture, the Newcomb-Benford theorem, and the Quine-Putnam Indispensability thesis. The proofs validate holonomic metamathematics, meta-ontology, new number theory, new proof theory, new philosophy of logic, and unconditional disproof of the P/NP problem. The proofs, metatheory, and definitions are also confirmed and verified with graphic proof of intrinsic enabling and sustaining principles of reality.
    Download  
     
    Export citation  
     
    Bookmark  
  4.  8
    Riemann, Metatheory, and Proof, Rev.3.Michael Lucas Monterey & Michael Lucas-Monterey - manuscript
    The work provides comprehensively definitive, unconditional proofs of Riemann's hypothesis, Goldbach's conjecture, the 'twin primes' conjecture, the Collatz conjecture, the Newcomb-Benford theorem, and the Quine-Putnam Indispensability thesis. The proofs validate holonomic metamathematics, meta-ontology, new number theory, new proof theory, new philosophy of logic, and unconditional disproof of the P/NP problem. The proofs, metatheory, and definitions are also confirmed and verified with graphic proof of intrinsic enabling and sustaining principles of reality.
    Download  
     
    Export citation  
     
    Bookmark  
  5. Proofs Versus Experiments: Wittgensteinian Themes Surrounding the Four-Color Theorem.G. D. Secco - 2017 - In Marcos Silva (ed.), How Colours Matter to Philosophy. Cham: Springer. pp. 289-307.
    The Four-Colour Theorem (4CT) proof, presented to the mathematical community in a pair of papers by Appel and Haken in the late 1970's, provoked a series of philosophical debates. Many conceptual points of these disputes still require some elucidation. After a brief presentation of the main ideas of Appel and Haken’s procedure for the proof and a reconstruction of Thomas Tymoczko’s argument for the novelty of 4CT’s proof, we shall formulate some questions regarding the connections between the points (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6.  48
    Foundation of Paralogical Nonstandard Analysis and its Application to Some Famous Problems of Trigonometrical and Orthogonal Series. Part II.Jaykov Foukzon - manuscript
    Carleson’s celebrated theorem of 1965 [1] asserts the pointwise convergence of the partial Fourier sums of square integrable functions. The Fourier transform has a formulation on each of the Euclidean groups R , Z andΤ .Carleson’s original proof worked on Τ . Fefferman’s proof translates very easily to R . M´at´e [2] extended Carleson’s proof to Z . Each of the statements of the theorem can be stated in terms of a maximal Fourier multiplier theorem [5]. Inequalities (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7.  49
    Foundation of Paralogical Nonstandard Analysis and its Application to Some Famous Problems of Trigonometrical and Orthogonal Series.Jaykov Foukzon - manuscript
    FOURTH EUROPEAN CONGRESS OF MATHEMATICS STOCKHOLM,SWEDEN JUNE27 ­ - JULY 2, 2004 Contributed papers L. Carleson’s celebrated theorem of 1965 [1] asserts the pointwise convergence of the partial Fourier sums of square integrable functions. The Fourier transform has a formulation on each of the Euclidean groups R , Z and Τ .Carleson’s original proof worked on Τ . Fefferman’s proof translates very easily to R . M´at´e [2] extended Carleson’s proof to Z . Each of the statements of the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. Population Axiology.Hilary Greaves - 2017 - Philosophy Compass 12 (11):e12442.
    Population axiology is the study of the conditions under which one state of affairs is better than another, when the states of affairs in ques- tion may differ over the numbers and the identities of the persons who ever live. Extant theories include totalism, averagism, variable value theories, critical level theories, and “person-affecting” theories. Each of these the- ories is open to objections that are at least prima facie serious. A series of impossibility theorems shows that this is no (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  9. Physical Entity As Quantum Information.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (35):1-15.
    Quantum mechanics was reformulated as an information theory involving a generalized kind of information, namely quantum information, in the end of the last century. Quantum mechanics is the most fundamental physical theory referring to all claiming to be physical. Any physical entity turns out to be quantum information in the final analysis. A quantum bit is the unit of quantum information, and it is a generalization of the unit of classical information, a bit, as well as the quantum information itself (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Does Chance Hide Necessity ? A Reevaluation of the Debate ‘Determinism - Indeterminism’ in the Light of Quantum Mechanics and Probability Theory.Louis Vervoort - 2013 - Dissertation, University of Montreal
    In this text the ancient philosophical question of determinism (“Does every event have a cause ?”) will be re-examined. In the philosophy of science and physics communities the orthodox position states that the physical world is indeterministic: quantum events would have no causes but happen by irreducible chance. Arguably the clearest theorem that leads to this conclusion is Bell’s theorem. The commonly accepted ‘solution’ to the theorem is ‘indeterminism’, in agreement with the Copenhagen interpretation. Here it is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11.  59
    Astronomy, Geometry, and Logic, Rev. 1c: An Ontological Proof of the Natural Principles That Enable and Sustain Reality and Mathematics.Michael Lucas Monterey & Michael Lucas-Monterey - manuscript
    The latest draft (posted 05/14/22) of this short, concise work of proof, theory, and metatheory provides summary meta-proofs and verification of the work and results presented in the Theory and Metatheory of Atemporal Primacy and Riemann, Metatheory, and Proof. In this version, several new and revised definitions of terms were added to subsection SS.1; and many corrected equations, theorems, metatheorems, proofs, and explanations are included in the main text. The body of the text is approximately 18 pages, with 3 (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12.  82
    Wisdom of Crowds, Wisdom of the Few: Expertise Versus Diversity Across Epistemic Landscapes.Patrick Grim, Daniel J. Singer, Aaron Bramson, Bennett Holman, Sean McGeehan & William J. Berger - manuscript
    In a series of formal studies and less formal applications, Hong and Page offer a ‘diversity trumps ability’ result on the basis of a computational experiment accompanied by a mathematical theorem as explanatory background (Hong & Page 2004, 2009; Page 2007, 2011). “[W]e find that a random collection of agents drawn from a large set of limited-ability agents typically outperforms a collection of the very best agents from that same set” (2004, p. 16386). The result has been extremely (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13.  34
    An Enhanced Model for Rosenkranz’s Logic of Justification.Niccolò Rossi - 2022 - Asian Journal of Philosophy 1 (1):1-9.
    Rosenkranz devised two bimodal epistemic logics: an idealized one and a realistic one. The former is shown to be sound with respect to a class of neighborhood frames called i-frames. Rosenkranz designed a specific i-frame able to invalidate a series of undesired formulas, proving that these are not theorems of the idealized logic. Nonetheless, an unwanted formula and an unwanted rule of inference are not invalidated. Invalidating the former guarantees the distinction between the two modal operators characteristic of the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  14. Vorlesungsskript: Grundlagen des Entscheidens I.Eckhart Arnold - manuscript
    This is a series of lectures on formal decision theory held at the University of Bayreuth during the summer terms 2008 and 2009. It largely follows the book from Michael D. Resnik: Choices. An Introduction to Decision Theory, 5th ed. Minneapolis London 2000 and covers the topics: -/- Decisions under ignorance and risk Probability calculus (Kolmogoroff Axioms, Bayes' Theorem) Philosophical interpretations of probability (R. v. Mises, Ramsey-De Finetti) Neuman-Morgenstern Utility Theory Introductory Game Theory Social Choice Theory (Sen's Paradox (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  15. Numerical Infinities and Infinitesimals: Methodology, Applications, and Repercussions on Two Hilbert Problems.Yaroslav Sergeyev - 2017 - EMS Surveys in Mathematical Sciences 4 (2):219–320.
    In this survey, a recent computational methodology paying a special attention to the separation of mathematical objects from numeral systems involved in their representation is described. It has been introduced with the intention to allow one to work with infinities and infinitesimals numerically in a unique computational framework in all the situations requiring these notions. The methodology does not contradict Cantor’s and non-standard analysis views and is based on the Euclid’s Common Notion no. 5 “The whole is greater than the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  16. Probability in Ethics.David McCarthy - 2016 - In Alan Hájek & Christopher Hitchcock (eds.), The Oxford Handbook of Philosophy and Probability. Oxford University Press. pp. 705–737.
    The article is a plea for ethicists to regard probability as one of their most important concerns. It outlines a series of topics of central importance in ethical theory in which probability is implicated, often in a surprisingly deep way, and lists a number of open problems. Topics covered include: interpretations of probability in ethical contexts; the evaluative and normative significance of risk or uncertainty; uses and abuses of expected utility theory; veils of ignorance; Harsanyi’s aggregation theorem; population (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  17. The Problem of Piecemeal Induction.Conor Mayo-Wilson - 2011 - Philosophy of Science 78 (5):864-874.
    It is common to assume that the problem of induction arises only because of small sample sizes or unreliable data. In this paper, I argue that the piecemeal collection of data can also lead to underdetermination of theories by evidence, even if arbitrarily large amounts of completely reliable experimental and observational data are collected. Specifically, I focus on the construction of causal theories from the results of many studies (perhaps hundreds), including randomized controlled trials and observational studies, where the studies (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  18. Calibration Dilemmas in the Ethics of Distribution.Jacob M. Nebel & H. Orri Stefánsson - forthcoming - Economics and Philosophy:1-32.
    This paper presents a new kind of problem in the ethics of distribution. The problem takes the form of several “calibration dilemmas,” in which intuitively reasonable aversion to small-stakes inequalities requires leading theories of distribution to recommend intuitively unreasonable aversion to large-stakes inequalities. We first lay out a series of such dilemmas for prioritarian theories. We then consider a widely endorsed family of egalitarian views and show that they are subject to even more forceful calibration dilemmas than prioritarian theories. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Einstein's Gravitation is Einstein-Grossmann's Equations.Alfonso Leon Guillen Gomez - 2015 - Journal of Advances in Physics 11 (3):3099-3110.
    While the philosophers of science discuss the General Relativity, the mathematical physicists do not question it. Therefore, there is a conflict. From the theoretical point view “the question of precisely what Einstein discovered remains unanswered, for we have no consensus over the exact nature of the theory 's foundations. Is this the theory that extends the relativity of motion from inertial motion to accelerated motion, as Einstein contended? Or is it just a theory that treats gravitation geometrically in the spacetime (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Quantum Complementarity: Both Duality and Opposition.Vasil Penchev - 2020 - Metaphysics eJournal (Elsevier: SSRN) 13 (13):1-6.
    Quantum complementarity is interpreted in terms of duality and opposition. Any two conjugates are considered both as dual and opposite. Thus quantum mechanics introduces a mathematical model of them in an exact and experimental science. It is based on the complex Hilbert space, which coincides with the dual one. The two dual Hilbert spaces model both duality and opposition to resolve unifying the quantum and smooth motions. The model involves necessarily infinity even in any finitely dimensional subspace of the complex (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Философия на квантовата информация.Vasil Penchev - 2009 - Sofia: BAS: IPhR.
    The book is devoted to the contemporary stage of quantum mechanics – quantum information, and especially to its philosophical interpretation and comprehension: the first one of a series monographs about the philosophy of quantum information. The second will consider Be l l ’ s inequalities, their modified variants and similar to them relations. The beginning of quantum information was in the thirties of the last century. Its speed development has started over the last two decades. The main phenomenon is (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  22. Отвъд машината на Тюринг: квантовият компютър.Vasil Penchev - 2014 - Sofia: BAS: ISSK (IPS).
    Quantum computer is considered as a generalization of Turing machine. The bits are substituted by qubits. In turn, a "qubit" is the generalization of "bit" referring to infinite sets or series. It extends the consept of calculation from finite processes and algorithms to infinite ones, impossible as to any Turing machines (such as our computers). However, the concept of quantum computer mets all paradoxes of infinity such as Gödel's incompletness theorems (1931), etc. A philosophical reflection on how quantum computer (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  23.  77
    Indeterminism in Quantum Mechanics: Beyond and/or Within.Vasil Penchev - 2020 - Development of Innovation eJournal (Elsevier: SSRN) 8 (68):1-5.
    The problem of indeterminism in quantum mechanics usually being considered as a generalization determinism of classical mechanics and physics for the case of discrete (quantum) changes is interpreted as an only mathematical problem referring to the relation of a set of independent choices to a well-ordered series therefore regulated by the equivalence of the axiom of choice and the well-ordering “theorem”. The former corresponds to quantum indeterminism, and the latter, to classical determinism. No other premises (besides the above (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24.  88
    Indeterminism and Undecidability.Klaas Landsman - forthcoming - In Undecidability, Uncomputability, and Unpredictability. Cham: Springer Nature.
    The aim of this paper is to argue that the (alleged) indeterminism of quantum mechanics, claimed by adherents of the Copenhagen interpretation since Born (1926), can be proved from Chaitin's follow-up to Goedel's (first) incompleteness theorem. In comparison, Bell's (1964) theorem as well as the so-called free will theorem-originally due to Heywood and Redhead (1983)-left two loopholes for deterministic hidden variable theories, namely giving up either locality (more precisely: local contextuality, as in Bohmian mechanics) or free choice (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  25.  72
    God's Dice.Vasil Penchev - 2015 - In S. Oms, J. Martínez, M. García-Carpintero & J. Díez (eds.), Actas: VIII Conference of the Spanish Society for Logic, Methodology, and Philosophy of Sciences. Barcelona: Universitat de Barcelona. pp. 297-303.
    Einstein wrote his famous sentence "God does not play dice with the universe" in a letter to Max Born in 1920. All experiments have confirmed that quantum mechanics is neither wrong nor “incomplete”. One can says that God does play dice with the universe. Let quantum mechanics be granted as the rules generalizing all results of playing some imaginary God’s dice. If that is the case, one can ask how God’s dice should look like. God’s dice turns out to be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Bell’s Theorem, Quantum Probabilities, and Superdeterminism.Eddy Keming Chen - 2021 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. Routledge.
    In this short survey article, I discuss Bell’s theorem and some strategies that attempt to avoid the conclusion of non-locality. I focus on two that intersect with the philosophy of probability: (1) quantum probabilities and (2) superdeterminism. The issues they raised not only apply to a wide class of no-go theorems about quantum mechanics but are also of general philosophical interest.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  27.  21
    Opinion Dynamics and Bounded Confidence: Models, Analysis and Simulation.Hegselmann Rainer & Ulrich Krause - 2002 - Journal of Artificial Societies and Social Simulation 5 (3).
    When does opinion formation within an interacting group lead to consensus, polarization or fragmentation? The article investigates various models for the dynamics of continuous opinions by analytical methods as well as by computer simulations. Section 2 develops within a unified framework the classical model of consensus formation, the variant of this model due to Friedkin and Johnsen, a time-dependent version and a nonlinear version with bounded confidence of the agents. Section 3 presents for all these models major analytical results. Section (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Representation Theorems and the Foundations of Decision Theory.Christopher J. G. Meacham & Jonathan Weisberg - 2011 - Australasian Journal of Philosophy 89 (4):641 - 663.
    Representation theorems are often taken to provide the foundations for decision theory. First, they are taken to characterize degrees of belief and utilities. Second, they are taken to justify two fundamental rules of rationality: that we should have probabilistic degrees of belief and that we should act as expected utility maximizers. We argue that representation theorems cannot serve either of these foundational purposes, and that recent attempts to defend the foundational importance of representation theorems are unsuccessful. As a result, we (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  29.  55
    Jury Theorems.Franz Dietrich & Kai Spiekermann - 2021 - The Stanford Encyclopedia of Philosophy.
    Jury theorems are mathematical theorems about the ability of collectives to make correct decisions. Several jury theorems carry the optimistic message that, in suitable circumstances, ‘crowds are wise’: many individuals together (using, for instance, majority voting) tend to make good decisions, outperforming fewer or just one individual. Jury theorems form the technical core of epistemic arguments for democracy, and provide probabilistic tools for reasoning about the epistemic quality of collective decisions. The popularity of jury theorems spans across various disciplines such (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  30. Kant, Herbart and Riemann.Erik C. Banks - 2005 - Kant Studien 96 (2):208-234.
    A look at the dynamical concept of space and space-generating processes to be found in Kant, J.F. Herbart and the mathematician Bernhard Riemann's philosophical writings.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  31.  45
    Theoremizing Yablo's Paradox.Ahmad Karimi & Saeed Salehi - manuscript
    To counter a general belief that all the paradoxes stem from a kind of circularity (or involve some self--reference, or use a diagonal argument) Stephen Yablo designed a paradox in 1993 that seemingly avoided self--reference. We turn Yablo's paradox, the most challenging paradox in the recent years, into a genuine mathematical theorem in Linear Temporal Logic (LTL). Indeed, Yablo's paradox comes in several varieties; and he showed in 2004 that there are other versions that are equally paradoxical. Formalizing these (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32.  6
    Condorcet's Jury Theorem and Democracy.Wes Siscoe - 2022 - 1000-Word Philosophy: An Introductory Anthology 1.
    Download  
     
    Export citation  
     
    Bookmark  
  33. Jury Theorems.Franz Dietrich & Kai Spiekermann - 2020 - In M. Fricker (ed.), The Routledge Handbook of Social Epistemology. New York and Abingdon:
    We give a review and critique of jury theorems from a social-epistemology perspective, covering Condorcet’s (1785) classic theorem and several later refinements and departures. We assess the plausibility of the conclusions and premises featuring in jury theorems and evaluate the potential of such theorems to serve as formal arguments for the ‘wisdom of crowds’. In particular, we argue (i) that there is a fundamental tension between voters’ independence and voters’ competence, hence between the two premises of most jury theorems; (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  34. Arrow's Theorem in Judgment Aggregation.Franz Dietrich & Christian List - 2007 - Social Choice and Welfare 29 (1):19-33.
    In response to recent work on the aggregation of individual judgments on logically connected propositions into collective judgments, it is often asked whether judgment aggregation is a special case of Arrowian preference aggregation. We argue for the converse claim. After proving two impossibility theorems on judgment aggregation (using "systematicity" and "independence" conditions, respectively), we construct an embedding of preference aggregation into judgment aggregation and prove Arrow’s theorem (stated for strict preferences) as a corollary of our second result. Although we (...)
    Download  
     
    Export citation  
     
    Bookmark   81 citations  
  35. Epsilon Theorems in Intermediate Logics.Matthias Baaz & Richard Zach - 2022 - Journal of Symbolic Logic 87 (2):682-720.
    Any intermediate propositional logic can be extended to a calculus with epsilon- and tau-operators and critical formulas. For classical logic, this results in Hilbert’s $\varepsilon $ -calculus. The first and second $\varepsilon $ -theorems for classical logic establish conservativity of the $\varepsilon $ -calculus over its classical base logic. It is well known that the second $\varepsilon $ -theorem fails for the intuitionistic $\varepsilon $ -calculus, as prenexation is impossible. The paper investigates the effect of adding critical $\varepsilon $ (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. A Representation Theorem for Frequently Irrational Agents.Edward Elliott - 2017 - Journal of Philosophical Logic 46 (5):467-506.
    The standard representation theorem for expected utility theory tells us that if a subject’s preferences conform to certain axioms, then she can be represented as maximising her expected utility given a particular set of credences and utilities—and, moreover, that having those credences and utilities is the only way that she could be maximising her expected utility. However, the kinds of agents these theorems seem apt to tell us anything about are highly idealised, being always probabilistically coherent with infinitely precise (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  37. An Impossibility Theorem for Amalgamating Evidence.Jacob Stegenga - 2013 - Synthese 190 (12):2391-2411.
    Amalgamating evidence of different kinds for the same hypothesis into an overall confirmation is analogous, I argue, to amalgamating individuals’ preferences into a group preference. The latter faces well-known impossibility theorems, most famously “Arrow’s Theorem”. Once the analogy between amalgamating evidence and amalgamating preferences is tight, it is obvious that amalgamating evidence might face a theorem similar to Arrow’s. I prove that this is so, and end by discussing the plausibility of the axioms required for the theorem.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  38. Some Theorems on the Expressive Limitations of Modal Languages.Harold T. Hodes - 1984 - Journal of Philosophical Logic 13 (1):13 - 26.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  39. Agreement Theorems for Self-Locating Belief.Michael Caie - 2016 - Review of Symbolic Logic 9 (2):380-407.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  40.  21
    The Π-Theorem as a Guide to Quantity Symmetries and the Argument Against Absolutism.Mahmoud Jalloh - manuscript
    In this paper a symmetry argument against quantity absolutism is amended. Rather than arguing against the fundamentality of intrinsic quantities on the basis of transformations of basic quantities, e.g. mass doubling, a class of symmetries defined by the Π-theorem are used. This theorem is a fundamental result of dimensional analysis and shows that all unit-invariant equations which adequately represent physical systems can be put into the form of a function of dimensionless quantities. Quantity transformations that leave those dimensionless (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Fermat’s Last Theorem Proved in Hilbert Arithmetic. III. The Quantum-Information Unification of Fermat’s Last Theorem and Gleason’s Theorem.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (12):1-30.
    The previous two parts of the paper demonstrate that the interpretation of Fermat’s last theorem (FLT) in Hilbert arithmetic meant both in a narrow sense and in a wide sense can suggest a proof by induction in Part I and by means of the Kochen - Specker theorem in Part II. The same interpretation can serve also for a proof FLT based on Gleason’s theorem and partly similar to that in Part II. The concept of (probabilistic) measure (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Judgment Aggregation: (Im)Possibility Theorems.Franz Dietrich - 2006 - Journal of Economic Theory 1 (126):286-298.
    The aggregation of individual judgments over interrelated propositions is a newly arising field of social choice theory. I introduce several independence conditions on judgment aggregation rules, each of which protects against a specific type of manipulation by agenda setters or voters. I derive impossibility theorems whereby these independence conditions are incompatible with certain minimal requirements. Unlike earlier impossibility results, the main result here holds for any (non-trivial) agenda. However, independence conditions arguably undermine the logical structure of judgment aggregation. I therefore (...)
    Download  
     
    Export citation  
     
    Bookmark   73 citations  
  43. Representation Theorems and Radical Interpretation.Edward J. R. Elliott - manuscript
    This paper begins with a puzzle regarding Lewis' theory of radical interpretation. On the one hand, Lewis convincingly argued that the facts about an agent's sensory evidence and choices will always underdetermine the facts about her beliefs and desires. On the other hand, we have several representation theorems—such as those of (Ramsey 1931) and (Savage 1954)—that are widely taken to show that if an agent's choices satisfy certain constraints, then those choices can suffice to determine her beliefs and desires. In (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Fermat’s Last Theorem Proved by Induction (and Accompanied by a Philosophical Comment).Vasil Penchev - 2020 - Metaphilosophy eJournal (Elsevier: SSRN) 12 (8):1-8.
    A proof of Fermat’s last theorem is demonstrated. It is very brief, simple, elementary, and absolutely arithmetical. The necessary premises for the proof are only: the three definitive properties of the relation of equality (identity, symmetry, and transitivity), modus tollens, axiom of induction, the proof of Fermat’s last theorem in the case of.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  45. Theorems and Models in Political Theory: An Application to Pettit on Popular Control.Sean Ingham - 2015 - The Good Society 24 (1):98-117.
    Pettit (2012) presents a model of popular control over government, according to which it consists in the government being subject to those policy-making norms that everyone accepts. In this paper, I provide a formal statement of this interpretation of popular control, which illuminates its relationship to other interpretations of the idea with which it is easily conflated, and which gives rise to a theorem, similar to the famous Gibbard-Satterthwaite theorem. The theorem states that if government policy is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Jury Theorems for Peer Review.Marcus Arvan, Liam Kofi Bright & Remco Heesen - forthcoming - British Journal for the Philosophy of Science.
    Peer review is often taken to be the main form of quality control on academic research. Usually journals carry this out. However, parts of maths and physics appear to have a parallel, crowd-sourced model of peer review, where papers are posted on the arXiv to be publicly discussed. In this paper we argue that crowd-sourced peer review is likely to do better than journal-solicited peer review at sorting papers by quality. Our argument rests on two key claims. First, crowd-sourced peer (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Epistemic Democracy: Generalizing the Condorcet Jury Theorem.Christian List & Robert E. Goodin - 2001 - Journal of Political Philosophy 9 (3):277–306.
    This paper generalises the classical Condorcet jury theorem from majority voting over two options to plurality voting over multiple options. The paper further discusses the debate between epistemic and procedural democracy and situates its formal results in that debate. The paper finally compares a number of different social choice procedures for many-option choices in terms of their epistemic merits. An appendix explores the implications of some of the present mathematical results for the question of how probable majority cycles (as (...)
    Download  
     
    Export citation  
     
    Bookmark   137 citations  
  48. The Craig Interpolation Theorem for Prepositional Logics with Strong Negation.Valentin Goranko - 1985 - Studia Logica 44 (3):291 - 317.
    This paper deals with, prepositional calculi with strong negation (N-logics) in which the Craig interpolation theorem holds. N-logics are defined to be axiomatic strengthenings of the intuitionistic calculus enriched with a unary connective called strong negation. There exists continuum of N-logics, but the Craig interpolation theorem holds only in 14 of them.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  49. General Dynamic Triviality Theorems.Jeffrey Sanford Russell & John Hawthorne - 2016 - Philosophical Review 125 (3):307-339.
    Famous results by David Lewis show that plausible-sounding constraints on the probabilities of conditionals or evaluative claims lead to unacceptable results, by standard probabilistic reasoning. Existing presentations of these results rely on stronger assumptions than they really need. When we strip these arguments down to a minimal core, we can see both how certain replies miss the mark, and also how to devise parallel arguments for other domains, including epistemic “might,” probability claims, claims about comparative value, and so on. A (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  50. Quantum No-Go Theorems and Consciousness.Danko Georgiev - 2013 - Axiomathes 23 (4):683-695.
    Our conscious minds exist in the Universe, therefore they should be identified with physical states that are subject to physical laws. In classical theories of mind, the mental states are identified with brain states that satisfy the deterministic laws of classical mechanics. This approach, however, leads to insurmountable paradoxes such as epiphenomenal minds and illusionary free will. Alternatively, one may identify mental states with quantum states realized within the brain and try to resolve the above paradoxes using the standard Hilbert (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
1 — 50 / 999