Formulação de Ração para Caprinos -/- APRESENTAÇÃO -/- O material Formulação de Ração para Caprinos, assim como a edição para ovinos, visa servir de alicerce para demonstrar as exigências nutricionais atualizadas dos caprinos, além das equações que servem para determinar a exigência do animal em uma determinada situação. Além disso, demonstra a avaliação bromatológica dos principais alimentos utilizados para a alimentação do rebanho no Brasil, esses valores da composição nutricional servem de base, assim como as exigências para as técnicas matemáticas (...) empregadas na formulação manual de dietas. A abordagem desse material é a apresentação das exigências nutricionais dos caprinos mediante as bases científicas como o NRC (2007); e, através de equações de predileções, apresentar as exigências nutricionais sob as condições brasileiras, principalmente sob condições em que deverão ser incrementados uma dada porcentagem das exigências, por exemplo para os caprinos em atividade intensa e/ou moderada no semiárido nordestino. Posteriormente, apresentar exemplos práticos de formulação de dietas mediante as técnicas matemáticas empregadas para tal. Será abordada situações reais onde um profissional pode se deparar no cotidiano de propriedades caprinocultoras. O texto também é dividido em três capítulos com as exigências nutricionais, composição dos principais alimentos e a formulação prática de dietas que visem suprir as necessidades dos animais de forma clara e objetiva, com a finalidade de servir de ferramenta para que os produtores rurais, técnicos, zootecnistas, nutricionistas etc. possam conseguir elaborar dietas para fornecer uma ração de boa qualidade física e nutricional. -/- SUMÁRIO -/- EXIGÊNCIAS NUTRICIONAIS DOS CAPRINOS 1 Equações de predição do consumo de matéria seca (CMS) 2 Algumas exigências para caprinos 4 Tabelas de requerimentos nutricionais dos caprinos 6 Concentrações de nutrientes necessárias em rações de caprinos (% da MS) 12 Energia metabolizável para caprinos 15 Relação volumoso:concentrado (v:c) para caprinos 17 ALIMENTOS PARA CAPRINOS 19 FORMULAÇÃO DE RAÇÃO PARA CAPRINOS 34 RAÇÕES PRONTAS PARA CAPRINOS 78 CONCLUSÕES 86 REFERÊNCIAS BIBLIOGRÁFICAS 87 -/- -/- EXIGÊNCIAS NUTRICIONAIS DOS CAPRINOS -/- Para formular dieta para os caprinos, devemos seguir os mesmos passos tal qual para as demais espécies de interesse zootécnico. Os passos a serem seguidos para a elaboração de rações são: Após a caracterização do rebanho a ser alimentado, devemos buscar as equações de predileção para estimar as exigências nutricionais do lote servindo de alicerce para que a ração final obtenha as mesmas quantidades de nutrientes tal qual os animais requerem, por exemplo, um caprino reprodutor da raça Boer de 50 kg de PV sob condições de trabalho moderado, onde devemos incluir 50% da exigência da mantença, exige cerca de 795 g de NDT/ kg de MS ingerida, então após estabelecer os alimentos disponíveis e a composição bromatológica dos mesmos, o resultado final do balanceamento deverá ser igual a exigência de NDT do animal, podendo haver pouco excesso ou pouco défice. Como citado em outros trabalhos, as exigências dos animais variam em função do peso, idade, estado fisiológico etc. e que, para a elaboração de dietas, os nutrientes mais comumente trabalhados são a proteína bruta (PB), as necessidades energéticas podendo-se utilizar os nutrientes digestíveis totais (NDT), energia metabolizável (EM), energia digestível (ED) ou energia líquida (EL), as necessidades minerais dando ênfase aos de maior importância que são cálcio e fósforo e, raramente, as necessidades vitamínicas. Existem diferentes fontes teóricas e científicas que dispõem de tabelas de requerimentos nutricionais da espécie caprina de acordo com diferentes fatores, sendo eles os de peso vivo; ganho ou perda de peso; estado produtivo ou improdutivo de carne ou leite; animal em início, meio ou fim da gestação com um ou dois fetos; fêmeas paridas em lactação com uma ou duas crias ao pé etc. Também, segundo o NRC para caprinos (1981) e o para pequenos ruminantes (2007), os fatores de atividade leve, moderada ou intensa são levados em consideração. Apresentarei aqui algumas equações para predizer as exigências líquidas e as principais tabelas de requerimentos nutricionais dos caprinos expressas com base na necessidade do animal ou em percentual da ração, que servirão de base teórica para a formulação prática de rações para animais em diferentes situações. Equações de predição do consumo de matéria seca (CMS) É comum, na literatura acerca da criação e, principalmente, sobre a nutrição de caprinos observar que os especialistas trabalham com porcentagens de fornecimento de ingestão ou consumo de matéria seca (IMS ou CMS) para os animais de acordo com três fatores, um leva em consideração a origem do animal, outro o estado fisiológico e outro a categoria do animal. Para aclarar melhor vejamos a tabela 1 sobre as porcentagens de matéria seca em função do peso vivo para os caprinos. Tabela 1: Porcentagens ideais de consumo de matéria seca de acordo com o peso vivo de caprinos em diferentes etapas e origens Tipo de animal CMS em % do PV Cabras de origem temperada 5 a 6 Cabras de origem tropical 4 a 5 Mantença 3 Cabras gestantes 2,2 a 2,8 Cabras em lactação 3 a 5 Cabritos em crescimento 2,5 a 3 Fonte: Adaptações de BORGES & GONÇALVES, 2011 e SILVA & VALLE, 2018. No entanto, existem diferentes fórmulas para estimas as exigências de consumo de matéria seca dos caprinos, uma, apesar de não completa, é estabelecida pelo INRA, outras apresentadas pelo AFRC estimam para caprinos em mantença e lactação. Outras formas simplificadas indicam um consumo em porcentagem de acordo com o estado fisiológico ou origem. A equação de ingestão de matéria seca (IMS) determinada pelo INRA (1988) leva em consideração a produção de leite (se houver), o ganho diário de peso (se houver) e a porcentagem de volumoso fornecida ao caprino. IMS (g/dia) = (423,2 x kg leite/dia) + 27,8 x kg0,75 + (440 x kg de GPD) + (6,75 x %de volumoso) -/- Para um exemplo prático utilizando a fórmula proposta, suponhamos um caprino macho adulto (descartar a produção de leite = 0) com 50 kg PV, com ganho de peso diário de 100 g e recebendo uma dieta baseada em 80% de volumoso de boa qualidade, a IMS será: IMS (g/dia) = 27,8 x 50 kg0,75 + (440 x 0,1) + (6,75 x 80) = 1974 g MS/dia = 3,5% PV Outro exemplo prático utilizando a fórmula proposta pelo INRA, suponhamos uma cabra da raça Saanen com 60 kg de PV e produzindo 5 litros de leite/dia com 3,5% de gordura, com ganho de peso diário de 30 g e recebendo apenas concentrado, logo descartamos a parte volumosa então, a IMS será: IMS (g/dia) = (423,2 x 5) + (27,8 x 60 kg0,75) + (440 x 0,03) = 2730 g MS/dia = 4,54% PV Agora, a mesma cabra recebe suplementação volumosa à base de 40%, então: IMS (g/dia) = (423,2 x 5) + (27,8 x 60 kg0,75) + (440 x 0,03) + (6,75 x 40) = 3000 g MS/dia = 5% PV Outra forma de estimar a ingestão de matéria seca em gramas por dia é a proposta pelo AFRC (1993) que leva em consideração dois fatores, o peso vivo e a produção leiteira (com 3,5% de gordura), se houver, para cabras leiteiras prenhes e em lactação: CMS (kg/animal/dia) = 0,062 x PV0,75 + 0,305 x PL -/- Para utilizar essa fórmula, suponhamos uma cabra da raça Saanen, de 50 kg de PV, produzindo 5 kg de leite com 3,5% de gordura. Qual deverá ser seu consumo em matéria seca? CMS = 0,062 x 500,75 + 0,305 x 5 = 2,69 kg de MS/dia ou 5,38% do PV em MS Para caprinos adultos em mantença, o AFRC sugere a fórmula: CMS (kg/animal/dia) = 0,522 + 0,0135 x PV -/- Utilizando essa fórmula, qual deverá ser o CMS de um caprino da raça Alpina em mantença, que possui peso vivo de 45 kg? CMS = 0,522 + 0,0135 x 45 = 1,13 kg de MS/dia ou 2,5% do PV em MS Algumas exigências para caprinos Energia metabolizável (EM): 101,38 kcal/kg de PV0,75 para mantença, ou 2,0 a 2,4 Mcal/kg de MS 7,25 kcal/g de ganho de peso para animais em crescimento 1,25 Mcal/kg de leite com 4% de gordura para cabras em lactação Proteína bruta (PB): 32 g PB/Mcal de Energia digestível (ED) (EM = ED x 0,82) 4,15 g de PB/kg de PV0,75 para animais em mantença 0,284 g de PB/g de ganho para animais em crescimento 7,76 g de PB/kg de PV0,75 para cabras gestantes 96,9 g PB/kg de leite com 4% de gordura para cabras em lactação Minerais: Os principais minerais usados na formulação de ração para ruminantes são Ca e P, logo a estimativa de suas exigências são imprescindíveis, uma vez que a mistura elaborada pode apresentar deficiência de um ou ambos os minerais. O NRC (2007) propõe as seguintes equações para o cálculo dos requerimentos de Ca e P, em diferentes categorias: 1. Mantença: Cálcio (g) = ((0,623 x CMS) + 0,228)/0,45 Fósforo (g) = (0,081 + (0,88 x CMS))/0,65 Onde: CMS = consumo de matéria seca em kg/dia. 2. Crescimento: Cálcio (g) = (11 x GPD)/0,45 Fósforo (g) = (6,50 x GPD)/0,65 Onde: GPD = ganho de peso diário em kg. 3. Produção de leite: Cálcio (g) = (1,40 x L)/0,45 Fósforo (g) = (1,00 x L)/0,65 Onde: L = produção de leite em kg. É importante ressaltar que os requerimentos para cabras em lactação devem ser somados com os de mantença; dessa forma, como exemplo prático, uma cabra com 50 kg de PV que produz 3 kg de leite/dia requer cerca de 11,5 g de Ca (9,3 g de mantença + 2,2 g de produção). -/- 4. Gestação: Cálcio (g) = (0,23 x NC x PMnasc.)/0,45 Fósforo (g) = (0,132 x NC x PMnasc.)/0,65 Onde: NC = número de crias e PMnasc. = peso médio esperado da cria ou crias ao nascimento. Resumidamente, o NRC (2007) apresenta algumas indicações: 2 a 3 g de cálcio/kg de leite produzido ou 0,114 a 0,163% de Ca da MS 1,4 a 2,1 g de fósforo/kg de leite produzido ou 0,084 a 0,122% de P da MS Sal (NaCl): 0,5% da MS diariamente Potássio (K): 0,8% da MS diariamente Enxofre (S): 0,16% da MS diariamente Magnésio (Mg): 0,2% da MS diariamente -/- Tabelas de requerimentos nutricionais dos caprinos Resumidamente, a composição do concentrado dos caprinos, de acordo com a categoria, e as quantidades a serem fornecidas/animal/dia é a seguinte: Tabela 2: Composição do concentrado e quantidades fornecidas Fonte: CODEVASF, 2011. Agora, vamos dividir os requerimentos dos caprinos de acordo com situações, conforme os dados obtidos por NRC (2007), NUNES (1998) e RIBEIRO (1997): Tabela 3: Caprinos em mantença PV (kg) CMS (kg/animal¹) CMS (% PV) PB (g) PB (%) EM (Mcal) NDT² (g) NDT (%) Ca (g) P (g) 10 0,28 2,8 25 9 0,57 160 57 1 1 20 0,49 2,4 40 8,2 0,96 270 55 1 1 30 0,66 2,2 50 7,6 1,30 360 55 2 1,5 40 0,82 2,0 65 8 1,60 450 55 2 1,5 50 0,97 1,9 80 8,2 1,90 530 55 3,5 2,5 60 1,11 1,8 90 8 2,20 610 55 3,5 2,5 70 1,25 1,8 95 7,6 2,50 680 55 4 3 80 1,40 1,7 105 7,5 2,70 750 54 4 3 90 1,50 1,65 120 8 3,00 820 55 4 3 100 1,62 1,6 130 8 3,20 900 56 5 3,5 -/- 1 – para converter matéria seca em matéria natural, dividir o valor em MS pela porcentagem de MS do ingrediente. Por exemplo, em uma ração encontrou-se 100 g MS de milho, sabendo-se que a % de MS do milho é 90%, então: 100/0,9 = 112 g de milho com base na matéria natural. 2 – 1 kg de NDT equivale a 4,4 Mcal de energia digestível (ED) e 1 Mcal de ED = 0,82 Mcal de EM. Tabela 4: Mantença e baixa atividade (incremento de 25% dos valores de mantença da tabela 3) – manejo extensivo, pastagem tropical e gestação inicial PV (kg) CMS (kg/cab./dia) PB (g) EM (Mcal) NDT (g) Ca (g) P (g) 10 0,3 30 0,71 200 1 0,7 20 0,5 50 1,20 335 2 1,4 30 0,67 60 1,62 452 2 1,4 40 0,84 80 2,02 560 3 2,1 50 0,99 90 2,38 662 4 2,8 60 1,14 105 2,73 760 4 2,8 70 1,28 120 3,07 852 5 3,5 80 1,41 130 3,39 942 5 3,5 90 1,54 145 3,70 1030 6 4,2 100 1,67 155 4,01 1114 6 4,2 Por exemplo, um animal com 40 kg de PV em mantença e submetido a baixa atividade, deverá receber PB na base de: Mantença: 65 g/dia + (65 x 25%) = 80 g/dia de PB Tabela 5: Mantença e média atividade (incremento de 50% dos valores de mantença da tabela 3) – terreno semiárido, pastagens levemente acidentadas (em encosta) e gestação inicial PV (kg) CMS (kg/cab./dia) PB (g) EM (Mcal) NDT (g) Ca (g) P (g) 10 0,36 33 0,86 239 1 0,7 20 0,60 55 1,44 400 2 1,4 30 0,81 74 1,95 543 3 2,1 40 1,01 93 2,42 672 4 2,8 50 1,19 110 2,86 795 4 2,8 60 1,37 126 3,28 912 5 3,5 70 1,53 141 3,68 1023 6 4,2 80 1,69 156 4,06 1131 6 4,2 90 1,85 170 4,44 1236 7 4,9 100 2,01 184 4,82 1336 7 4,9 -/- Por exemplo, um animal com 50 kg de PV em mantença e vivendo sob condições de média atividade (clima semiárido como algumas regiões de Pernambuco), deverá receber NDT na base de: Mantença: 530 g/dia + (530 x 50%) = 795 g/dia de NDT Tabela 6: Mantença e alta atividade (incremento de 75% dos valores de mantença da tabela 3) – terreno árido, vegetação escassa, pastagens montanhosas e gestação inicial PV (kg) CMS (kg/cab./dia) PB (g) EM (Mcal) NDT (g) Ca (g) P (g) 10 0,42 38 1,00 278 2 1,4 20 0,70 64 1,68 467 2 1,4 30 0,95 87 2,78 634 3 2,1 40 1,18 108 3,46 784 4 2,8 50 1,39 128 4,10 928 5 3,5 60 1,60 146 4,69 1064 6 4,2 70 1,79 165 5,27 1194 6 4,2 80 1,98 182 5,81 1320 7 4,9 90 2,16 198 6,35 1442 8 5,6 100 2,34 215 6,88 1559 8 5,6 -/- Por exemplo, um animal com 30 kg de PV em mantença, sob condições de clima árido e alta atividade, deverá receber NDT na base de: Mantença: 360 g/dia + (360 x 75%) = 630 g/dia ou 634 g como está na tabela 6 Tabela 7: Exigência para 100 g de ganho de peso diário PV (kg) CMS (kg/animal) PB (g) EM (Mcal) NDT (g) Ca (g) P (g) 10 0,1 29 0,42 116 1,32 0,73 20 0,2 29 0,57 159 1,43 0,71 30 0,3 28 0,72 199 1,49 0,7 40 0,4 27 0,88 245 1,54 0,69 50 0,4 26 1,03 286 1,58 0,68 60 0,5 25 1,19 331 1,61 0,67 70 0,5 24 1,36 379 1,64 0,67 -/- Tabela 8: Exigências para gestação de cabras em diferentes períodos PV (kg) Período CMS (kg/cab./dia) PB (g) EM (Mcal) NDT (g) Ca (g) P (g) 40 Início 1,07 77 2,45 680 3 2 4º mês 1,07 159 2,94 816 5 2,5 5º mês 0,97 215 4,10 1141 7 3 50 Início 1,20 91 2,84 789 3,5 2,5 4º mês 1,20 173 3,35 932 6 3,1 5º mês 1,09 235 4,56 1268 8,5 3,7 60 Início 1,33 105 3,19 887 4 3 4º mês 1,33 187 3,70 1027 7 3,8 5º mês 1,21 253 4,90 1363 10 4,5 70 Início 1,47 118 3,51 975 4,5 3,5 4º mês 1,47 200 4,01 1114 8 4,4 5º mês 1,34 273 5,23 1454 11,5 5,3 80 Início 1,60 130 3,84 1068 5 4 4º mês 1,60 212 4,25 1458 9 5 5º mês 1,46 293 5,41 1504 13 6 -/- Tabela 9: Requerimentos adicionais para a produção de 1 kg de leite segundo a % de gordura. Incluem-se os requisitos para aleitamento de filhote único, gêmeos ou trigêmeos no respectivo nível de produção leiteira Gordura (%) PB (g) EM (Mcal) NDT (g) Ca (g) P (g) 2,5 60 1,20 330 2 1,5 3,0 65 1,21 335 2 1,5 3,5 70 1,23 340 2 1,5 4,0 75 1,25 345 3,5 2,5 4,5 80 1,26 350 3,5 2,5 5,0 85 1,28 355 3,5 2,5 5,5 90 1,29 360 4 3 6,0 95 1,31 365 4 3 -/- Tabela 10: Requerimentos por kg de leite com 3,5% de gordura – cabras alpinas PB (g) EM (Mcal) NDT (g) Ca (g) P (g) 70 1,22 345 4 2 -/- Tabela 11: Requerimentos por kg de leite com 4,7% de gordura – cabras anglo-nubianas PB (g) EM (Mcal) NDT (g) Ca (g) P (g) 80 1,50 415 6 4 -/- Tabela 12: Requerimentos para cada 0,1% de variação no teor de gordura do leite PB (g) EM (Mcal) NDT (g) Ca (g) P (g) 10 0,30 80 0,5 0,5 -/- Tabela 13: Requerimentos adicionais para gestação tardia CMS (kg/cab./dia) PB (g) PB (%) EM (Mcal) NDT (g) NDT (%) Ca (g) P (g) 0,71 80 11 1,42 395 56 2 1,5 -/- Tabela 14: Requerimentos adicionais para ganho de peso diário (GPD) de 50 g CMS (kg/cab./dia) PB (g) PB (%) EM (Mcal) NDT (g) NDT (%) Ca (g) P (g) 0,18 15 8,5 0,36 100 55,5 1 1 -/- Tabela 15: Requerimentos adicionais para ganho de peso diário (GPD) de 100 g CMS (kg/cab./dia) PB (g) PB (%) EM (Mcal) NDT (g) NDT (%) Ca (g) P (g) 0,36 30 8,5 0,88 200 55,5 1 1 -/- Tabela 16: Requerimentos adicionais para ganho de peso diário (GPD) de 150 g CMS (kg/cab./dia) PB (g) PB (%) EM (Mcal) NDT (g) NDT (%) Ca (g) P (g) 0,54 45 8,5 1,32 300 55,5 2 1,5 -/- Seguindo o mesmo raciocínio da tabela 2 da CODEVASF, a tabela 17 apresenta valores de proteína bruta e quantidade de MS para caprinos de corte e leite em diferentes estágios produtivos. Tabela 17: Exigências de PB e quantidade de MS de caprinos em diferentes estágios Etapa produtiva PB % Quantidade/cab./dia Caprinos de corte Pré-desmame 18 110 – 150 g Pós-desmame 16 230 – 340 g Crescimento/engorda 14 450 g Flushing 14 – 16 450 g – 1,4 kg Gestação (2º e 3º mês) 14 – 16 230 – 450 g Gestação (último mês) 14 – 16 340 – 910 g Lactação (1 cria) 14 – 16 340 – 570 g Lactação (2 crias) 14 – 16 910 g Fêmeas de reposição 16 230 – 450 g Machos adultos 14 < 230 g Caprinos leiteiros Pré-desmame (2-4 meses) 18 Ad libitum Crescimento (4º mês até 6-8 semanas antes do parto) 14 – 16 450 – 680 g Fêmeas secas 14 – 16 450 – 910 g Fêmeas lactantes 14 – 16 330 g/kg de leite Machos adultos 14 – 16 450 – 910 g Fonte: adaptação de PARDO RINCÓN, 2007. pp. 567-568. Concentrações de nutrientes necessárias em rações de caprinos (% da MS) De forma geral, as rações para os caprinos seguem os mesmos padrões das dietas elaboradas e fornecidas para os ovinos. No entanto, sabendo-se que as exigências de ambas as espécies são diferentes, é necessário compreendermos que mesmo uma ração servindo para os ovinos e caprinos, esta pode não fornecer as quantidades desejadas pelos caprinos, ou ainda, a ração poderá conter excesso de nutrientes para este animal e acarretar problemas metabólicos e de eficiência alimentar, além das perdas econômicas uma vez que será adquirida e fornecida uma ração que não irá alcançar seu objetivo. Dito isto, através da literatura acerca da produção, nutrição e alimentação de caprinos de corte e leiteiros, a tabela 18 apresenta os níveis recomendados de rações para os caprinos de acordo com a categoria e estado fisiológico do animal, levando-se em consideração os requerimentos das tabelas 2 a 16 e os níveis de nutrientes de acordo com as grandes fábricas de ração recomendam e formulam as dietas. Tabela 18: Concentrações de nutrientes para rações de caprinos com base na % da MS Mantença CMS 1,5-3% PV - PB 10% - NDT 55% - EM (Mcal/kg) 2,0 - Ca 0,35% MS – P 0,25% MS Mantença CMS 1,8-2,4% PV – PB 7% - NDT 53% - Ca 0,3-0,8% MS – P 0,25-0,40% MS Gestação precoce CMS 2,4-3,0% PV – PB 9-10% - NDT 53% - Ca 0,3-0,9% MS – P 0,2-0,4% MS Gestação tardia CMS 2,4-3,0% PV – PB 13-14% - NDT 53% - Ca 0,3-0,9% MS – P 0,2-0,4% MS Lactação CMS 2,8-4,6% PV – PB 12-17% - NDT 53-66% - Ca 0,3-0,8% MS – P 0,25-0,45% MS Caprinos leiteiros castrados ganhando 100-150 g/diaa CMS 3,3-3,8% PV – PB 12% - NDT 67% - Ca 0,3-0,4% MS – P 0,3-0,35% MS Caprinos de corte castrados ganhando 100-150 g/diaa CMS 3,0-3,4% PV – PB 15-17% - NDT 67% - Ca 0,4% MS – P 0,3% MS Caprinos leiteiros inteiros ganhando 100-150 g/diaa CMS 3,2-3,7% PV – PB 10-15% - NDT 67-86% - Ca 0,4% MS – P 0,3% MS Caprinos de corte inteiros ganhando 100-150 g/diaa CMS 3,3-3,7% PV – PB 15% - NDT 67% - Ca 0,4% MS – P 0,3% MS Cabras gestantes CMS 2,2-2,8% PV – PB 20-24% - NDT 55-65% - Suplemento mineral 3% Cabras em lactação CMS 3,0-5,0% PV – PB 16-24% - NDT 65% - Ca 0,75 g/kg – P 0,3 Creep-feeding para cabritos CMS Ad libtum – PB 12-18% - NDT 80% Caprinos em crescimento CMS 2,5-3,0% PV – PB 14% - NDT 55-70% - Relação Ca:P 2:1 Machos adultos CMS 2,5-3,5% PV – PB 14-16% - NDT 60% - Relação Ca:P 2:1 Reprodutores em serviço CMS 2,5-3,0% PV – PB 10% - NDT 65% Confinamento de caprinos PB 14% - NDT 65% - Ca 0,8 % – P 0,4% Fonte: adaptação de BORGES & GONÇALVES, 2011 e NRC, 2007. A tabela 19 apresenta os valores de energia metabolizável (EM) em MJ/dia e a concentração proteica para formular rações para caprinos. Para transformar MJ em Mcal, saiba que 1 MJ equivale a 0,24 Mcal. Note que as concentrações de energia, proteína e/ou NDT, aportados nas tabelas aqui presentes variam em função das equações de predição ao qual são calculados os requerimentos. Tabela 19: Valores simples para formular rações para ovinos e caprinos em diferentes cenários de produção Estágio produtivo EM (MJ/dia) PB (%) Mantença EMm = 0,12 x PV + 1,5 6 – 8 Rápido crescimento EMm x 2 14 – 16 Gestação (3-4 meses) 1 feto EMm + 3 8 – 10 2 fetos EMm + 4 Gestação (último mês) 1 feto EMm + 4 8 – 10 2 fetos EMm + 8 Lactação (1º mês) 1 cria EMm + 8 12 – 14 2 crias EMm + 12 Fonte: DA SILVA, 2021. Por exemplo, utilizando a tabela 19, calcular a EM requerida em Mcal/dia para cabra Saanen de 60 kg de PV em mantença e depois para a mesma cabra em lactação com 1 cria: Mantença: 0,12 x 60 + 1,5 = 8,7 MJ para Mcal: 8,7 x 0,24 = 2,09 Mcal/dia Lactação: 8,7 + 8 = 16,7 MJ para Mcal: 4 Mcal/dia Note que os valores de produção devem ser adicionados aos de mantença. As exigências minerais dos caprinos, segundo autores, e o nível máximo tolerável na dieta são apresentadas na tabela 20. Tabela 20: Exigências minerais de caprinos MACROMINERAIS CHURCH (2002) (% MS) HART (2011) (% MS) NRC (2005) Nível máximo (% MS) Ca 0,2 – 0,8 0,3 – 0,8 1,5 P 0,2 – 0,4 0,25 – 0,4 0,6 Mg 0,1 – 0,2 0,18 – 0,4 0,6 K 0,5 – 0,8 0,8 – 2,0 2 S 0,15 – 0,25 0,2 – 0,32 0,3 – 0,5 Na 0,09 – 0,18 0,2 4 Cl 0,09 – 0,18 0,2 MICROMINERAIS CHURCH (2002) mg/kg MS HART (2011) mg/kg MS NRC (2005) Nível máximo (mg/kg MS) Co 0,1 – 0,2 0,1 – 10 25 Cu 7 – 11 10 – 80 15 Fe 30 – 50 50 – 1000 500 I 0,1 – 0,8 0,5 – 50 50 Mn 20 – 40 0,1 – 3 2000 Mo 0,5 0,1 – 3 5 Se 0,1 – 0,2 0,1 – 3 5 Zn 20 – 33 40 – 500 300 -/- Energia metabolizável para caprinos A energia metabolizável é a parte da energia bruta que não aparece em fezes, urinas e nos gases produtos da fermentação (principalmente metano). É determinada pela subtração das perdas de energia na urina e gases combustíveis da energia digestível (ED) consumida. É um pouco mais precisa que a ED em termos de estimativa da energia disponível, porém mais caro para determiná-la. Compara-se com a energia proveniente do NDT menos a energia dos gases da fermentação. Determinamos através da fórmula: EM = EB (energia bruta) – (energia perdida em fezes + energia perdida em gases da fermentação + energia perdida na urina) -/- Em muitos cálculos da formulação de dietas para animais de produção é utilizada a energia metabolizável no lugar do NDT. Logo, apresentamos as exigências de energia metabolizável dos caprinos em função do peso e da categoria fisiológica do animal. 1. Mantença (EMm): Pré-desmame (nascimento aos 3 meses de idade): Fêmeas e machos castrados 0,107 Mcal/kg PV0,75 Machos inteiros 0,125 Mcal/kg PV0,75 -/- Crescimento (do desmame aos 18 meses de idade): Fêmeas e machos castrados 0,128 Mcal/kg PV0,75 Machos inteiros 0,149 Mcal/kg PV0,75 -/- Adultos (> 18 meses de idade): Fêmeas e machos castrados 0,120 Mcal/kg PV0,75 Machos inteiros 0,138 Mcal/kg PV0,75 -/- 2. Ganho de peso (EMg): Pré-desmame 0,00320 Mcal/kg PV0,75 Crescimento 0,00552 Mcal/kg PV0,75 Adultos 0,00681 Mcal/kg PV0,75 -/- 3. Produção de leite (EMl): EMl (Mcal/dia) = (kg de leite x 1,179943) x ((1,4694 + (0,4025 x %gordura))/3,079) 4. Gestação (EMgest): EMgest (Mcal/dia) = (- 15,467 - (1,1439 x PMnasc) + (0,26316 x D) - (0,0021667 x NC) – (0,0010963 x D2) + (0,011772 x PMnasc x D) - (0,98352 x PMnasc x NC) + (0,011735 x PMnasc x D x NC)) x 0,239 Onde: PMnasc = peso médio esperado da cria ou crias ao nascimento em kg; D = dias de gestação e NC = número de crias. As exigências nutricionais dos caprinos servem de alicerce para a elaboração de uma dieta, uma vez que, diante os cálculos, é necessário estimar uma quantidade x de um dado alimento para suprir uma exigência final seja proteica, energética ou qualquer outra. Essas tabelas de exigências dos caprinos servem de base após a caracterização do lote para que deve ser elaborada uma mistura. Por exemplo, um lote de caprinos com 30 kg de peso vivo em mantença, quais são as exigências de cada animal? Basta consultar a tabela 3 deste manual para depois ser levantado os alimentos e a composição destes e começar a elaborar a dieta. Relação volumoso:concentrado (v:c) para caprinos Além do balanceamento dos nutrientes necessários, a relação v:c da dieta depende, basicamente, da qualidade do volumoso e da ração concentrada. Se o volumoso possuir boa qualidade, consequentemente seu valor nutricional será melhor e, para caprinos em mantença por exemplo, pode ser empregado em 100% da ração; por sua vez, se o volumoso possuir péssima qualidade nutricional será necessária a adição de concentrado na dieta diária do animal, não esquecendo de que essa ração concentrada deverá atender os requisitos do animal, logo a ração deverá ser de boa qualidade e balanceada. Além da qualidade do volumoso e/ou concentrado, a relação v:c depende também do objetivo final de criação, isto é, se é necessário engordar os animais em menos tempo para abate, ou em pastagem etc., portanto, também depende da necessidade de ganho de peso diário para os animais, uma vez que a finalidade é um GPD maior é utilizada uma relação concentrada maior que a volumosa. Segundo estudos, a relação volumoso:concentrado influencia diretamente em padrões como consumo de matéria seca, presença de fibras, digestibilidade da matéria seca e nutrientes e atividades de mastigação e ruminação. Segundo esses estudos, uma relação mais próxima de 50:50 aumenta o teor de fibra, aumenta a ingestão de MS e aumenta a digestibilidade da MS, mas diminui a da fibra, e diminuem as atividades físicas da mastigação e o processo de ruminação. O NRC, 2007 sugere as proporções de v:c para caprinos as mesmas dos ovinos, que são divididas em diferentes situações. -/- Exemplos de proporções de volumoso e concentrado na dieta de caprinos PV Kg VOLUMOSO % CONCENTRADO % Mantença 70 100 0 Cabras secas 70 100 0 Últimas 4 semanas de gestação 70 85 15 Últimas 4-6 semanas de lactação 1 cria 70 85 15 Últimas 4 semanas de gestação 70 65 35 Primeiras 6-8 semanas de lactação com 1 cria 70 65 35 Últimas 4-6 semanas de lactação com 2 crias 70 65 35 Primeiras 6-8 semanas de lactação com 2 crias 70 65 35 Cabras secas – primeiras 15 semanas de gestação 55 85 15 Cabras – últimas 4 semanas de gestação 55 70 30 Cabras – últimas 4 semanas de gestação 55 60 40 Cabras – primeiras 6-8 semanas de lactação com 1 cria 55 60 40 Cabras – primeiras 6-8 semanas de lactação com 2 crias 55 50 50 Cabras de reposição 30 65 35 40 65 35 50-70 85 15 Machos para reposição 40 70 30 60 70 30 80-100 70 30 Engorda 30 40 60 40 25 75 50 20 80 Cabritos recém-desmamados até adultos 10 10 90 20 15 85 30 15 85 40-60 15 85 Fonte: DA SILVA, 2021. -/- ALIMENTOS PARA CAPRINOS -/- De forma geral, sabemos que os alimentos dividem-se em dois grupos os alimentos volumosos e os concentrados. Os volumosos são aqueles que possuem carga nutritiva menor e que o animal deve consumir em maior quantidade para suprir suas exigências nutricionais, o teor de proteína desses alimentos é variável, mas, na maior parte, não ultrapassa os 20%; por sua vez, a quantidade de fibra é grande já que esse grupo engloba as forragens, pastagens, fenos, palhas, silagens, raízes, tubérculos etc. Dentro da classificação de alimentos volumosos, ainda encontramos os volumosos “proteicos” que são representados pelas forrageiras leguminosas e algumas gramíneas. Os concentrados, por sua vez, são aqueles com alta carga nutricional e que o animal, mesmo consumindo poucas quantidades (em torno de 1 kg), supre todas suas exigências nutricionais; estes são divididos em alimentos que fornecem mais energia do que proteína (energéticos) como o milho, e nos que fornecem mais proteína que energia (proteicos) como o farelo de soja. Existem uma série de alimentos que podem ser utilizados na alimentação dos caprinos. Existem ainda, os alimentos provenientes da caatinga com alto potencial para a alimentação dos caprinos; a composição proteica desses alimentos e a parte comestível que pode ser fornecida aos caprinos é apresentada na tabela 21. Como a maioria dos caprinos são criados em regiões onde há escassez alimentar e baixas oportunidades de fornecimento de ração concentrada, há os alimentos não usuais que possuem enorme capacidade para manter os animais ou para que continuem produzindo em períodos de seca, por exemplo. Na região semiárida do Brasil, os alimentos não-convencionais mais comumente utilizados são cactáceas como coroa de frade, mandacaru e a palma; e outros como algaroba, faveira, moringa, umbu, maniçoba, leucena, aveloz etc. Uma das melhores alternativas alimentares em épocas de escassez é a produção e o fornecimento de fenos de gramíneas locais, silagem de sorgo e girassol. Tabela 21: Forragens nativas do nordeste brasileiro usadas como alimento Fonte: CODEVASF, 2011. A composição bromatológica dos ingredientes utilizados na alimentação dos caprinos, que é indispensável para a elaboração de dietas que supram os requisitos é apresentada na tabela 22. Tabela 22: Composição bromatológica dos alimentos utilizados na alimentação de caprinos Alimento MS% PB% EE% EM (Mcal/kg) NDT% Ca% P% Concentrados energéticos Algaroba farelo integral 85 8,6 0,54 - - 0,31 0,14 Arroz farelo desengordurado 88,2 16,8 1,66 2,1 24,9 0,09 1,8 Arroz farelo desfinitizado 90,8 18 1,65 - - 0,31 2,04 Arroz farelo integral 88,9 13,4 16,4 3,3 87,5 0,11 1,73 Arroz farelo parboilizado 91,2 16,2 24,25 - - - 0,09 Arroz grão c/casca 89,1 8,2 3,9 2,0 56,1 0,09 0,08 Continuação MS% PB% EE% EM (Mcal/kg) NDT% Ca% P% Arroz grão s/casca 86,2 8,5 1,2 - - 0,04 0,16 Aveia grão 90,4 14,6 3,8 3,2 83,3 0,13 0,35 Batata 29,1 3,1 0,3 3,1 84,6 0,33 0,08 Batata doce - 6 0,6 - - 0,05 0,11 Beterraba 14 2 0,4 - - 0,18 0,12 Cacau farelo 88,8 15,9 4,5 2,4 64,5 0,74 0,5 Centeio grão 88,4 18,1 1,9 - - 0,68 0,42 Cevada grão 89,9 12,4 1,5 2,8 76,8 0,05 0,37 Dendê torta 91 15,4 9,3 3,1 82,3 0,2 0,75 Faveira vagem 77,3 11,2 1,25 - 72,5 - - Mandioca raspa 87,7 2,8 0,5 3,0 82,2 0,21 0,07 Milheto grão 88,1 12,1 3,2 - - - - Milho grão/fubá 88 9 4 3,3 87,7 0,03 0,26 MDPS 87,9 7,1 3,15 2,8 75,9 0,04 0,22 Milho espiga silagem 55,2 8,1 3,7 3,2 85,9 0,05 0,27 Milho gérmen farelo 89,9 11 22,9 3,9 103,8 0,03 0,42 Milho grão reidratado silagem 65,8 9,3 4,7 3,75 99,6 - - Milho silagem grão úmido 66,7 9,2 4,6 3,3 88,2 0,03 0,25 Polpa cítrica 88,4 6,9 3,1 2,9 78,3 1,8 0,13 Soja casca 90,1 12,6 2,2 2,7 72,5 0,52 0,16 Sorgo grão 88 9,3 2,9 3,1 84,4 0,07 0,29 Sorgo grão reidratado silagem 65,3 9,15 3,4 3,0 79,9 - - Trigo farelo 87,6 16,7 3,6 2,95 77,3 0,17 1,01 Trigo grão 89,1 14,2 1,45 - - - - Concentrados proteicos Algodão caroço 90,6 23,1 19,2 3,45 88,2 0,27 0,75 Algodão farelo 28 89,8 28 2,0 2,8 68,1 0,26 0,77 Algodão farelo 38 89,7 38 1,5 2,7 65,6 0,24 0,97 Algodão farelo 42 90,5 42 1,6 3,0 69,8 0,22 0,96 Algodão torta 90,4 29,6 9,5 3,0 75,6 0,28 0,58 Continuação MS% PB% EE% EM (Mcal/kg) NDT% Ca% P% Amendoim farelo 89,4 56 1,3 3,9 89,5 0,18 0,62 Amiréia 90,6 200 5,0 - 22 0,12 0,08 Babaçu farelo 90 20,6 1,6 2,75 71,9 0,13 0,36 Babaçu torta 90,8 19,3 8,0 3,0 78 0,15 0,69 Crambe farelo 89,1 35,9 1,2 3,1 73,9 0,29 0,47 Canola farelo 89,4 40,1 2,5 3,5 83,4 0,62 0,82 Colza farelo 91,2 40 5,2 - - 0,65 1,34 Colza grão 93,3 23,6 43,7 - - 0,24 0,81 Farinha de ostras 95,7 33,7 - - - 36,2 5,3 Fava grão 87,1 22,2 0,9 2,6 - 0,12 0,53 Feijão moído 89,6 24,2 1,5 3,2 80,8 0,54 0,43 Guandu grão 88,5 21,1 0,8 2,5 - 0,1 0,32 Guandu grão tostado 89,3 20,3 0,8 2,5 - 0,1 0,31 Girassol farelo 90,2 31,4 1,9 2,9 71,1 0,3 0,9 Linhaça integral 90 21 34 - - 0,25 0,5 Linhaça torta - 32 3,5 - 75 0,4 0,8 Linhaça farelo 92 34 1,0 - - 0,6 0,6 Mamona farelo 89,6 38 2,7 2,95 70,9 0,7 0,77 Mamona farelo detoxificado 89,2 38,1 1,5 2,9 69,3 1,46 0,65 Mamona torta 89,2 31,8 7,0 3,3 81,6 0,72 0,84 Mamona torta detoxificada 86,3 34 5,5 3,0 73,9 2,14 0,8 Milho glúten 60 90,6 60 2,8 3,8 83,9 0,05 0,44 Milho glúten farelo 21 88,8 21 2,8 3,0 76,7 0,16 0,7 Nabo forrageiro torta 91,9 37,3 18,1 3,7 91,2 0,36 1,71 Milho (DDGS) 91,2 31,8 8,2 - 89 0,05 0,86 Resíduo de cervejaria 22,3 25,6 6,3 3,6 92,2 0,33 0,78 Milho – (DDG) 87,5 23,6 12,7 3,4 86,2 0,05 0,32 Milho (WDG) 31,8 32 6,7 - 93 0,05 0,35 Soja farelo 87 45 2,0 3,4 73 0,3 0,61 Soja farelo extrusado 96,7 41 10,6 3,7 89,7 0,07 0,57 Soja grão 92,8 37 18,8 4,1 87 0,25 0,58 Continuação MS% PB% EE% EM (Mcal/kg) NDT% Ca% P% Soja grão tostado 91,7 39,1 21 3,9 94,2 0,25 0,49 Ureia 97,9 280 - - - - - Coprodutos e/ou subprodutos Arroz palha 89 4,4 - - - - - Abacaxi desidratado 87,1 8,8 1,5 2,1 58,8 0,41 0,18 Acerola subproduto 84,2 11,7 2,4 1,85 51,2 0,41 0,18 Aveia palha 88,8 4,6 2,3 - - - - Batata doce folha - 26,8 - - - - - Batata doce rama 17,4 11,5 2,3 2,4 66,8 1,44 0,32 Cana-de-açúcar bagaço 91 2,0 0,69 1,7 46,6 0,21 0,07 Café casca 84,8 10,1 1,6 1,8 49,7 0,33 0,13 Capim elefante colmo 22 5,8 - 2,0 55,9 - - Caju subproduto suco 88,7 13,9 3,1 - 47,2 0,43 0,1 Maça bagaço 9,9 9,8 - - - - - Mandioca casca 88,6 4,5 1,15 2,7 74,5 0,48 0,06 Maracujá subproduto 85,8 11,9 2,4 1,85 50,8 0,53 0,13 Trigo palha 90 3,9 - - - - - Uva bagaço 35,2 15,9 - - - - - Forragens secas Alfafa feno 85,8 18,7 2,0 2,1 66,4 1,17 0,33 Alfafa feno peletizado 90 25 - - - - - Aveia feno 90 10 2,3 2,0 54 0,4 0,27 Aveia preta feno 87,7 9,9 1,75 - - - - Azevém feno 93 13,5 1,4 - - - - Brachiaria B. feno 88 4,2 1,2 1,9 54 0,33 0,11 Brachiaria D. feno 89 7 1,35 1,9 54,5 0,27 0,14 Cevada feno 90 9 2,1 2,1 57 0,3 0,28 Coast-cross feno 87 10,5 1,75 1,9 53 0,27 0,38 Capim elefante feno 87,3 6 1,8 1,8 52 0,24 0,18 Capim gordura feno 90,7 4,5 2,2 1,5 45 - - Continuação MS% PB% EE% EM (Mcal/kg) NDT% Ca% P% Capim jaraguá feno 90 6,5 - - 53 0,47 0,12 Capim tifton 85 feno 88 9,9 1,45 2,2 57,7 0,33 0,27 Jureminha feno 88 15,9 2,0 1,9 51,7 - - Maniçoba feno 86 12 4,2 2,1 56,2 - - Trevo feno 89 16 2,2 2,1 57 1,73 0,24 Trigo feno 90 9 2,0 2,1 57 0,21 0,22 Triticale feno 90 10 - 2,0 56 0,3 0,26 Silagens (pré-secado) Alfafa silagem 30 18 3,0 2,0 55 1,4 0,29 Arroz silagem planta 37 8,5 - - - - - Aveia preta silagem 23,4 11 2,9 - - - - Aveia silagem 35 12 3,2 2,2 60 0,34 0,3 Azevém silagem 22,4 10,6 1,9 - - - - Cana-de-açúcar silagem 25,7 3,5 1,7 1,9 54,8 0,3 0,05 Cana silagem 0-0,5% CAO 28,9 2,8 1,1 2,2 62 - - Cana silagem 0,5% ureia 28,6 10 - - - - - Cana silagem 1% ureia 31 15 - - - - - Cana silagem 1,5% ureia 29 18 - - - - - Capim-colonião silagem 32 6,6 2,6 1,5 47,3 - - Capim-colonião silagem 2% melaço 26 2,3 1,2 1,5 54 - - Capim elefante silagem 27,5 5,5 2,2 1,7 50 0,31 0,2 Capim elefante silagem 1,5% melaço 23,7 1,5 0,9 0,25 13,3 - - Capim elefante silagem 3% melaço 19,2 1,1 0,8 0,2 11 - - Capim elefante silagem 4% melaço 18,8 1,1 0,7 0,2 10,3 - - Capim elefante silagem 7,5% melaço 19,3 1 0,7 - 11 - - Capim jaraguá silagem 32,2 1,4 0,9 - 15,4 - - Capim mombaça silagem 24,4 7,4 1,7 1,7 49,4 0,44 0,12 Cevada silagem 30 18 3,0 2,0 55 1,4 0,29 Estilosantes silagem 29,3 11,8 1,8 1,8 49 - - Continuação MS% PB% EE% EM (Mcal/kg) NDT% Ca% P% Girassol silagem 24,7 9,6 12,4 2,0 56,1 1,02 0,24 Mandioca silagem raiz 40,4 1,2 0,2 1,4 - 0,09 0,04 Milho silagem 31,1 7,2 2,9 2,3 63,8 0,28 0,19 Milheto silagem 19 15 3,8 2,3 62,7 - - Milho silagem sem espiga 21,3 6,4 1,4 1,9 53,6 - - Soja silagem 25,8 17,8 9,5 2,3 60 - - Sorgo silagem 32 9 2,7 2,1 59 0,48 0,21 Sorgo forrageiro silagem 28,1 6,3 3,4 2,3 63,9 0,14 0,14 Sorgo silagem com tanino 27,6 7,1 2,1 2,2 61,7 - - Sorgo silagem sem tanino 28 7,4 2,2 2,2 61 - - Triticale silagem 26,3 14 1,4 2,1 58 0,66 0,4 Trigo silagem 33 12 3,2 2,1 59 0,4 0,28 Forragens verdes Amendoim forrageiro 22,8 18,4 1,9 2,1 54,5 2,1 0,22 Cana-de-açúcar 28,9 2,8 1,5 2,3 64,5 0,24 0,08 Capim-angola 92 4,2 - - 42,6 0,1 0,19 Capim braquiária brizantha 34 6,9 2,0 1,8 52 0,31 0,11 Capim bb (46-60 dias) 20,8 9,5 4,0 2,0 55,7 0,71 0,47 Capim bb (61-90 dias) 24,9 6,5 4,0 2,1 58 0,46 0,38 Capim bb (91-120 dias) 27,7 4,8 1,2 1,9 54 0,58 0,17 Capim braquiária marandu 33,2 7,7 2,0 1,8 51,5 0,28 0,09 Capim bm (61-90 dias) 37,8 5,5 1,8 1,8 53 0,08 0,05 Capim braq. marandu outono 31 11,8 1,4 2,0 55 - - Capim bm primavera 27 11,3 2,0 2,1 58,7 - - Capim bm verão 29 12,3 1,8 2,0 54 - - Capim bb MG4 23 9,2 1,9 1,9 52,6 - - Capim bb MG4 (61-90 dias) 29 6,4 1,5 1,9 53 - - Capim bb piatã (61-90 dias) 34 4,7 1,7 1,9 55,8 - - Capim bb xaraés 23 9,3 1,5 2,0 56 0,6 0,09 Capim braquiária decumbens 28,5 6,7 1,8 1,8 51,5 0,4 0,1 Capim bd (61-90 dias) 27,8 7,2 2,1 1,7 49,3 0,3 0,19 Continuação MS% PB% EE% EM (Mcal/kg) NDT% Ca% P% Capim bb (91-120 dias) 30 5,7 2,1 1,9 55,2 0,3 0,2 Capim bd (121-150 dias) 43,7 5,1 2,1 2,0 56,7 0,72 0,28 Capim braquiária humidícola 28 7,4 2,5 1,9 54,8 0,38 0,12 Capim buffel (61-90 dias) 34,6 7,8 1,8 1,8 52,3 - - Capim coast cross 32,6 12,2 2,5 - 65,4 0,46 0,16 Capim colonião outono 29,4 14,7 1,3 - - - - Capim colonião primavera 23,4 14,6 1,6 - - - - Capim colonião verão 26,7 16,5 2,6 - - - - Capim elefante 21,7 7 2,3 1,7 50 0,36 0,23 Capim elefante pastejo 24,5 3,3 0,8 0,3 15,7 - - Capim gordura 28 6,9 1,3 2,1 58 0,24 0,07 Capim gordura pastejo 24,8 1,7 0,8 - 8,5 - - Capim jaraguá 29,7 2,7 0,8 - 16,3 - - Capim massai (61-90 dias) 29,5 8 2,1 1,8 51,6 - - Capim mombaça 27 11 1,7 1,9 53 0,74 0,19 Capim mombaça (61-90 dias) 26,8 8,3 1,4 1,8 52 - 0,11 Capim setária (61-90 dias) 21,7 9 1,4 1,9 53,7 - - Capim sudão 19 12,9 2,9 2,0 55 - - Capim tanzânia 23,4 9,5 2,4 1,8 51 0,59 0,14 Capim tanzânia (61-90 dias) 31 5,6 1,7 1,8 53 - - Capim tifton 68 23 13,4 2,9 - - - 0,08 Capim tifton 85 27 12,9 2,0 1,4 39,5 0,54 0,5 Capim-de-rhodes 89 9,6 3,2 - 56,6 - - Crotalária 88,6 15,9 2,7 - 48,9 - - Cunhã 29 16,6 5,1 2,6 69,5 - 0,18 Galáxia 90 13,8 3,6 - 53,5 - - Gliricídia 22 17 5,4 2,2 59 - - Leucena 32 21,2 3,9 2,7 69 0,86 0,18 Maniçoba 24,8 19,4 7,1 2,5 65,3 - 0,18 Milheto 20 12,2 3,1 2,2 60 0,72 0,26 Mororó 47,4 11,3 3,8 2,3 62 - - Continuação MS% PB% EE% EM (Mcal/kg) NDT% Ca% P% Palma miúda 11,3 4,1 2,6 2,3 64,2 3,84 0,22 Sabiá 43,6 12 4,3 2,3 62,2 - - Sorgo forrageiro 24 6,9 3,0 1,8 51,6 0,13 0,13 Forragens verdes e cultivadas Alfafa 25 22 2,7 - 65 1,64 0,23 Aveia branca 90 15 - - - - - Aveia preta 21 8 1,6 2,2 61,5 0,31 0,25 Aveia + Azevém (cultivada) 19 19 4,8 - - - - Azevém 15 15 3,6 - 68 0,43 0,28 Azevém pré-florescimento 17,5 15 1,7 2,4 66,6 0,42 0,3 Azevém início floresc. 22,4 12 1,5 2,3 63 0,45 0,27 Cana-de-açúcar caule 26 2,9 3,2 - - - - Cana-de-açúcar caule+folhas 24 7 3,0 2,3 63,5 0,23 0,21 Centeio 25 13 1,5 2,2 60 0,26 0,29 Cornichão 21 18 2,0 2,3 63 0,92 0,27 Festuca 24 8,5 1,8 2,3 64 0,32 0,3 Trevo branco 16 19 2,1 2,4 64 1,1 0,37 Amendoim branco 36,6 16,8 2,4 2,4 67 1,23 0,18 Braquiarão - 9 1,7 2,3 57 0,3 0,17 Capim colonião (20-60 dias) - 11-5 - - 61-47 0,45¹ 0,24² Capim pangola 35 7,5 - - 55 - - Guandu (40->90 dias) - 21-13 - - - - - Fontes alternativas (Nordeste) Coroa de frade 11 8 3,5 2,5 - 2,06 0,17 Facheiro 10,5 7,5 2,4 2,5 - 5,03 0,12 Mandacaru 14,5 3,5 1,8 2,5 - 3,06 0,07 Palma gigante 12 5 1,9 2,5 - 2,35 0,13 Xique-xique 13 6 1,3 1,7 48,3 3,12 0,07 Cana-de-açúcar caldo 23 0,3 - 2,0 - 0,01 0,02 Cana-de-açúcar levedura 89 35 1,9 2,0 - 0,48 0,73 Continuação MS% PB% EE% EM (Mcal/kg) NDT% Ca% P% Coco farelo 91 24 9,0 3,0 - 0,29 0,51 Capim buffel feno 87 4,5 1,2 1,2 - 0,21 0,06 Capim tifton feno 91 8,5 1,6 1,75 53 0,49 0,14 Cunhã feno 90,5 18 2,7 3,0 - 0,43 0,18 Erva-sal feno 89 9 1,6 - - 0,77 0,04 Feijão bravo feno 80 11,5 3,3 3,0 51 - - Flor de seda feno 75 14 6 1,9 - 2,6 0,22 Guandu feno - 14 2,7 - - - 0,11 Leucena feno 91 21 3,2 2,8 55 1,18 0,29 Mata-pasto feno 89 9,5 - - - 1,75 0,12 Sorgo forrageiro feno 90,8 4,2 - 2,0 - 0,4 0,22 Canafístula 40,8 12,9 4,6 2,0 54 - - Capim elefante roxo 20 8,5 3,5 - - 0,42 0,41 Géria 88 16 1,0 - - 1,17 0,21 Feijão dos arrozais 24 17 5,0 2,7 69 2,6 0,04 Glicirídia casca - 13 0,9 - - 2,06 0,18 Glicirídia caule - 5,6 0,4 - - 0,44 0,07 Glicirídia folha - 22,7 2,0 - - 2,44 0,18 Guandu parte aérea 35 19 5,0 - - 0,89 0,12 Jurema preta 35 12 9,0 - - 0,67 0,25 Leucena caule 49,4 7,5 2,1 - - 0,56 0,69 Leucena folha 35,5 24 2,2 - - 2,18 0,2 Mandioca folha 45 22 5,5 2,5 - 0,91 0,23 Siratro 25 16 2,7 - - 1,02 0,16 Umbuzeiro folha 15 15 8,6 - - 1,29 0,22 Mandioca parte aérea silagem 12,3 18 3,6 2,0 53 1,21 0,14 Caju castanha 97,5 21,9 40,1 5,5 128,9 - - Caju castanha farelo amêndoa 95 23,5 47 3,5 - 0,6 0,25 Caju farelo pseudofruto 89,5 14,8 6,0 - 75 0,06 0,04 Coco amêndoa farelo 96 25 21,7 2,7 - 0,31 0,26 Goiaba subproduto 55 8 4,7 - 35,7 0,15 0,36 Continuação MS% PB% EE% EM (Mcal/kg) NDT% Ca% P% Mandioca bagaço 87,6 2 0,6 - 65 0,14 1,8 Maracujá subproduto 92 11 0,7 1,8 52 0,42 0,22 Melão subproduto 92 14 2,1 0,95 37 0,56 0,8 Milho palha 92,3 5,1 0,4 2,5 54 0,15 0,13 Fontes de minerais Calcário 100% MS – 38% Ca e 1% Mg Calcário calcítico 100% MS – 33,6% Ca Calcário dolomítico 92% MS – 20,3% Ca e 9,6% Mg Cloreto de potássio 100% MS – 39,6% K Flor de enxofre 100% MS – 96% S Fosfato bicálcico 100% MS – 23% Ca – 18% P – 1% Mg – 0,08% K e 0,13% Na Fosfato tricálcico 99,6% MS – 40,2% Ca e 16% P Iodato de potássio 100% MS – 59,3% I Óxido de magnésio 98% MS – 0,58% Ca – 53,8% Mg e 0,03% Na Sal comum 99% MS – 39,5% Na – 2,7% Mn e 9,9% Zn – 1,3% Cu Selenito de sódio 100% MS – 45,6% Se Sulfato de cobalto 100% MS – 20% Co Sulfato de cobre 100% MS – 25,4% Cu Sulfato de manganês 100% MS – 32,5% Mn Sulfato de zinco 100% MS – 35% Zn Fontes proteicas de origem animal³ Proibidos na alimentação de ruminantes dada a IN MAPA – 8/2004 Art. 1º Fonte: DA SILVA, 2021. Na formulação de ração para os animais de produção, é importante levar em consideração que dos mais variados alimentos citados supra, e de tantos outros usados na alimentação e que não são usuais, existem perigos dado os fatores antinutricionais presentes nestes. Por exemplo, os taninos presentes no sorgo, as aflatoxinas presentes no farelo de amendoim, a sojina presente no farelo de soja, o efeito laxativo do farelo de trigo etc. Logo, quando se deseja formular uma dieta, é necessário obedecer às recomendações e nível de uso do ingrediente em quantidade ou porcentagem na ração. A tabela 23 mostra os níveis recomendados dos principais ingredientes para rações de caprinos. Tabela 23: Níveis recomendados de ingredientes para rações de caprinos Ingrediente Quantidade Milho 70% ou mais (depende) Farelo de soja Sem restrição de uso Grão de sorgo Substitui 100% do milho Farelo de trigo 10 – 40% Farelo de arroz Até 20% Farelo de arroz desengordurado 10 – 30% Farelo de amendoim 100 – 400 g/cab./dia Farelo de algodão Até 40% (não recomendável para reprodutores) Casca de amendoim 5% Aveia 70% Centeio moído 40% Polpa seca de cevada 40% Farelo de linhaça 15% Fubá de milho 50% Proteinoso de milho 25% Glúten de milho 10 – 25% Sabugo de milho desintegrado 5% Caroço de algodão 25% Farelo de girassol 30% Ureia 2% Casca de algodão 40% Casca de arroz 15% Torta de girassol Até 30% Torta de colza Até 20% Torta de linhaça Até 20% Torta de mamona 5 – 10% Torta de gergelim Até 30% Raiz fresca mandioca 1 – 2% do PV Polpa cítrica Até 30% Melaço de cana 150 – 230 g/cab./dia Melaço de cana em pó Até 5% Farelo de coco Até 30% Feijão Até 15% Gergelim Até 30% Girassol 20 – 30% Ureia 50 g/100 kg PV Bananeira Até 20% Farelo de cacau Até 30% Farelo de café Até 20% Bagaço de cana Até 30% Cana-de-açúcar picada fresca 1 – 2 kg/cab./dia Centeio 40 – 40% Cevada 40 – 60% Semente de girassol 400 – 500 g/cab./dia Torta de girassol 200 – 300 g/cab./dia Farelo integral de mandioca Até 50% Farelinho de trigo 150 g/cab./dia Grão de trigo Até 50% Fonte: DA SILVA, 2021; NUNES, 1998 e TEIXEIRA, 1998. Além dos alimentos convencionais ou não acima citados, existem os alimentos chamados de subprodutos que possuem alto potencial nutricional para a alimentação animal. A tabela 24 apresenta a composição de subprodutos da agricultura com alto potencial para serem utilizados na formulação de ração como ingrediente e/ou suplemento. Tabela 24: Composição de subprodutos e alimentos não usuais para rações de caprinos Alimento MS (%) PB (%) NDT (%) EE (%) FB (%) Ca (%) P (%) Abacate, farelo desengordurado 91 20,3 50 1,2 19,3 - - Abacate, casca 24 6,9 90 34,9 24,5 0,11 0,18 Continuação MS (%) PB (%) NDT (%) EE (%) FB (%) Ca (%) P (%) Abacate, semente 41 4,9 90 3,8 5,9 0,04 0,20 Abacaxi 14,7 2,7 80,1 1,4 2,7 0,14 0,07 Abacaxi, bagaço 87 4,6 68 1,5 20,9 0,27 0,13 Abacaxi, coroa 16 10 42,8 3,1 23,1 - - Abacaxi, cortado verde 18 7,8 56 2,2 27 0,28 0,08 Arroz, casca 92 3,3 12 0,8 42,9 0,10 0,08 Banana, polpa fruto 24 4,5 84 0,8 2,1 0,03 0,11 Batata, farelo tubérculo 89 8,4 90 0,4 7,3 0,16 0,25 Batata, tubérculo fresco 23 9,5 81 0,4 2,4 0,04 0,24 Batata, silagem tubérculo 25 7,6 82 0,4 4 0,04 0,23 Batata-doce, planta 20 19,5 49,4 2,5 14,5 - - Batata-doce, tubérculo 31 5 80 1,3 6 0,09 0,13 Batata-doce, farelo tubérculo 90 5,4 80 1 3,7 0,17 0,16 Beterraba-forrageira 13,8 11,3 79,2 0,6 7,5 0,22 0,22 Cenoura 12 9,9 84 1,4 9,1 0,4 0,35 Cenoura, planta 16 13,1 74 3,8 18,1 1,94 0,19 Cenoura, polpa 14 6,4 62,8 7,8 18,6 - - Cevada, palha 91 4,3 49 1,9 42 0,3 0,07 Laranja, silagem do bagaço 11,3 8,8 65 2,2 17,7 - - Limão, bagaço 93 6,9 77 1,5 15,9 - - Ervilha, feno da planta 88 13,6 58 2,5 30,2 1,39 0,28 Ervilha, silagem da rama 25 13,1 57 3,3 29,8 1,31 0,24 Ervilha, farelo da vagem 90 19,7 84 1,6 26,3 - - Feijão, palha 90 6,8 51 1,5 44,5 1,85 0,14 Feijão, farelo da palha 92,1 7,7 44,1 1,5 39,6 - - Gergelim, torta da semente 94,7 38 88,8 26 4 - - Maça, bagaço 89 4,9 69 5,1 17 0,13 0,12 Maça, silagem do bagaço 21,4 7,8 74 6,3 20,6 0,1 0,1 Maça, fruto 17 2,8 70 2,2 7,3 0,06 0,06 Melão 4,1 11,5 70,7 3,3 23 - - Melão, torta 6,1 11,5 74,6 3,3 23 - - Continuação MS (%) PB (%) NDT (%) EE (%) FB (%) Ca (%) P (%) Pera 17,3 - 86,7 - - - - Pera, bagaço 91,5 6,1 70,6 2,1 23,8 2,38 0,12 Pêssego 10 8,7 80 3,7 10,3 - - Repolho 9,5 25,3 85,3 4,2 15,8 0,64 0,35 Repolho, folhas 14,8 14,4 66,7 2,5 14,3 0,63 0,21 Romã, bagaço 26 8,4 68,4 4,9 16,6 - - Soja, palha 88 5,2 44 1,4 44 1,59 0,06 Tomate, bagaço 92 23,5 58 10,3 26,4 0,43 0,60 Tomate, silagem do bagaço 29,5 19,2 63,9 14,6 44,9 0,5 0,47 Tomate, fruto 6 16,4 69 5 9,1 0,16 0,49 Uva, bagaço 91 13 33 7,9 31,9 0,61 0,06 Uva, farelo 90 30,2 - - - - - Fonte: NUNES, 1998. -/- FORMULAÇÃO DE RAÇÃO PARA CAPRINOS -/- A formulação de dietas para caprinos de corte ou leiteiros é análoga ao esquema de formulação para os demais ruminantes. Sempre é necessário categorizar os animais para determinar situações como peso vivo do animal, estado fisiológico, isto é, se está produzindo ou não, idade etc.; posteriormente, faz-se necessário a busca pelas exigências nutricionais dos animais mediante a literatura, seja através das publicações do NRC, AFRC ou CSIRO, caso o lote possua peso diferente das tabelas, por exemplo média de 27 kg de PV, basta utilizar as equações de predição para determinar as exigências de MS, PB, NDT ou EM, Ca e P; encontrada as exigências dos caprinos é necessário a avaliação de quais são os ingredientes disponíveis na propriedade e sua composição nutricional para ser utilizado de métodos matemáticos ou programações de computador para balancear as quantidades de cada um para que possam suprir a exigência do animal. Aqui, apresentarei situações de formulação práticas, que o profissional poderá se deparar no cotidiano profissional, dos quais os animais serão alimentados com o uso do creep-feeding; e animais em mantença, confinados para o ganho de peso, sob pastejo, gestantes e, por fim, em lactação. Para a determinação das exigências dos animais utilizarei os valores aqui descritos que foram compilados do NRC, 2007 e NUNES, 1998 descritos nas tabelas do capítulo 1. Para os alimentos serão usados os valores aqui presentes e compilados de diversos autores e descritos na tabela 20 do capítulo 2. A abordagem matemática utilizada para formular as dietas serão explicadas pelos métodos de formulação do quadrado de Pearson simples, que balanceia apenas um nutriente, ou duplo, que balanceia mais de um nutriente; pelo método algébrico com duas equações e dois ingredientes, ou três equações e três ou mais ingredientes, do qual esse método é capaz de sempre balancear dois ou três nutrientes, sendo os usados a PB e NDT. Os cálculos serão explicados de forma didática visando a facilidade para todos. EXEMPLO 1: formular dieta para uso em creep-feeding, para lote de cabritos com média de 10 kg PV e CMS à vontade. A ração deverá conter 20% PB e 80% de NDT. Os alimentos disponíveis são fubá de milho, raspa de mandioca e farelo de soja. Deixar 2% para suplemento mineral e sal. Determine o aporte mineral da dieta final. 1º passo: determinação da composição dos alimentos: Ingrediente MS % PB % NDT % Ca % P % Fubá de milho 91 10 86 0,02 0,29 Raspa de mandioca 88 3 69 0,15 0,80 Farelo de soja 89 47 81 0,25 0,65 -/- 2º passo: montar o sistema com 3 equações e 3 incógnitas onde x é milho, y raspa de mandioca e z farelo de soja: Equação MS: x + y + z = 98 Equação PB: 0,1x + 0,03y + 0,47z = 20 Equação NDT: 0,86x + 0,69y + 0,81z = 80 3º passo: resolvendo o sistema, vamos obter: x +y +z = 98 0,1x +0,03y +0,47z = 20 0,86x +0,69y +0,81z = 80 x +y +z = 98 0,1x +0,03y +0,47z = 20 0,432y -3,232z = -92 (-8,6 foi adicionada a linha 3) x +y +z = 98 -0,07y +0,37z = 10,2 0,432y -3,232z = -92 ( -0,1 foi adicionada a linha 2) x +y +z = 98 -0,07y +0,37z = 10,2 -0,949z = -29,051 (6,171 foi adicionada a linha 3) x + y +z = 98 y -5,286z = -145,714 -0,949z = -29,051 (a 2ª linha foi dividida -0,07) x +y +z = 98 y -5,286z = -145,714 z = 30,627 (a 3ª linha foi dividida -0,949) -/- 3ª linha: z = 30,6 -/- 2ª linha: y -5,286z = -145,714 -/- Use as variáveis já calculadas: y -5,286⋅30,627 = -145,714 -/- Resolva y: y = 16,2 -/- 1ª linha: x +y +z = 98 -/- Use as variáveis já calculadas: x +⋅16,169 +⋅30,627 = 98 -/- Resolva x: x = 51,2 -/- 4º passo: verificação da ração: Ingrediente MS kg PB kg NDT kg Ca g P g Fubá de milho 51,2 5,1 44 10,2 148,5 Raspa de mandioca 16,2 0,5 11,2 24,3 129,6 Farelo de soja 30,6 14,4 24,8 76,5 198,9 TOTAL 98 20 80 111 477 Exigência 98 20 80 - - DÉFICE - - - - - -/- 5º passo: a relação Ca:P é de 0,23:1, como para ruminantes o ideal é entre 1:1 e 2:1, é necessário a adição de uma fonte de Ca para aumentar a quantidade do mesmo na ração e aumentar a relação. Usando 2 kg (ER de 2%) de calcário, teremos: 1 kg calc. ---------- 0,38 kg Ca 2 kg calc. ---------- x kg Ca X = 0,76 kg de Ca. O total de Ca na ração será 871 g. E a relação agora será de 1,8:1, ideal. 6º passo: composição final da ração para creep-feeding para cabritos: Ingrediente MS kg MN kg % final MN PB kg NDT kg Ca g P g Fubá de milho 51,2 56,3 50,6 5,1 44 10,2 148,5 Raspa de mandioca 16,2 18,4 16,6 0,5 11,2 24,3 129,6 Farelo de soja 30,6 34,4 31 14,4 24,8 76,5 198,9 Calcário 2 2 1,8 - - 760 - TOTAL 100 111,1 100 20 80 871 477 Exigência 100 - 100 20 80 - - DÉFICE - - - - - - - -/- 7º passo: segundo o NRC, o CMS de um cabrito com essas características é de 0,3 kg/dia. Então a ração deverá ser composta por: Ingrediente CMS g MS g MN g PB g NDT g Fubá de milho 300 153,6 168,8 15,4 132,1 Raspa de mandioca 48,6 55,2 1,5 33,5 Farelo de soja 91,8 103,1 43,2 74,4 Calcário 6 6 - - TOTAL 300 300 333,1 60 240 -/- As 60 g da PB equivalem aos 20% e os 240 g de NDT equivalem a 80%. Por fim, para uma boa ração de uso em creep-feeding para cabritos com 10 kg PV, são necessários 170 g de milho moído, 60 g de raspa de mandioca, 110 g de farelo de soja e 6 g de calcário. -/- EXEMPLO 2: você foi convidado para trabalhar em uma fazenda que produz leite de cabras da raça Saanen, a média da produção leiteira é de 5 kg/dia com um teor de 3,5% de gordura. Forneça ração volumosa em até 20% da MS total. Os alimentos disponíveis para a ração volumosa são silagem de milho e feno de braquiária; para a mistura concentrada são milho moído, ureia e farelo de soja. Dados o CMS é de 3 kg/dia e o peso médio do lote de 50 kg. 1º passo: determinação das exigências nutricionais da cabra: Exigência CMS kg PB kg NDT kg Ca g P g (1) Mantença 3,0 0,075 0,530 3 2,1 Prod./kg 0,068 0,342 4 1,5 (2) Prod./kg x 5 0,340 1,71 20 7,5 (1 + 2) TOTAL 3,0 0,415 2,24 23 9,6 TOTAL % 100 13,8 74,7 0,77 0,32 -/- 2º passo: composição dos alimentos disponíveis: Ingrediente MS % PB % NDT % Ca % P % Silagem de milho 27 8 65 0,52 0,16 Feno de braquiária 89 8 60 0,23 0,10 Milho moído 90 9 86 0,02 0,29 Ureia 100 280 - - - Farelo de soja 90 45 84 0,29 0,65 -/- 3º passo: como 600 g (20% CMS) deverá ser aportada pela ração volumosa, vamos fornecer 300 g MS de ambos os volumosos. Teremos, então: Volumosos MS kg PB kg NDT kg Ca g P g Silagem 0,3 0,024 0,195 1,6 0,5 Feno 0,3 0,024 0,180 0,7 0,3 TOTAL 0,6 0,048 0,375 2,3 0,8 Exigência 3,0 0,415 2,24 23 9,6 DÉFICE 2,4 0,367 1,865 20,7 8,8 -/- 4º passo: a ração concentrada deverá conter 0,367 kg de PB e 1,865 kg de NDT. Vamos fornecer uma quantidade fixa de 50 g de ureia, então: 50 x 280/100 = 140 g PB Calculando o novo défice da PB: 0,367 – 0,140 = 0,227 5º passo: montamos o sistema de duas equações e duas incógnitas para determinar a quantidade de x milho moído e y farelo de soja necessárias para suprir 0,227 kg PB e 1,865 kg de NDT. Lembrando que o défice de MS é de 2,4, ou seja, o total final de x + y não deverá ser superior. Equação PB: 0,09x + 0,45y = 0,227 Equação NDT: 0,86x + 0,84y = 1,865 Respondendo direto, já que aprendemos o método de resolução anteriormente: 0,86x + 0,84y = 1,865 0,86x + 4,30y = 2,17 0 - 3,46y = 0,305 y = 0,305/3,46 y = 0,088 kg de farelo de soja, ou 90 g. Substituindo y na equação PB: 0,09x + 0,45(0,09) = 0,227 0,09x + 0,0405 = 0,227 0,09x = 0,227 – 0,0405 0,09x = 0,1865 x = 2,07 kg de milho moído, ou 2,1 kg. 6º passo: verificação da ração concentrada: Ingrediente MS kg PB kg NDT kg Ca g P g Milho 2,1 0,189 1,8 0,42 6,1 Ureia 0,05 0,140 - - - Farelo de soja 0,09 0,040 0,07 0,26 0,6 TOTAL 2,24 0,369 1,87 0,68 6,7 Exigência 2,4 0,367 1,865 20,7 8,8 DÉFICE 0,16 - - 20 2,1 -/- 7º passo: ajuste mineral para suprir o défice de 2,1 g de P com fosfato bicálcico e 20 g de Ca com calcário. Fazendo as relações, análogas a anteriores, e sabendo-se que o FB contém 18% de P e 23% de Ca e o calcário possui 38% de Ca, encontramos: Para P: 11,7 ou 12 g de fosfato bicálcico contendo 2,1 g de P e 2,8 g de Ca Para Ca: 45,5 g de calcário contendo 17,2 g de Ca 8º passo: composição final da dieta: Volumosos MS kg MN kg % final PB kg NDT kg Ca g P g Silagem de milho 0,3 1,1 27,6 0,024 0,195 1,6 0,5 Feno de braquiária 0,3 0,34 8,5 0,024 0,180 0,7 0,3 Concentrados Milho moído 2,1 2,33 58,6 0,189 1,8 0,42 6,1 Ureia 0,05 0,05 1,3 0,140 - - - Farelo de soja 0,09 0,1 2,5 0,040 0,07 0,26 0,6 Calcário 0,046 0,046 1,2 - - 17,4 - Fosfato bicálcico 0,012 0,012 0,3 - - 2,7 2,1 TOTAL 2,9 3,98 100 0,417 2,24 23,1 9,9 Exigência 3,0 - 100 0,415 2,24 23 9,6 DÉFICE - - - - - - -/- Por fim, uma ração para cabras Saanen com 50 kg PV e produzindo 5 kg leite/dia com 3,5% de gordura, são necessários 600 g de mistura volumosa à base de 50% de silagem de milho e 50% de feno de braquiária e 2,6 kg de ração concentrada à base de 2,4 kg de milho, 100 g de farelo de soja, 50 g de ureia e 50 g para calcário e fosfato bicálcico. O CMS de cada cabra com essa ração será de 2,9 kg/dia, ou seja, dentro dos limites de 3 kg/dia, segundo o NRC, 2007. A relação Ca:P é 2,3:1, sendo uma relação aceitável, já que ruminantes suportam uma relação até 3:1. -/- EXEMPLO 3: formule uma dieta para animais em mantença situados na região semiárida de Pernambuco. Os animais possuem peso médio de 40 kg e estão em condições de atividade média, ou seja, 50% a mais dos requisitos de mantença segundo o NRC, 2007. Os alimentos disponíveis são capim tifton verde e fubá de milho. Dados o CMS é de 1,1 kg/dia. 1º passo: determinação das exigências nutricionais do animal: Exigência MS kg PB kg NDT kg Ca g P g Mantença 1,1 0,064 0,448 3 2 X50% 0,032 0,224 2 1,5 TOTAL 1,1 0,096 0,672 5 3,5 TOTAL % 100 8,8 61,1 0,45 0,32 -/- 2º passo: composição dos alimentos disponíveis: Ingrediente MS % PB % NDT % Ca % P % Capim tifton 27 13 40 0,54 0,50 Fubá de milho 90 9 85 0,02 0,29 -/- 3º passo: montando o sistema de equações onde x milho e y capim terão que fornecer 0,096 kg de PB e 0,672 kg de NDT: Equação PB: 0,09x + 0,13y = 0,096 Equação NDT: 0,85x + 0,40y = 0,672 Resolvendo o sistema direto, temos: 0,85x + 0,40y = 0,672 0,85x + 1,223y = 0,907 0 + 0,823y = 0,235 y = 0,235/0,823 y = 0,286 kg de capim tifton, ou 290 g. Substituindo y na equação PB: 0,09x + 0,40(0,286) = 0,096 0,09x + 0,037 = 0,096 0,09x = 0,096 – 0,037 0,09x = 0,059 x = 0,656 kg de milho moído, ou 660 g. 4º passo: verificação da ração: Ingrediente MS kg PB kg NDT kg Ca g P g Milho 0,656 0,059 0,558 0,1 1,9 Capim tifton 0,286 0,037 0,114 1,5 1,4 TOTAL 0,942 0,096 0,672 1,6 3,3 Exigência 1,1 0,096 0,672 5 3,5 DÉFICE 0,158 - - 3,4 0,2 -/- 5º passo: adição de fosfato bicálcico e calcário ao milho para suprir o défice de P e Ca: Para P: 1,2 g de fosfato bicálcico fornecerá 0,2 g de P e 0,28 g de Ca. Para Ca: 8,2 g de calcário fornecerá 3,1 g de Ca. 6º passo: verificação final da dieta: Ingrediente MS g MN g % final PB g NDT g Ca g P g Capim tifton 286 1060 58,9 37 114 1,5 1,4 Fubá de milho 656 729 40,6 59 558 0,1 1,9 Calcário 8,2 8,2 0,45 - - 3,12 - Fosfato bicálcico 1,2 1,2 0,05 - - 0,28 0,2 TOTAL 951,4 1798,4 100 96 672 5 3,5 Exigência 1100 - 100 96 672 5 3,5 DÉFICE - - - - - - - -/- Por fim, para mantença de lote de caprinos no semiárido com atividade média e 40 kg de PV, são necessários, para fins práticos, 1,1 kg de capim tifton, 730 g de milho misturado com 9 g de calcário e 1,5 g de fosfato bicálcico. A MS da ração satisfaz completamente as exigências de CMS do animal e sobre espaço de 0,149 kg de MS que o animal poderá ingerir com outras fontes de alimentos para um possível início de ganho de peso. A relação Ca:P da mistura é de 1,4:1. -/- EXEMPLO 4: um pequeno produtor de caprinos de Belo Jardim-PE deseja manter seu lote de animais no período da seca, onde a vegetação é escassa e o clima semiárido. Os alimentos disponíveis na propriedade são algarobeira e sementes de guandu. O lote de animais possui média de 40 kg PV. O CMS é de 1,1 kg/dia. 1º passo: exigências nutricionais do animal: Segundo o NRC, 1981 para uma seca e um clima tipicamente semiárido como o de Belo Jardim, são necessários acréscimos de 75% das exigências de mantença, ou seja, é necessário adicionar 75% a mais do valor de mantença para obter as exigências finais. Logo: Exigência MS kg PB kg NDT kg Ca g P g Mantença 1,1 0,063 0,448 3 2 X75% 0,047 0,336 3 2 TOTAL 1,1 0,110 0,784 6 4 TOTAL % 100 10 71,3 0,55 0,36 -/- 2º passo: composição dos alimentos disponíveis: Ingrediente MS % PB % NDT % Ca % P % Algaroba 89 9 70 0,4 0,15 Guandu 89 23 80 0,15 0,45 -/- 3º passo: montando o sistema e respondendo direto vamos obter: Equação PB: 0,09x + 0,23y = 0,110 Equação NDT: 0,70x + 0,80y = 0,784 Resolvendo o sistema direto, temos: 0,70x + 0,80y = 0,784 0,70x + 1,789y = 0,856 0 - 0,989y = -0,072 y = -0,072/-0,989 y = 0,073 kg de sementes de guandu, ou 80 g. Substituindo y na equação PB: 0,09x + 0,23(0,08) = 0,110 0,09x + 0,0184 = 0,110 0,09x = 0,110 – 0,0184 0,09x = 0,0916 x = 1,02 kg de algaroba, ou 1,1 kg. 4º passo: verificação da ração: Ingrediente MS kg PB kg NDT kg Ca g P g Algaroba 1,02 0,092 0,715 4,1 1,5 Guandu 0,08 0,018 0,65 0,1 0,4 TOTAL 1,1 0,110 0,780 4,2 1,9 Exigência 1,1 0,110 0,784 6 4 DÉFICE - - - 1,8 2,1 -/- 5º passo: ajuste mineral para suprir Ca e P: Para P: 12 g de fosfato bicálcico tem 2,1 g de P e 2,7 g de Ca 6º passo: composição final da dieta: Ingrediente MS g MN g % final PB g NDT g Ca g P g Algaroba 1020 1146 91,8 92 715 4,1 1,5 Guandu 80 90 7,2 18 65 0,1 0,4 Fosfato bicálcico 12 12 1,0 - - 2,7 2,1 TOTAL 1112 1248 100 110 780 6,9 4 Exigência 1100 - 100 110 784 6 4 DÉFICE - - - - - - - -/- Por fim, para manter um lote de caprinos na seca com média de 40 kg PV, é necessário o fornecimento de, para fins práticos, 1200 g de algaroba, 100 g de sementes de guandu e 12 g de fosfato bicálcico. O CMS da dieta é ideal e a relação Ca:P é de 1,7:1. -/- EXEMPLO 5: formular dieta para caprinos reprodutores. Os alimentos disponíveis são palma miúda, triticale e farelo de algodão. O peso médio do reprodutor é de 70 kg e o CMS de 1,26 kg/dia. Por fim, calcular o aporte mineral da dieta. Será fornecido 1 kg de palma in natura/cabeça. 1º passo: exigências para caprino reprodutor com 70 kg PV: Exigência CMS kg PB g NDT g Ca g P g TOTAL 1,26 203 695 5 3 TOTAL % 100 16 55,1 0,4 0,24 -/- 2º passo: composição dos alimentos disponíveis: Ingrediente MS % PB % NDT % Ca % P % Palma 9 4 70 2 0,31 Triticale 87 14 85 0,04 0,32 Farelo de algodão 90 33 70 0,2 0,8 -/- 3º passo: fornecimento fixo de 1 kg de palma: Volumoso MS g PB g NDT g Ca g P g Palma 90 3,6 63 1,8 0,3 Exigência 1260 203 695 5 3 DÉFICE 1170 199,4 632 3,2 2,7 -/- 4º passo: calcular mistura de x triticale e y farelo de algodão que atenda a demanda de 0,1994 kg de PB e 0,632 kg de NDT. Montando a equação e resolvendo direto teremos: Equação PB: 0,14x 0,33y = 0,1994 Equação NDT: 0,85x + 0,70y = 0,632 Fator de multiplicação: 6,071 (0,85/0,14) Equação NDT: 0,85x + 0,70y = 0,632 Equação 3: 0,85x + 2,00y = 1,211 0 - 1,30y = 0,579 y = 0,445 kg de farelo de algodão Substituindo na equação PB: 0,14x + 0,33 x 0,445 = 0,1994 0,14x + 0,1469 = 0,1994 0,14x = 0,1994 – 0,1469 0,14x = 0,0525 x = 0,375 kg de triticale 5º passo: verificação da ração: Ingrediente MS g PB g NDT g Ca g P g Triticale 375 52,5 319 0,15 1,2 Farelo de algodão 445 146,9 312 0,9 3,6 TOTAL 820 199,4 631 1,05 4,8 Exigência 1170 199,4 632 3,2 2,7 DÉFICE - - - 2,15 - -/- 6º passo: ajuste mineral com calcário para suprir o défice de 2,15 g de Ca: 5,7 ou 6 g de calcário tem 2,3 g de Ca 7º passo: composição final da dieta: Ingrediente MS g MN g % final PB g NDT g Ca g P g Palma 90 1000 51,8 3,6 63 1,8 0,3 Triticale 375 431 22,3 52,5 319 0,15 1,2 Farelo de algodão 445 494,5 25,6 149,9 312 0,90 3,6 Calcário 6 6 0,3 - - 2,3 - TOTAL 916 1931,5 100 203 695 5 3 Exigência 1260 - 100 203 694 5,15 5,1 DÉFICE 344 - - - - - - -/- O CMS é inferior do que o recomendado, no entanto, as exigências foram supridas pelos alimentos. São necessários 1 kg de palma e uma mistura concentrada de 430 g de triticale, 500 g de farelo de algodão e 6 g de calcário/cabeça/dia. A relação Ca:P é de 1:1. -/- EXEMPLO 6: formular dieta para caprinos reprodutores que necessitam de 16% de PB e 60% de NDT. Os alimentos disponíveis são milho, silagem de capim-elefante e farelo de soja. Deixar 2% de ER para suplement. (shrink)
Hal ini sering berpikir bahwa kemustahilan, ketidaklengkapan, Paraconsistency, Undecidability, Randomness, komputasi, Paradox, ketidakpastian dan batas alasan yang berbeda ilmiah fisik atau matematika masalah memiliki sedikit atau tidak ada dalam Umum. Saya menyarankan bahwa mereka sebagian besar masalah filosofis standar (yaitu, Permainan bahasa) yang sebagian besar diselesaikan oleh Wittgenstein lebih dari 80years yang lalu. -/- "Apa yang kita ' tergoda untuk mengatakan ' dalam kasus seperti ini, tentu saja, bukan filsafat, tetapi bahan baku. Jadi, misalnya, apa yang seorang matematikawan cenderung mengatakan (...) tentang objektivitas dan realitas fakta matematika, bukan filsafat matematika, tetapi sesuatu untuk pengobatan filosofis. " Wittgenstein PI 234 -/- "Filsuf terus melihat metode ilmu di depan mata mereka dan tak tertahankan tergoda untuk bertanya dan menjawab pertanyaan dalam cara ilmu tidak. Kecenderungan ini adalah sumber nyata metafisika dan memimpin filsuf menjadi gelap gulita. " Wittgenstein -/- Aku memberikan ringkasan singkat dari beberapa temuan utama dari dua siswa yang paling terkemuka perilaku zaman modern, Ludwig Wittgenstein dan John Searle, pada struktur Logis intensionality (pikiran, bahasa, perilaku), mengambil sebagai titik awal Penemuan fundamental Wittgenstein – bahwa semua masalah ' filosofis ' adalah sama — kebingungan tentang bagaimana menggunakan bahasa dalam konteks tertentu, sehingga semua solusi sama — melihat bagaimana bahasa dapat digunakan dalam konteks yang menjadi masalah sehingga kebenaranNya kondisi (kondisi kepuasan atau COS) jelas. Masalah dasar adalah bahwa seseorang dapat mengatakan apa-apa, tetapi orang tidak dapat berarti (negara yang jelas cos untuk) sembarang ucapan dan makna hanya mungkin dalam konteks yang sangat spesifik. -/- Saya membedah beberapa tulisan dari beberapa komentator utama pada isu ini dari sudut pandang Wittgensteinian dalam kerangka perspektif modern dari dua sistem pemikiran (Dipopulerkan sebagai ' berpikir cepat, berpikir lambat '), mempekerjakan meja baru intensionality dan baru sistem ganda nomenklatur. Saya menunjukkan bahwa ini adalah heuristik yang kuat untuk menggambarkan sifat sebenarnya dari hal ini ilmiah, fisik atau matematika masalah yang benar-benar terbaik didekati sebagai masalah filosofis standar bagaimana bahasa yang akan digunakan (permainan bahasa di Wittgenstein's terminologi). -/- Ini adalah pendapat saya bahwa tabel intensionality (rasionalitas, pikiran, pikiran, bahasa, kepribadian dll) yang fitur mencolok di sini menggambarkan lebih atau kurang akurat, atau setidaknya berfungsi sebagai heuristic untuk, bagaimana kita berpikir dan berperilaku, dan sehingga mencakup tidak hanya filsafat dan psikologi, tetapi segala sesuatu yang lain (sejarah, sastra, matematika, politik dll). Perhatikan terutama bahwa intensionalitas dan rasionalitas sebagai I (bersama dengan Searle, Wittgenstein dan lain-lain) melihatnya, mencakup baik sistem linguistik pertimbangan sadar 2 dan tidak disadari otomatis sistem prelinguistik 1 tindakan atau refleks. (shrink)
FISIOLOGIA DA REPRODUÇÃO BOVINA -/- 3 – GESTAÇÃO -/- -/- INTRODUÇÃO -/- -/- O estabelecimento da gestação é o objetivo fundamental dos programas reprodutivos. Após a fertilização, o zigoto se divide e dá origem a embriões de duas, quatro, oito, dezesseis células, e no sétimo dia o embrião tem mais de 80 células. Entre os dias 16 e 18 do ciclo estral, o embrião se alonga e atinge 15 cm de comprimento. O estabelecimento da gestação depende da supressão da secreção (...) de PGF2α pelo embrião, que é realizada por meio da secreção de interferon-τ. Em vacas leiteiras, uma alta proporção de embriões morre antes do reconhecimento materno da gravidez. -/- Para evitar perdas embrionárias, é importante conhecer a fisiologia da gestação. Este capítulo descreve os principais processos fisiológicos que levam ao estabelecimento e manutenção da gestação e ao manejo da vaca prenhe. -/- -/- 3.1 Transporte de gametas -/- -/- Os gametas, óvulo e esperma, são definidos como células germinativas maduras que possuem um número haploide (n = 23) de cromossomos que, quando unidos, dão origem a um novo indivíduo geneticamente diferente de ambos os pais. -/- -/- 3.1.1 Transporte dos espermatozoides -/- -/- Os espermatozoides obtidos diretamente do testículo são funcionalmente imaturos, incapazes de fertilizar o óvulo. Durante sua permanência no epidídimo, os espermatozoides sofrem alterações na morfologia, mobilidade e metabolismo, o que lhes dá a capacidade de fertilização. No entanto, eles terão que passar algum tempo no trato genital feminino para que adquiram o estado ideal para fertilizar; processo conhecido como capacitação. -/- Durante a monta natural, a ejaculação ocorre na vagina e são depositados cerca de 5 x 109 de espermatozoides (volume ejaculado de três a cinco ml e concentração espermática de 1 x 109 a 1,2 x 109 por ml) suspensos no plasma seminal, este é basicamente constituído pelas secreções das vesículas seminais e da próstata. Após a ejaculação, o transporte dos espermatozoides é favorecido pelas contrações uterinas e vaginais que ocorrem durante e após a relação sexual. Nos primeiros minutos após a cópula, os espermatozoides já podem ser encontrados no oviduto, o que se deve às contrações do trato genital. Durante o transporte dos espermatozoides, a mobilidade individual é importante, já que apenas os espermatozoides com essa capacidade chegam ao local da fertilização. -/- O primeiro local para o estabelecimento de uma população de espermatozoides é a cérvix do útero, principalmente nas criptas, onde permanecem protegidos da fagocitose. É importante observar que apenas os espermatozoides móveis permanecem nas criptas; aqueles que estão mortos ou sem movimento são eliminados pelos fagócitos ou pelo movimento do muco cervical em direção a vagina. Embora uma população temporária de espermatozoides seja estabelecida no colo do útero, o reservatório funcional de espermatozoides está localizado na região distal do istmo. -/- As características do muco cervical são importantes para o transporte dos espermatozoides; assim, durante o estro e a ovulação, o muco fica mais aquoso, o que favorece a migração dos espermatozoides, enquanto na fase lútea o muco torna-se mais viscoso, dificultando sua movimentação. -/- Já no útero, o transporte de espermatozoides depende principalmente das contrações uterinas. Aqui, os espermatozoides ficam suspensos nas secreções uterinas, cuja função é promover sua viabilidade e transporte. As secreções uterinas contêm fagócitos que removem os espermatozoides mortos e imóveis, embora os espermatozoides normais também sejam removidos por esse meio. Algumas substâncias, como prostaglandinas e ocitocina, promovem o transporte. -/- O oviduto desempenha um papel muito importante no transporte e maturação dos gametas, bem como na fertilização e desenvolvimento embrionário inicial. As características das secreções do oviduto variam de acordo com a região do oviduto e o estágio do ciclo estral. Uma vez que os espermatozoides atingem o oviduto, eles são distribuídos em dois lugares. Alguns espermatozoides são imediatamente transportados para a região da ampola; esses são os primeiros que encontram o ovócito, mas sua capacidade de fertilização é limitada. O outro local de distribuição é a região caudal do istmo; aqui eles permanecem até que a ovulação seja iminente. Para que a fertilização ocorra, é necessário que o espermatozoide se estabeleça neste local por um período de seis a oito horas, antes da ovulação. Uma a duas horas, antes da ovulação, um movimento ativo do espermatozoide é observado em direção à região da ampola. -/- No oviduto, o transporte de espermatozoides depende de seu movimento, do fluido ovidutal e das contrações musculares. É comum que alguns espermatozoides continuem seu movimento e saiam pela fímbria. A viabilidade do espermatozoide de uma ejaculação varia de 24 a 48 horas. -/- -/- 3.1.2 Transporte do ovócito -/- -/- A ovulação é o processo pelo qual o ovócito é liberado. Este evento é desencadeado pela secreção de LH conhecida como pico de LH ovulatório ou pré-ovulatório. -/- Devido ao efeito de LH o cúmulos descola-se da parede folicular e começa a observar-se um adelgaçamento em uma pequena área da parede folicular, causada pela isquemia e pela ação de enzimas proteolíticas. Mais tarde, nesta área, uma pequena vesícula protuberante (estigma) se forma e eventualmente se quebra. Depois que o estigma é quebrado, o cúmulos que contém o ovócito junto com as células da granulosa. O ovócito é capturado pela fimbria; processo apoiado por movimentos dos cílios da mucosa e por contrações das pregas desta estrutura. Assim que o oócito é capturado, ele é transportado para a ampola. -/- 3.8 Manejo da vaca seca -/- -/- Em programas de manejo anteriores, a vaca seca recebia comida de pior qualidade e permanecia no esquecimento até o parto ocorrer. No entanto, os resultados dos estudos mostram que o período de seca é decisivo para que a vaca atinja um nível ótimo de produção e tenha um bom desempenho reprodutivo pós-parto. Por outro lado, o manejo correto no período seco reduz a incidência de doenças metabólicas no puerpério. O objetivo do período de seca é oferecer um descanso à vaca antes do parto, durante o qual o tecido mamário se regenera, o feto atinge seu crescimento máximo e a vaca atinge uma condição corporal adequada para enfrentar uma nova lactação. A duração recomendada do período de seca é de seis a oito semanas (60 dias). A involução do tecido da glândula mamária leva de duas a três semanas e um período semelhante é necessário para reiniciar a síntese do leite antes do parto. Assim, um período de seca de 60 dias é suficiente; entretanto, a duração desse período é questionada e tempos mais curtos foram propostos. Provavelmente, nos próximos anos, mais informações estarão disponíveis para apoiar a redução do período de seca. -/- Em termos de produção, o objetivo do manejo durante o período de seca é levar a vaca ao pico de lactação cinco a seis semanas após o parto, com produção máxima de leite. Estima-se que para cada kg de leite que aumenta no pico da lactação, ocorre um aumento de 120 kg ao longo da lactação. Para atingir este objetivo é necessário que a vaca tenha um consumo adequado de matéria seca após o parto; porém, três semanas antes do parto, a vaca reduz seu consumo em até 30%, para o qual é necessário estabelecer um manejo eficaz para promover um alto consumo de matéria seca durante a parte final do período de seca e durante as três primeiras semanas pós-parto (período de transição: três semanas antes e três após o parto). -/- A falta de capacidade de consumir as necessidades de matéria seca após o parto obriga a vaca a mobilizar suas reservas de gordura. Praticamente todas as vacas após o parto mobilizam suas reservas de gordura e perdem a condição corporal. A mobilização da gordura corporal causa degeneração gordurosa do fígado e é responsável por distúrbios metabólicos e retardo da atividade ovariana pós-parto. O grau de degeneração da gordura está relacionado à magnitude da mobilização da gordura corporal, que é diretamente dependente da capacidade de consumir matéria seca. Dessa forma, vacas com alto consumo de matéria seca no pós-parto, mobilizam menos gordura e, portanto, o dano ao fígado é menor. -/- O período de secagem é dividido em duas partes, a primeira compreende desde a secagem até duas semanas antes do parto; a segunda parte inclui as últimas duas semanas de gestação e é conhecida como período de desafio. -/- O período de desafio é decisivo para o desempenho produtivo e reprodutivo. Durante este período, uma dieta semelhante em ingredientes e forma deve ser oferecida à dieta que farão após o parto. Para facilitar esse manejo, as vacas deste grupo devem ser separadas do restante das vacas secas. -/- No período de seca, atenção especial deve ser dada para que as vacas não alcancem escores de condição corporal de quatro ou mais, uma vez que o excesso de gordura causa problemas metabólicos durante o puerpério, que afetam negativamente o comprometimento uterino e início da atividade ovariana pós-parto (figura 8). -/- -/- -/- Figura 8: Estágios fisiológicos e reprodutivos da vaca leiteira. Período de espera voluntário (PVE). -/- -/- 3.9 O período de transição -/- -/- O período de transição na vaca leiteira é três semanas antes e três após o parto (também conhecido como periparto). Nos últimos anos, esse tema tem merecido muitas pesquisas, pois o que for bem ou mal feito durante ele terá impacto na eficiência reprodutiva e na produção de leite. Durante o período de transição, a glândula mamária se prepara para a lactogênese, o feto cresce exponencialmente, a resposta imune é suprimida e o consumo de matéria seca diminui; além disso, o rúmen deve se adaptar à dieta recebida pelas vacas in natura (primeiras três semanas pós-parto), dieta caracterizada por alto teor de energia na forma de grãos. -/- Muitos distúrbios que se manifestam nas duas primeiras semanas pós-parto (hipocalcemia clínica e subclínica, cetose, retenção placentária, prolapso uterino, metrite, mastite, deslocamento do abomaso etc.), como os que se apresentam posteriormente (laminite, cistos ovarianos , endometrite e anestro) têm sua origem nos erros cometidos durante o período de transição. Em grande parte, os problemas estão relacionados à diminuição do consumo de matéria seca durante o período de transição; assim, o consumo diminui cerca de 30% durante as últimas três semanas de gestação, mas a maior parte da redução ocorre cinco a sete dias antes do parto. O manejo correto do período de transição tem como objetivo manter a normocalcemia, fortalecer o sistema imunológico, adaptar o rúmen a uma dieta rica em energia e aumentar a ingestão de matéria seca. Algumas recomendações gerais de manejo durante o período de transição são: separar as novilhas das vacas, ter comedouro suficiente para todos os animais, ter as mesmas características dos comedouros de vacas frescas e a dieta deve estar disponível 24 horas por dia (figuras 9 e 10). -/- -/- -/- Figura 10: O desempenho produtivo e reprodutivo das vacas depende em grande parte da condição corporal no momento do parto. Nesta fotografia são mostradas vacas recém-paridas, com uma condição corporal ideal (3,5). -/- Figura 9: Vacas no curral do desafio. Recomenda-se separar as novilhas das vacas, ter espaço suficiente com comedouro e a dieta deve estar disponível 24 horas por dia. -/- -/- RESUMO -/- -/- Cerca de 5 bilhões de espermatozoides são depositados em a genitália da vaca durante a cópula. Os espermatozoides devem permanecer no istmo e na região da junção útero-tubária por seis a oito horas antes da ovulação para obter uma alta taxa de fertilização. A viabilidade dos espermatozoides no útero é de 24 a 48 horas. A polispermia é efetivamente bloqueada nas primeiras 10 horas após a ovulação. Os blastômeros de embriões de duas, quatro e oito células são pluripotentes. A eclosão do embrião ocorre no oitavo dia. O tempo que o embrião leva para chegar ao útero é de três a quatro dias. Entre os dias 16 e 18 do ciclo, o embrião produz interferon-t, para bloquear a secreção de PGF2α. Entre os dias 17 e 18, o embrião se fixa ao endométrio. A medição da progesterona entre os dias 20-24 pós-infecção é 100% precisa na identificação de vacas não gestantes. A vaca deve atingir seu pico de lactação entre cinco e seis semanas após o parto. Para cada kg de leite que é aumentado no pico da lactação, um aumento de 120 kg é alcançado na lactação de 305 dias. Três semanas antes do parto, a vaca reduz seu consumo em até 30%. O período de transição inclui três semanas antes e três após o parto. As vacas ao parto não devem ter mais do que quatro pontos de condição corporal. A proporção de vacas secas deve ser de 15% (12,5% de vacas secas e 2,5% de novilhas). -/- -/- REFERÊNCIAS BIBLIOGRÁFICAS -/- -/- BEARDEN, Henry Joe et al. Applied animal reproduction. Reston Publishing Company, Inc., 1984. -/- Endocrinologia da Reprodução Animal. Recife, UFRPE, 2020. -/- Fisiologia da Reprodução Animal: Fecundação e Gestação. Recife: UFRPE, 2020. -/- HAFEZ, Elsayed Saad Eldin; HAFEZ, Bahaa. Reprodução animal. São Paulo: Manole, 2004. -/- HIDALGO, Galina et al. Reproducción de animales domésticos. México: Limusa, 2008. -/- HOLY, Lubos; MARTÍNEZ JÚSTIZ, G. Colab. Biología de la reproducción bovina. Havana: Revolucionária, 1975. -/- HOPPER, Richard M. (Ed.). Bovine reproduction. John Wiley & Sons, 2014. -/- LEBLANC, Stephen. Monitoring metabolic health of dairy cattle in the transition period. Journal of reproduction and Development, v. 56, n. S, p. S29-S35, 2010. -/- SARTORI, Roberto; BASTOS, Michele R.; WILTBANK, Milo C. Factors affecting fertilisation and early embryo quality in single-and superovulated dairy cattle. Reproduction, Fertility and Development, v. 22, n. 1, p. 151-158, 2009. -/- SENGER, Phillip L. et al. Pathways to pregnancy and parturition. Current Conceptions, Inc., 1615 NE Eastgate Blvd., 1997. -/- VIVEIROS, Ana Tereza de Mendonça. Fisiologia da reprodução de bovinos. Lavras: UFLA, p. 62, 1997. (shrink)
OBJETIVO A gestação nos mamíferos domésticos é um processo fisiológico que implica mudanças físicas, metabólicas e hormonais na fêmea, que culminam com o nascimento de um novo indivíduo. Desta forma, a compreensão de tais mudanças e como estas favorecem um ambiente ideal de desenvolvimento embrionário inicial, até a placentação e a fisiologia envolvidas durante esses processos é fundamental na tomada de decisões quanto à saúde reprodutiva da fêmea, na seleção de futuras matrizes e até mesmo para a saúde fetal e (...) sanidade do novo animal. Neste capítulo, o estudante compreenderá de forma clara, concisa, didática e objetiva, as adaptações maternas e fetais para o estabelecimento da gestação após a fecundação, o desenvolvimento desta e também identificará as diferenças existentes entre as espécies de interesse zootécnico. INTRODUÇÃO O estabelecimento da gestação nos mamíferos domésticos inclui três etapas fundamentais: o reconhecimento materno da gestação ou prenhez (RMP), a implantação e a placentação. Dentro da fisiologia da reprodução nos mamíferos, a implantação e a placenta- ção constituem processos essenciais na nutrição do embrião e do feto e, portanto, para seu desenvolvimento; devido a isso, são etapas críticas para a produção animal já que possuem um efeito direto sobre a eficiência reprodutiva. Nos bovinos leiteiros, por exemplo, estima-se uma taxa de fertilização perto de 95%, embora apenas 55% desses zigotos se desenvolvam e cheguem ao parto, o qual representa uma perda de gestações perto de 35%. Entre 70% e 80% das mortes embrionárias ocorrem durante as três semanas seguintes à ovulação, o que coincide com o período no qual se estabelecem os processos de implantação e placentação supracitados. O desenvolvimento embrionário precoce depende da sincronia de eventos entre o oviduto-útero e o embrião. Foi determinado que a presença do embrião pode modificar as secreções ovidutais e uterinas durante as fases iniciais de desenvolvimento. O ambiente endócrino materno (predominância de progesterona) também modula as características das secreções ovidutais e uterinas para assegurar a sobrevivência embrionária no caso da fertilização ter sido bem sucedida. Se este último ocorrer, então o embrião deverá indicar à mãe a sua existência para que sejam mantidas as condições adequadas ao seu desenvolvimento. Como supracitado, o embrião em seu curso pelo oviduto requer certas secreções para sobreviver e desenvolver-se, no entanto, graças à fertilização in vitro, têm-se dispensado a importância das secreções ovidutais, já que se observou que um embrião é capaz de se desenvolver em condições laboratoriais fora do aparelho reprodutor materno durante as suas fases iniciais, e consegue estabelecer uma gestação normal que chega a termo após a sua reintrodução no útero. Em estágios mais tardios de desenvolvimento o embrião necessita necessariamente do meio uterino para sobreviver e continuar o seu crescimento. No bovino, por exemplo, o embrião só é capaz de alongar-se estando dentro do útero, indicando a presença de fatores específicos necessários para que o embrião se desenvolva de maneira normal. Um meio endócrino no qual predomina a progesterona materna durante a gestação induz a secreção do histiotrofo (ou leite uterino) que permite a nutrição e a sobrevivência do embrião antes da implantação e da formação da placenta, através do qual obterá a maioria do fornecimento e intercâmbio necessários para continuar o seu desenvolvimento intra-uterino. SEGMENTAÇÃO E DESENVOLVIMENTO EMBRIONÁRIO PRECOCE O desenvolvimento embrionário precoce, conhecido como período de pré- -implantação, é essencial; inclui processos de divisão e diferenciação celular que são realizadas no início com uma elevada sincronização para garantir o desenvolvimento correto do indivíduo dentro do útero. Esta fase envolve a passagem do zigoto (unicelular), a embrião (multicelular) e, por fim, em concepto (quando se distingue o embrião com suas membranas extraembrionárias). O desenvolvimento precoce é o estágio mais dinâmico e vulnerável na formação de um indivíduo. Investigações recentes demonstraram que alterações nesta etapa podem modificar características produtivas ou reprodutivas durante a vida adulta. É por isso que é necessário conhecer as etapas fisiologicamente normais envolvidas neste processo (figura 1). Em fases mais tardias de desenvolvimento, o embrião se converterá em um feto com todos os sistemas e tecidos diferenciados observados num animal adulto. Após a fertilização, o zigoto resultante é capaz de dar origem a um novo organismo completo, de modo que se considera como uma célula totipotencial. O desenvolvimento embrionário começa e se consegue graças a uma série de divisões mitóticas conhecidas como segmentação ou clivagem (cleavage, em inglês). A primeira divisão mitótica dá origem a duas células filhas idênticas (figura 1), e ocorre por volta das 20 às 30 horas depois da fertilização, com divisões subsequentes a cada 12 a 24 h, dependendo da espécie. As células resultantes destas divisões são conhecidas como blastômeros. A orientação da divisão inicial que dá origem aos dois primeiros blastô- meros, parece ser guiada pela posição dos corpos polares. As divisões iniciais das células embrionárias são sincrônicas, no entanto, conforme o desenvolvimento se torna assincrônicas. Assim, a divisão mitótica inicial dá origem a um embrião de duas células (dois blastômeros), a segunda a um embrião de quatro células, a terceira a um de oito células e a quarta a um com 16 células, onde passa a ser chamado de mórula. Estas divisões são realizadas sem o aumento do volume do citoplasma, para que seja restabelecida uma proporção celular mais adequada à das células somáticas, já que o ovócito é a célula mais grande do organismo (um ovócito mede entre 100 e 150 μm do ovócito, enquanto uma célula somática mede de 10 a 20 μm); e porque o embrião ainda está contido dentro da zona pelúcida (figura 1). Um dos pontos críticos durante o desenvolvimento embrionário precoce é a ativação do genoma embrionário. Durante as etapas iniciais após a fertilização, as proteínas e RNAs “herdados” do ovócito são responsáveis pelo metabolismo e desenvolvimento inicial do embrião. É apenas até o estágio de quatro (ratos) ou oito blastômeros (espécies domésticas e humanas) em que o embrião começa a sintetizar o seu próprio RNAm (mensageiro) e as proteínas específicas necessárias para controlar o seu crescimento e metabolismo. A qualidade do ovócito que é fertilizado, consequente- mente, tem um grande impacto sobre a sobrevivência inicial do embrião. Quando o embrião atinge uma média de 16 a 32 células é conhecido como mórula (tabela 1) (do latim morus: mora), e nesta fase o embrião começa a compactar-se, o que ocorre porque começam a estabelecer-se diferentes uniões celulares, de acordo com a relação espacial entre os blastômeros. As células centrais desenvolvem-se incluindo entre elas junções comunicantes, conhecidas também como junções GAP, enquanto as que se encontram na periferia estabelecem uniões estreitas, dando origem a duas subpopulações distintas de blastômeros: periféricos e centrais. Cabe mencionar que os blastômeros que compõem a mórula ainda são células capazes de dar origem a um novo indivíduo completo, ou seja, são totipotenciais. À medida que a mórula continua a dividir-se e a crescer, as células localizadas na periferia começam a liberar sódio para os espaços intercelulares, criando uma diferença na pressão osmótica seguida pela entrada de água ao embrião. O líquido se acumula e provoca a separação das células, distinguindo ainda mais as duas subpopulações de células mencionadas (periféricas e centrais) e forma-se uma cavidade cheia de líquido. Esta cavidade é conhecida como blastocele; com a sua formação o embrião entra em fase de blastocisto (figura 1, tabela 1). Da subpopulação celular da periferia se origina do trofoblasto (trofoectoderma) que formará a maioria das membranas extraembrionárias (placenta), e da subpopulação central é estabelecida a massa celular interna ou embrioblasto, que dará origem ao embrião propriamente dito, ou seja, ao feto. Ao continuar a multiplicação e crescimento do trofoblasto à medida que o blastocisto se desenvolve, as células da massa interna se diferenciam novamente em dois segmentos distintos: a endoderme primitiva ou hipoblasto e o epiblasto (figura 1), em que todos os tecidos do organismo (saco vitelino) são originados e as células germinativas primordiais. Uma vez formado, o epiblasto continua a dividir-se e a diferenciar-se para dar origem às três placas ou camadas germinativas conhecidas como endoderme, mesoderme e ectoderme. Este processo é conhecido como gastrulação, e durante este diferem-se no embrião as porções craniais, caudais, dorsais e ventrais, processo conhecido como polaridade do embrião, que orienta o desenvolvimento dos diversos tecidos e órgãos do indivíduo. À medida que o blastocisto continua crescendo e diferenciando-se, vai-se acumulando mais líquido no blastocele, com o que a pressão interna aumenta e a zona pelúcida começa a ficar mais fina. Este fato, juntamente com a ação de proteases produzidas pelo embrião, leva à ruptura da zona pelúcida e à saída do blastocisto (eclosão), pelo que, uma vez liberado, o embrião é conhecido como blastocisto eclodido. O trofoblasto embrionário entra, então, em contato direto com o endométrio, o que é considerado como o início da implantação. IMPLANTAÇÃO O trofoblasto embrionário, também conhecido como trofoectoderma, dá origem à maioria das membranas fetais ou placenta fetal. O processo no qual o trofoblasto se une ao endométrio materno é conhecido como implantação; para isso ocorre uma série de processos altamente sincronizados envolvendo secreções embrionárias e maternas, e interações físicas, durante um período limitado conhecido como janela de receptividade. A implantação é considerada um processo gradual que genericamente se divide em cinco fases, algumas das quais podem sobrepor-se parcialmente e diferir segundo a espécie: 1. Eclosão do blastocisto da zona pelúcida (figura 2); -/- 2. Pré-contato e orientação do blastocisto. É o contato inicial entre as células do trofoblasto e do epitélio endometrial, bem como a orientação da massa celular interna e do trofoectoderma, que assume especial importância em espécies cuja implantação é invasiva, como em roedores e primatas; 3. Aposição - refere-se ao posicionamento do blastocisto numa determinada área e de uma forma específica no útero. Começa a interdigitação das vilosidades coriônicas com o epitélio luminal do endométrio. 4. Adesão - requer sistemas de sinalização que envolvem glicoproteínas de adesão, como integrinas, selectinas e galectinas, com os seus ligantes, tanto no epitélio luminal como no epitélio trofoectoderma. 5. Invasão endometrial - este termo se relaciona ao tipo de placentação e é pertinente sobretudo para aquelas espécies onde existe uma fusão entre células do trofoblasto e do epitélio do endométrio durante a formação da placenta, ou que as células trofoblásticas penetrem as camadas endometriais e até modifiquem as células do endométrio que as rodeiam. Existem três tipos de implantação ou nidação. Na nidação central ou não invasiva, a vesícula embrionária ocupa uma posição central na luz do útero e, na sua relação com a mucosa uterina, unicamente através das vilosidades coriônicas (projeções das células trofoblásticas dentro das quais crescem capilares do feto), há adesão mas não invasão da mucosa. Este tipo ocorre nos ungulados domésticos, mas não em carnívoros. Na nidação excêntrica a vesícula embrionária está inserida num canal profundo da mucosa, parcialmente isolada da luz principal, e se apresenta na rata, cadela e gata. A nidação intersticial é própria dos primatas, rato e cobaia, e nesta produz-se a destruição do epitélio e do tecido conjuntivo do útero, de modo que a vesícula embrionária se afunda na própria lâmina mucosa e se desenvolve em um espaço intersticial. Até o momento da implantação, a nutrição do embrião é histotrófica, sendo as substâncias necessárias absorvidas através do trofoblasto, como foi mencionado anteriormente. A partir deste momento, o trofoblasto começa o desenvolvimento de uma série de membranas extraembrionárias que permitirão finalmente a troca de nutrientes e metabólitos entre o sangue materno e o do embrião, constituindo a placenta. Um fato necessário na implantação é a perda de receptores para progesterona no epitélio luminal do endométrio, e pré-sensibilização do mesmo pelos estrógenos. Apesar de parecer um efeito contraditório, este requisito permite o desaparecimento de uma camada de mucina e outros compostos proteicos, que revestem o endométrio e que atuam como uma película antiaderente que inicialmente não permite a aposição e adesão do embrião. O desaparecimento desta camada ocorre durante a janela de receptividade, seja em toda a superfície do endométrio (ruminantes, suínos e roedores) ou nas zonas específicas onde o blastocisto será implantado (humano e coelho). Por esta razão, a interação física entre o embrião e o endométrio desempenha um papel importante na implantação. Uma vez que a camada de glicoproteínas desaparecer, é possível a aposição do trofoectoderma embrionário e das células epiteliais do endométrio, iniciando assim a implantação propriamente dita através da intercomunicação entre os dois tecidos. A implantação pode ser considerada como a fixação do embrião ao útero a partir do ponto de vista físico e funcional. No entanto, como se trata de um processo progressivo e gradual, em que algumas das suas fases podem ser parcialmente sobrepostas, não existe consenso sobre o período em que se inicia e termina. Na borrega, por exemplo, estima-se que ocorra entre o dia 10 e o dia 22, enquanto na vaca entre os dias 11 e 40 pós-ovulação. Nas espécies polítocas, isto é, fêmeas que parem várias crias como as porcas, os blastocistos se distribuem ao longo dos cornos uterinos como resultado de movimentos musculares da parede uterina, aparentemente regulados por prostaglandinas e outros fatores secretados pelo útero. Por exemplo, nas porcas, os blastocistos se movem livremente entre os cornos, e a distribuição dos embriões ao implantar-se é mais uniforme do que poderia ser esperado se ocorresse meramente ao acaso. Tem observado que a deficiência na produção de ácido lisofosfatídico 3 (LPA3) e/ou seu receptor, ocasiona uma falha na distribuição dos embriões no útero. Por outro lado, não há evidência de que um blastocisto implantado exerça alguma influência inibitória sobre a implantação de outro blastocisto próximo a ele. Como supracitado, o processo de implantação inclui uma complexa interação entre o embrião e o útero, e cada um deles provê de estímulos essenciais para favorecer a progressão do outro, apresentando-se diferenças em tempos e particularidades dentro das diferentes espécies. -/- Porca O período de adesão situa-se entre os dias 12 e 24 após a fertilização. Ao redor do dia sete, o blastocisto é eclodido, porque o trofoblasto está em contato direto com o epitélio uterino e começa a proliferar com rapidez. O endoderme se forma e o blastocisto muda de uma pequena vesícula esférica para um tubo muito alongado que chega a medir cerca de um metro em poucos dias, ele que lhe proporciona uma superfície muito ampla para a absorção de nutrientes. Cadela Os embriões migram entre os dois cornos uterinos do dia 12 ao 17 após a fertilização, distribuindo-se de maneira uniforme. Estes embriões aderem ao endométrio entre os dias 16 e 18, e alcançam sua implantação final entre o dia 17 e 20 da gestação. Cabe ressaltar que nos caninos o período de pré-implantação é o mais longo das espécies domésticas, o que ocorre porque a cadela ovula ovócitos imaturos (ovócitos primários) que precisam amadurecer por dois a três dias, para formar ovócitos secundários, antes que a fertilização seja possível. Por isso, o zigoto canino chega à junção útero-tubárica entre o sétimo e o décimo dia após o pico pré-ovulatório de LH (a ovulação ocorre, em média, dois dias após o pico de LH), entrando no útero em estágio de mórula ou blastocisto em torno dos dias 10 a 12 depois do referido pico. Ovelha O desenvolvimento precoce do blastocisto é muito semelhante ao da porca. Observa-se certo grau de adesão desde o dia 10 da gestação, mas o alongamento do embrião é menos extenso do que em suínos e tem início entre o dia 11 e 12. Para a terceira semana o embrião ovino chega a medir até 30 cm de comprimento. O processo de implantação é concluído aproximadamente entre a quarta e quinta semana de gestação (figura 3). Vaca O processo de implantação é semelhante ao da borrega, mas tem início mais tarde. A zona pelúcida se perde por volta do dia 9 a 10 (blastocisto eclodido) e o embrião começa a alongar-se ao redor do dia 12 a 14, atingindo um comprimento de cerca de 60 mm para o dia 16, embora possa haver uma grande variação individual. A partir do dia 33, o córion é formado e existe uma adesão inicial que inclui dois ou quatro cotilédones, que se interdigitam rapidamente com o tecido materno de modo que o embrião começa a nutrir-se através deles. Égua O blastocisto atinge um diâmetro de cinco centímetros aos dois meses e pratica- mente não se alonga. Entre os dias seis e sete após a ovulação, o embrião começa a revestir-se de uma camada glicoproteica que se forma entre o trofoectoderma e a zona pelúcida e que contém e mantém o embrião esférico depois de ter eclodido. Esta cápsula é uma estrutura única nos equinos (cápsula embrionária), afina-se no dia 18 e se perde entre os dias 21 e 23 de gestação. Na décima semana as microvilosidades do córion se interdigitam com a mucosa da parede uterina e na semana 14 é completada a implantação. Espécies não domésticas Em algumas espécies como os marsupiais, os ursos, focas, doninhas e alguns tipos de cervídeos, pode interromper-se temporariamente o desenvolvimento do embrião in utero e adiar a sua implantação, como estratégia evolutiva para favorecer o nascimento das crias em condições ambientais favoráveis para a sua sobrevivência. Esta estratégia é conhecida como diapausa e pode ser uma condição obrigatória ou facultativa para cada gestação, dependendo da espécie. Os mecanismos que a desencadeiam e a concluem não estão totalmente explicados e são espécie-específica. RECONHECIMENTO MATERNO DA GESTAÇÃO (RMG/RMP) O estabelecimento da gestação em mamíferos domésticos requer a presença de um corpo lúteo CL funcional que produz progesterona em quantidades adequadas para manter o desenvolvimento embrionário inicial e permitir mudanças necessárias durante o período de peri-implantação. Para que o corpo lúteo seja mantido e a fêmea seja impedida de reiniciar um novo ciclo estral, o embrião deve sinalizar sua presença para a mãe. O sinal para o reconhecimento materno da gestação (RMG) provém então do embrião e podem ser de dois tipos: luteotrópico ou anti-luteolítico. No primeiro, a(s) substância(s) produzida(s) pelo embrião que atua(am) sobre o corpo lúteo para manter sua funcionalidade, por exemplo a gonadotrofina coriônica humana (hCG) e a prolactina em roedores. O segundo tipo de sinal previne ativamente a luteólise, e é o mecanismo presente nas espécies domésticas em que o embrião produz substâncias como o interferon-τ (IFN-τ) em ruminantes ou os estrógenos em suínos. Ruminantes Como supracitado, o IFN-τ é responsável pela sinalização para o reconhecimen- to materno da gestação neste grupo que engloba cabras, ovelhas e vacas (figura 4). É um fator produzido pelas células do trofoblasto do embrião, e pode ser detectado a partir dos dias 11 a 12 em ovinos e de 14 a 15 em bovinos. Uma vez secretado, o IFN-τ impede a lise do corpo lúteo (efeito anti-luteolítico) por meio do bloqueio indireto da síntese de prostaglandina F2 alfa (PGF2α). No trabalho acerca do ciclo estral foi explicado que a luteólise requer a presença de receptores de ocitocina (OTR) no endométrio, que ao unir-se ao seu ligante, a ocitocina (proveniente inicialmente do hipotálamo e posteriormente de origem lútea), estimulam a produção de PGF2α e estabelecem um feedback positivo, que culminará na destruição do CL. Para que os OTRs sejam sintetizados, é necessária uma estimulação prévia do endométrio com estradiol, que ocorre através da ligação com seus receptores (ER-1). O mecanismo pelo qual o IFN-τ impede a lise do corpo lúteo é bloqueando, direta ou indiretamente, a síntese de OTR e, consequentemente, a produção pulsátil de PGF2α. Suínos No caso dos suínos, considera-se que o sinal embrionário para o reconhecimento materno da gestação são os estrógenos, produzidos pelos embriões em torno do dia 11 a 12 pós-ovulação. O endométrio suíno produz PGF2α que, quando não há gestação, é secretado na circulação uterina (secreção endócrina), de onde é transportada em direção ao CL para causar luteólise. Se há embriões no útero produzindo suficiente quantidades de estradiol, isso redireciona a secreção de PGF2α para o lúmen uterino (secreção exócrina), evitando que seja liberado para a circulação e, portanto, é sequestrado impedindo que chegue ao corpo lúteo (figura 5). É importante enfatizar que a produção de PGF2α não é inibida, mas sua secreção é redirecionada. Este mecanismo é conhecido como teoria endócrino-exócrina. Vale ressaltar que para o sinal de reconhecimento materno da gestação na porca ser eficiente, é necessário a presença de pelo menos quatro embriões, dois em cada corno, uma vez que se não houver dois embriões, um em cada corno, ocorre luteólise e reinicia a atividade cíclica. Embora os estrógenos sejam identificados como o sinal de reconhecimento materno nesta espécie, o embrião suíno também produz outros fatores, como a PGE2 e o ácido lisofosfatídico, considerado necessário para o estabelecimento adequado da gestação. A PGE2 ocasiona uma redução na produção de PGF2α em favor da PGE2 no endométrio e favorece a contração do miométrio para permitir a migração de embriões. O ácido lisofosfatídico, juntamente com seu receptor, é um fator crítico que favorece a migração intra-uterina, e permite uma distribuição adequada dos embriões ao longo dos cornos. Outras substâncias produzidas pelo embrião suíno são o IFN-delta (IFN-δ) e IFN-gama (IFN-γ), que não possuem ação anti-luteolítica, mas poderiam intervir no processo de implantação. Equinos Na égua é essencial que o embrião, ainda rodeado pela sua cápsula embrionária, migre de 12 a 14 vezes por dia através do útero, entre os dias 12 e 14 após ovulação, a fim de distribuir o fator de reconhecimento materno (figura 6). Embora seja sabido que existe, este último ainda não foi identificado, mas foi estabelecido que é da natureza proteica e seu principal efeito é a inibição da produção endometrial de PGF₂α, mediante a redução na formação do receptores de ocitocina; desta forma, evita-se o início do sinal luteolítico. É interessante notar que nesta espécie a ocitocina não é de origem lútea e sim endometrial. Primatas Ao contrário das espécies domésticas mencionadas, o mecanismo de ação do sinal de reconhecimento materno em primatas é luteotrópico. No humano, o embrião produz gonadotrofina coriônica humana (hCG) após o início da implantação (dias 6 a 8). A hCG estende a vida funcional do CL por meio de sua ligação a receptores lúteos para LH, estimulando assim a liberação de progesterona. Este efeito permite a “sobrevivência” do CL pelo menos até o momento em que a produção de progesterona é transferida para a placenta para levar a gestação a termo. Carnívoros Na cadela não é necessário o reconhecimento da gestação, já que normalmente o corpo lúteo tem uma vida média maior que a duração da gestação. Como na égua, a migração dos embriões através do útero antes da implantação pode favorecer o reconhecimento materno. Adicionalmente, tem sido descrito que durante o período antes da implantação (< 10 dias depois da ovulação), há um aumento na expressão de genes relacionados com a imunomodulação local (IFN-γ, IL-4 e CD8+), que não estão presentes em cadelas durante o diestro. A produção de IFN-γ por parte do embrião canino, como em outras espécies, pode estar envolvida na implantação ou o reconheci- mento da gestação, mas até o momento não foi demonstrado de forma inequívoca. Na gata doméstica, o fator que favorece o reconhecimento materno da gestação ainda não foi descrito. Temos que lembrar que seja qual for o mecanismo envolvido, a produção do sinal embrionário de reconhecimento materno da gestação é importante, já que a contínua presença de progesterona na circulação materna, faz possível que ocorra o desenvolvimento precoce do embrião e eventualmente a implantação, com a formação do órgão temporal mais importante para o desenvolvimento fetal: a placenta. Resumindo, o sinal enviado pelo embrião deve ser dado antes do útero começar a secretar PGF2a, hormônio que causa a destruição do corpo lúteo produtor da progesterona necessária para a gestação. O embrião deve secretar algumas substâncias (denominadas EPF: Early Pregnant Factors/fatores de gestação precoce) que capte o endométrio materno e sirva para evitar a ação luteolítica da PGF2a. Na porca, em vez de ser evitada a secreção de PGF2a, o referido hormônio é “sequestrado na luz do útero” e, desta forma, passa a secretar-se em forma exócrina, sem ter efeito sobre o corpo lúteo. No bovino, o reconhecimento materno da gestação é o processo fisiológico no qual o embrião, por meio de sinais moleculares como a secreção de interferon-τ (IFN-τ), anuncia sua presença no trato reprodutivo materno a fim de evitar que seja desencadeado o mecanismo luteolítico exercido pela PGF2a sobre o corpo lúteo. PLACENTAÇÃO Nos mamíferos domésticos, o processo de implantação é gradual e prolongado, e ocorre paralelamente a processos como a gastrulação e a formação de membranas extra- embrionárias: saco vitelino, âmnio, alantóides e córion. A formação das membranas extraembrionárias nos mamíferos eutérios, ou seja, aqueles que formam uma placenta completa, é um processo indispensável que permite ao embrião aderir-se ou implantar-se ao endométrio materno. As quatro membranas extraembrionárias mencionadas são formadas a partir do trofoblasto, mesoderme e endoderme embrionários. O saco vitelino fornece nutrientes no desenvolvimento inicial do embrião e se converte em vestigial quando a gestação progride; tem origem no endoderma primitivo, estrutura que junta com o trofoblasto e o mesoderma, formam o córion e âmnions. O âmnion contém o líquido amniótico que está em contato direto com o embrião e é a membrana mais interna; ademais, protege o feto, proporciona lubrificação para o parto e serve como um depósito para urina e resíduos fetais. O córion, por outro lado, é a membrana mais externa do embrião e, portanto, é a que entra em contato direto com o endométrio uterino materno; se fixa ao útero, absorve nutrientes do útero, permite a troca gasosa materno/fetal e produz hormônios. O alantóide se origina de uma evaginação do intestino primitivo e é de onde surge o sistema vascular da placenta fetal; a fusão com o córion (placenta cotiledonária), carrega os vasos sanguíneos do cordão umbilical, que liga o feto com o alantóide e é um reservatório de nutrientes e resíduos. Conforme o embrião se desenvolve, o saco vitelino regride e o alantóide se enche de líquido, pelo que este último se funde com o córion para formar o corioalantóides, que se torna a membrana mais externa e, portanto, a porção fetal do placenta. A placenta é um órgão temporário que representa uma interface através da qual realiza a troca bidirecional de nutrientes, gases, hormônios e outras substâncias entre a mãe e o feto. A unidade funcional da placenta são as vilosidades corioalantóicas, as quais são projeções pequenas dos corioalantóides que se interdigitam com o endométrio uterino, cuja superfície de absorção permite essa troca. A placenta é um órgão endócrino capaz de produzir uma gama de hormônios que ajudam a controlar o ambiente uterino, favorecendo o desenvolvimento do feto, além disso possui um papel importante no momento do parto. Nas diferentes espécies a placenta tem características particulares, pelo qual existem várias classificações, de acordo com a sua posição uterina, a distribuição das vilosidades corioalantóicas e a sua histologia. Posição uterina Refere-se à posição do concepto em relação ao lúmen uterino (figura 7). Central: O concepto ao ser implantado permanece em contato com o lúmen do útero. A maioria das espécies domésticas de importância veterinária estão dentro desta classificação. Excêntrica: O concepto penetra parcialmente o endométrio materno, mas mantém um certo contato com o lúmen uterino. Os roedores (ratos e ratos) e a coelha possuem este tipo de placentação. Intersticial: O embrião invade o endométrio, perde contato com o lúmen uterino, e ao crescer o lúmen uterino se oblitera. Os humanos e a maioria dos primatas mostram este tipo de placenta. Distribuição das vilosidades As vilosidades que formam a interface materno-fetal podem estar distribuídas de maneira diferente ao longo da superfície dos corioalantóides, pelo qual a placenta pode ser classificada como (figura 8): Difusa: Neste tipo de placenta as vilosidades estão distribuídas ao comprimento de toda a superfície do córion (corioalantóides) de maneira uniforme. As placentas de suínos e equinos se enquadram nesta classificação, embora, nesta última espécie, as vilosidades formem estruturas mais ramificadas, que são chamadas microcotilédones (figura 10). Zonal: Esta placenta se apresenta nos carnívoros domésticos, tanto caninos como felinos. As vilosidades que determinam a zona de troca de nutrientes e resíduos, e de ligação com o endométrio são delimitadas de forma a formar uma cintura central em torno do feto (figura 9). Distingue-se também uma segunda região chamada paraplacenta, que se localiza em ambos lados deste “cinto”, e do qual a função não é inteiramente conhecida, embora sabe-se que desempenha um papel importante na troca de ferro da mãe para o feto. As extremidades laterais dos corioalantóides nestas placentas não possuem vilosidades por isso não se ligam ao endométrio. Uma terceira região é a zona transparente nas extremidades distais do córion que tem pouca vascularização. Esta zona pode estar envolvida na absorção de materiais diretamente do lúmen uterino (figura 11). Cotiledonária: É o tipo de placentação que se encontra presente nos ruminantes (ovinos, caprinos e bovinos). As vilosidades coriônicas nestas espécies são agrupadas em pequenas áreas do córion chamadas cotilédones, que se interdigitam e fundem-se parcialmente com locais delimitados no endométrio chamados carúnculas, formando, em conjunto, estruturas conhecidas como placentomas. Cabe destacar que as carúnculas carecem de glândulas endometriais, que só estão presentes nas porções inter-carun- culares do endométrio. Os placentomas, por sua vez, são altamente vascularizados e são remodelados com o progresso da gestação, ramificando-se para aumentar a superfície de troca e o fluxo sanguíneo para aumentar os requisitos do feto em crescimento. Nas zonas inter-carunculares, a placenta é ligada ao endométrio por meio de sistemas de adesão superficial que envolvem glicoproteínas. Acredita-se que a adesão do concepto com o endométrio (carúnculas) é estabelecida em torno de 30 dias em ovinos e 40 dias em bovinos. (figuras 13 a 17). Discoidal: Nestas placentas, as vilosidades agrupam-se numa área circular ou oval, formando uma estrutura discoidal. Este tipo de placenta é encontrada principal- mente em coelhas, roedores e primatas, incluindo os humanos. Histologicamente Esta classificação considera o número de camadas de tecido que compõem a placenta e que separam a circulação materna da circulação fetal (tabela 3). O número máximo é de seis camadas, três do lado fetal (córion, tecido intersticial e endotélio do vaso sanguíneo) e três do lado materno (epitélio endometrial, tecido intersticial e endotélio vascular) (figura 19 e tabela 3). O modo de distinguir e nomear os diferentes tipos de placenta nesta classificação é usando como prefixo a camada materna que está em contato com o córion fetal. As diferentes placentas baseados em sua histologia são as seguintes (figura 19): Epiteliocorial: É o menos íntimo entre os tipos de placentas (figura 20). Estas placentas conservam intactas as seis camadas de tecido, portanto que mantêm as circulações materna e fetal mais separadas, e consideradas como as mais impermeáveis. Este tipo de placenta está presente na porca e égua. Lembre-se de que as placentas da porca e da égua são diferentes e as vilosidades ocupam uma grande proporção da área de superfície do córion (figura 19 A). Também apresenta-se nos ruminantes, no entanto, as placentas dos ruminantes apresentam algumas características particulares que as colocam como um subgrupo e se chamam sinepiteliocorial ou sindesmocorial (figura 19 B). Na vaca, este tipo apresenta-se nos primeiros 2-3 meses de gestação. Além da característica de erosão parcial do epitélio endometrial, um tipo de célula único é encontrado na placenta de ruminantes. Essas células são chamadas células gigantes binucleadas. Como o nome indica, elas são caracterizadas como bastante grandes e com dois núcleos. Na placenta dos ruminantes, algumas células do epitélio coriônico conhecidas como células binucleadas, se fundem com algumas células do epitélio endometrial, criando inicialmente células gigantes trinucleadas e mais tarde placas ou sincícios multinucleados. Estes sincícios têm em consequência uma origem tanto fetal como materna, que criam lugares delimitados nos quais em vez de existir intacta uma camada de epitélio coriônico e outra de epitélio endometrial, encontra-se uma só camada que combina as duas origens. As células gigantes binucleadas migram e mudam seu número ao longo da gestação em forma dinâmica. Este tipo celular é importante porque secretam uma variedade de hormônios. Células gigantes binucleadas aparecem por volta do dia 14 na ovelha e entre os dias 18 e 20 na vaca. Endoteliocorial: 5 camadas. Neste tipo de placentação o córion fetal está em contato direto com o endotélio vascular do endométrio graças à erosão do epitélio e do tecido conectivo endometrial (tecido intersticial) durante a implantação (figura 19 C). De modo que o intercâmbio de substâncias e resíduos só requer atravessar quatro camadas de tecidos. Este tipo de placenta é presente principalmente em cães e felinos. Nota-se nas figuras 19 C e 21 que este tipo de placenta é mais íntimo do que a placenta epiteliocorial porque o epitélio endometrial não existe mais. Hemocorial: 3 camadas (figura 22). Aqui o epitélio coriônico está intacto e entra em contato direto com o sangue materno em regiões onde formam reservatórios de sangue semelhantes a poços (figura 19 D). O intercâmbio de substâncias e resíduos entre a mãe e o feto é mais direto uma vez que é necessário atravessar apenas três camadas para chegar até à circulação fetal. Algumas espécies de primatas, incluindo o ser humano e os roedores possuem este tipo de placentação. MEMBRANAS EXTRAEMBRIONÁRIAS EM AVES Ao mesmo tempo que se estabelece o corpo embrionário e os esboços de cada um dos órgãos começam a gerar-se, torna-se imperioso garantir a sobrevivência do embrião. Tenha-se em conta que nas aves todo o necessário para o desenvolvimento é encontrado no ovo pelo que deve-se reforçar a eficácia das estruturas criadas para garantir o objetivo a que se destina. O exterior é fornecido apenas com o O2; emite CO2 e vapor de água no exterior (perda de 15% da água durante a incubação inicial). Além disso, o neonato não é imaturo, como nos anfíbios, mas está em um estádio maduro juvenil. Como indicado, são quatro as problemáticas a que deve fazer frente o embrião: prover-se de um meio que garanta o desenvolvimento volumétrico, amortecendo os movimentos físicos excessivos que possam traumatizá-lo e evitar a dessecação; assegurar que os nutrientes (vitelo e albúmen) sejam incorporados de forma correta no interior do embrião; assegurar o intercâmbio de gases; e eliminar substâncias tóxicas derivadas do metabolismo proteico. Para atender estas necessidades são desenvolvidas uma série de membranas extrambrionárias que se vão expandindo progressivamente pelo interior do ovo. A dureza da casca e sua relativa impermeabilidade protege-o igualmente da intempérie terrestre. -/- Figura 23: Evolução das membranas extraembrionárias de galinha (3 e 10 dias de incubação). -/- Saco vitelino: o saco vitelino é a primeira membrana extraembrionária em formação. Aparece como consequência direta da gastrulação: as camadas germinativas que se formam ao nível do disco embrionário expandem-se progressivamente contornando o vitelo. Assim, as células provenientes da área opaca (equivalente ao trofoblasto dos mamíferos) migram sobre o vitelo, terminando quase por cobrir, o mesmo ocorre com o endoderma mais internamente, formando-se assim um saco bilaminar. Posteriormente, o mesoderma se interpõe entre ambos, progredindo igualmente no sentido distal, rodeando o endoderma e aderindo-se ao mesmo e ao equivalente de trofoblasto. Ao estabelecer-se o celoma, o saco é constituído pelo endoderma e folha esplâncnica do mesoderma lateral. Este mesoderma vai progredindo no sentido distal e se vasculariza profunda- mente; os vasos distais se anastomosam formando um anel vascular denominado seio terminal, que marca o limite do mesoderma em expansão. Assim, sobre o vitelo é distinguível um área distal não vascularizada (área vitelina) e uma área proximal vascularizada (área vasculosa) que vai ficando progressivamente maior. Ao sexto dia de incubação mais da metade da superfície do vitelo foi envolvido pelo mesoderma. Os nutrientes do vitelo são absorvidos e desdobrados a componentes mais simples por enzimas produzidas pelo endoderma, sendo incorporados aos vasos vitelinos que os veicularão até o coração, que os impulsionará a todo o embrião. Durante a fase embrionária (até ao sexto dia de incubação), o oxigênio do exterior chega até a área vasculosa por difusão, incorporando-se daqui ao embrião; além disso, durante a primeira semana, as alterações na composição e volume do vitelo fazem que se disponha flutuando sobre o albúmen, o que faz com que a área vasculosa fique em contato com a casca, favorecendo-se assim a respiração. O intestino primitivo se instaura a partir das porções mais proximais do saco vitelino à vez que o corpo é fechado (2º-3º dia). O saco vitelino vai regredindo à medida que se vão esgotando os nutrientes do vitelo que aloja. Pouco antes do nascimento é incorporado à cavidade corporal como divertículo vitelino que fica unido ao jejuno; o divertículo vitelino persiste até seis dias após o nascimento, constituindo uma fonte adicional de nutrientes. -/- Figura 24: Feto de galinho ao fim, perto de ser eclodido. -/- mnios: no segundo dia (-30 horas) de incubação se formam as dobras amnióticas na somatopleura extraembrionária, perto do disco embrionário. Progridem dorsalmente, terminando por convergir e fundir-se cerca de 72 horas de incubação, coincidindo com o fechamento corporal, assim sendo constituído o âmnios, que terminará perdendo todo o contato com o córion. A cavidade amniótica que limita está cheia de um líquido seroso que garante que o embrião seja desenvolvido em um meio aquoso; este líquido é secretado pelo âmnios, mas também composto por substâncias formadas pelos rins, cavidade oral e aparelho respiratório. Córion: após a formação do celoma e o estabelecimento e fusão das dobras amnióticas, a parte da somatopleura extraembrionária que fica mais periférica constitui o córion (também denominado serosa nas aves); permanece formada pela área opaca expandida e mesoderma somático. Progressivamente vai aderindo-se à membrana testácea interna deslocando o albúmen; sobre o dia 12 termina por cobrir toda a superfície interna da casca. Intervém na troca gasosa com o meio ambiente através dos poros da casca e na captação do cálcio desta. Alantóides: o alantóide inicia a sua formação no dia 3 de incubação. Cresce rapidamente, ocupando o espaço exocelômico, terminando por cobrir o âmnios e saco vitelino. Progressivamente, entre os dias 4 a 10, sua parte mais externa se funde com o córion, formando-se o alantocórion, membrana trilaminar que cobrirá a superfície interna da casca, aderindo-se à membrana testácea interna, cujo mesoderma (esplâncnico) se vasculariza intensamente. A partir do dia 7 substitui completamente a área vasculosa como órgão respiratório, sendo garantido o aumento gradual das necessidades de troca gasosa na fase fetal do desenvolvimento (desde o dia 8), de rápido crescimento. A capacidade de capilarização desta membrana é muito maior do que a do saco vitelino. Na cavidade alantóica acumula-se a urina produzida pelos rins, afastando os produtos tóxicos do embrião; a membrana também age sobre este fluido intervindo na manutenção do equilíbrio hídrico e mineral do embrião. -/- Figura 25: Formação do saco vitelino. Limite entre a área vascular e avascular. Seio terminal. -/- O albúmen perde água rapidamente e torna-se menos volumoso e mais viscoso, terminando por desaparecer progressivamente. A ligação do alantocórion à membrana testácea interna faz com que seja marginalizado para uma posição periférica, no polo agudo do ovo. Aqui, o alantocórion que o rodeia constitui o saco do albúmen. O albúmen é a principal fonte de água e proteínas. A água é incorporada ao vitelo, o que, ao tornar-se mais volumoso, provoca que, entre os dias 3 e 4, se rompa a membrana vitelina; apenas restos mortais devem permanecer entre o saco vitelino e o albúmen. Dentro do saco vitelino, a água se acumula principalmente sob o embrião -fluido subembrionário-; este fluido atinge o seu volume máximo (15 ml) no dia 6. As proteínas serão incorporadas principalmente a partir de no dia 12, seja através do saco vitelino, do saco do albúmen ou por ingestão de líquido amniótico, dada a comunicação seroamniótica que se estabelece. Na galinha, a eclosão ocorre aos 21 dias de incubação. REFERÊNCIAS BIBLIOGRÁFICAS -/- Anotações de aulas de Embriologia Básica, Prof. Dr. Edson João da Silva, UFRPE, 2021. BAZER, Fuller W. et al. Novel pathways for implantation and establishment and maintenance of pregnancy in mammals. MHR: Basic science of reproductive medicine, v. 16, n. 3, p. 135-152, 2009. CARTER, Anthony M. Evolution of placental function in mammals: the molecular basis of gas and nutrient transfer, hormone secretion, and immune responses. Physiological Reviews, 2012. CARTER, A. M.; ENDERS, A. C. Placentation in mammals: Definitive placenta, yolk sac, and paraplacenta. Theriogenology, v. 86, n. 1, p. 278-287, 2016. CONSTANTINESCU, G.M.; SCHATTEN, H. Comparative reproductive biology. Carlton: Blackwell Publishing, 2007. 402p. Avicultura: Formação do Ovo. Desenvolvimento Embrionário e Diferenciação Sexual nos Animais Domésticos. Disponível em:. Acesso em: Dezembro de 2021. Diferenciação e Determinação Sexual dos Animais. Fisiologia do Ciclo Estral dos Animais Domésticos. Emanuel Isaque Cordeiro da Silva, 2021. Manejo na Avicultura: Postura, Iluminação e Incubação dos Ovos. Transporte de Gametas, Fertilização e Segmentação. FERRER‐VAQUER, Anna; HADJANTONAKIS, Anna‐Katerina. Birth defects associated with perturbations in preimplantation, gastrulation, and axis extension: from conjoined twinning to caudal dysgenesis. Wiley Interdisciplinary Reviews: Developmental Biology, v. 2, n. 4, p. 427-442, 2013. GALINA, Carlos; VALENCIA, Javier. Reproducción de los animales domésticos. 2006. GEISERT, Rodney D.; SPENCER, Thomas E. Placentation in Mammals. Springer, 2021. GINTHER, O. J. Reproductive Biology of The mare: Basic and Applied Aspects. 2. ed. Cross Plains, Wisconsin: Equiservices, 1992. GUILLOMOT, Michel. Cellular interactions during implantation in domestic ruminants. Journal of Reproduction and Fertility-Supplements only, n. 49, p. 39-52, 1995. KLEIN, C.; TROEDSSON, M. H. T. Maternal recognition of pregnancy in the horse: a mystery still to be solved. Reproduction, Fertility and Development, v. 23, n. 8, p. 952-963, 2011. MIGLINO, Maria Angelica et al. The carnivore pregnancy: the development of the embryo and fetal membranes. Theriogenology, v. 66, n. 6-7, p. 1699-1702, 2006. MOFFETT, Ashley; LOKE, Charlie. Immunology of placentation in eutherian mammals. Nature Reviews Immunology, v. 6, n. 8, p. 584-594, 2006. PRETZER, S. D. Canine embryonic and fetal development: A review. Theriogenology, v. 70, n. 3, p. 300-303, 2008. SENGER, Phillip L. et al. Pathways to pregnancy and parturition. Current Conceptions, Inc., 1615 NE Eastgate Blvd., 2012. SOZEN, Berna; CAN, Alp; DEMIR, Necdet. Cell fate regulation during preimplantation development: a view of adhesion-linked molecular interactions. Developmental biology, v. 395, n. 1, p. 73-83, 2014. SPENCER, Thomas E. et al. Pregnancy recognition and conceptus implantation in domestic ruminants: roles of progesterone, interferons and endogenous retroviruses. Reproduction, fertility and development, v. 19, n. 1, p. 65-78, 2006. VERSTEGEN-ONCLIN, K.; VERSTEGEN, J. Endocrinology of pregnancy in the dog: a review. Theriogenology, v. 70, n. 3, p. 291-299, 2008. WOODING, Peter; BURTON, Graham. Comparative placentation: structures, functions and evolution. Springer Science & Business Media, 2008. FIXAÇÃO DO ASSUNTO -/- 1. Defina e diferencie os processos de desenvolvimento embrionário precoce, alonga- mento e gastrulação. -/- 2. O que é implantação? Caracterize as fases do processo de implantação. -/- 3. Qual a importância do acúmulo de líquido no interior do blastocele? Qual a importân- cia da eclosão do blastocisto? -/- 4. Caracterize os três tipos de implantação e, depois, explique e diferencie os meios de implantação nas fêmeas domésticas. -/- 5. Defina e caracterize os meios de reconhecimento materno da gestação (RMG) nos animais domésticos. -/- 6. O que diferencia o RMG em ruminantes e suínos? -/- 7. Qual o papel do estradiol no RMG em porcas? O que ocorre quando a porca não fica gestante? -/- 8. Explique o RMG em cães e gatos. -/- 9. Defina placentação e sua importância para a reprodução dos animais domésticos. -/- 10. Quais são as classificações da placentação? Classifique a placentação das fêmeas domésticas. -/- 11. Caracterize e diferencie o processo de placentação em fêmeas domésticas. -/- 12. Observe a figura e responda o que se pede:. (shrink)
A meliponicultura é a criação racional de abelhas nativas sem ferrão. A criação r acional de abelhas indígenas é uma atividade auxiliar na geração de trabalho e renda, contribuindo para a melhoria da qualidade de vida dos criadores, além de ser uma atividade economicamente viável, ecologicamente sustentável e socialmente justa. -/- O conhecimento sobre as abelhas sem ferrão e a meliponicultura nas Américas é muito antigo quando comparado com as atividades envolvendo, nesse continente, as abelhas Apis mellifera. Há muito tempo, (...) povos indígenas de diversos territórios se relacionam com os meliponíneos de muitas formas, seja estudando-os, criando-os de forma rústica ou explorando-os de forma predatória. -/- Antes da chegada da abelha Apis mellifera no continente americano, ou da exploração da cana para fabricação de açúcar, o mel das abelhas nativas caracterizava-se como principal adoçante natural, fonte de energia indispensável em longas caçadas e caminhadas que esses povos realizavam na busca por alimento. -/- Muito do conhecimento tradicional acumulado pela população nativa foi gradativamente assimilado pelas diferentes sociedades pós-colonização, tornando a domesticação das abelhas sem ferrão uma tradição popular que se difundiu principalmente nas regiões norte e nordeste do Brasil. A herança indígena presente na atual lida com as abelhas é evidenciada pelos nomes populares de muitas espécies, como é o caso da Uruçu Nordestina ou Uruçu Verdadeira (Melipona scutellaris), uma palavra que vem do tupi "eiru'su", que nessa língua indígena significa “abelha grande”. -/- O nome "uruçu" está relacionado com diversas abelhas do mesmo gênero, encontradas não só no Nordeste, mas também na região amazônica. A tendência, porém, é a de reservar o termo “uruçu” para a abelha da zona da mata do litoral baiano e nordestino, que se destaca pelo tamanho avantajado (semelhante à Apis), pela produção de mel expressiva entre os meliponíneos e pela facilidade do manejo, pois são abelhas mansas. -/- Estudos já realizados mostraram o relacionamento da uruçu com a mata úmida, que apresenta as condições ideais para as abelhas construírem seus ninhos, além de encontrarem, em árvores de grande porte, espécies com floradas mais abundantes, que são seus principais recursos alimentares, bem como locais de morada e reprodução. A Uruçu (Melipona scutellaris) possui uma preferência floral mais seletiva do que as abelhas africanizadas, razão porque se encontram em vias de extinção. (shrink)
В «Godel's Way» три видных ученых обсуждают такие вопросы, как неплатежеспособность, неполнота, случайность, вычислительность и последовательность. Я подхожу к этим вопросам с точки зрения Витгенштейна, что есть две основные проблемы, которые имеют совершенно разные решения. Есть научные или эмпирические вопросы, которые являются факты о мире, которые должны быть исследованы наблюдений и философские вопросы о том, как язык может быть использован внятно (которые включают в себя определенные вопросы в математике и логике), которые должны быть решены, глядят, как мы на самом деле (...) использовать слова в конкретных контекстах. Когда мы получаем ясно о том, какой языковой игре мы играем, эти темы рассматриваются как обычные научные и математические вопросы, как и любые другие. Идеи Витгенштейна редко были равны и никогда не превосходили и столь же уместно сегодня, как они были 80 лет назад, когда он диктовал Blue и Браун Книги. Несмотря на свои недостатки, на самом деле серия заметок, а не готовой книги, это уникальный источник работы этих трех известных ученых, которые работают на кровотечения края физики, математики и философии на протяжении более полувека. Da Costa и Doria процитированы Wolpert (см. ниже или мои статьи на Wolpert и моем просмотрении Yanofsky 'Внешние пределы разума') в виду того что они написали на всеобщихвычислениях,, и среди его много выполнений, Da Costa пионер в paraconsistency. Те, кто желает всеобъемлющего до современных рамок для человеческого поведения из современных двух systEms зрения могут проконсультироваться с моей книгой"Логическая структура философии, психологии, Минd иязык в Людвиг Витгенштейн и Джон Сирл" второй ред (2019). Те, кто заинтересован в более моих сочинений могут увидеть "Говоря обезьян - Философия, психология, наука, религия и политика на обреченной планете - Статьи и обзоры 2006-2019 3-й ed (2019) и suicidal утопических заблуждений в 21-мst веке 4-й ed (2019) th и другие. (shrink)
Interpretations of Peirce’s development after 1898 often mix three kinds of arguments: one argument about belief, one argument about philosophy and practice, and one argument about the causal role of James’s writings on Peirce’s development. I shall focus here on the last two points: theory and practice and the alleged role of James. James’s role in Peirce’s development is somewhat overestimated and one can doubt Peirce’s worries about the dogmatic use of the scientific method and of philosophy in morals are (...) conditioned by James’s writings only. Peirce’s re-readings and refinements of his Illustrations started no later than the early 1880s, at a time when James was not as central a reference as it became after 1900 for the philosophic stage. To support that claim, I wish to focus here on one particular point: the distrust towards those who try to “mingle” philosophy and practice is by no means a new theme in the 1890s. One of the most telling examples of such a claim is the 1885 review of Royce’s The Religious Aspect of Philosophy, some thirteen years before the quarrel over pragmatism started. (shrink)
UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO DEPARTAMENTO DE ZOOTECNIA – 50 ANOS EMANUEL ISAQUE CORDEIRO DA SILVA REPRODUÇÃO ANIMAL: OVULAÇÃO, CONTROLE E SINCRONIZAÇÃO -/- REPRODUÇÃO ANIMAL: OVULAÇÃO, CONTROLE E SINCRONIZAÇÃO DO CICLO ESTRAL -/- ANIMAL REPRODUCTION: OVULATION, CONTROL AND SYNCHRONIZATION OF THE ESTRAL CYCLE -/- Autor: Emanuel Isaque Cordeiro da Silva – IFPE-BJ/CAP-UFPE/EEFCC-BJ/UFRPE 1. INTRODUÇÃO As fêmeas dos animais domésticos possuem em seus ovários, desde praticamente o nascimento, a dotação completa de gametas dos quais vão dispor para o resto de sua (...) vida. No entanto, terão que esperar até a puberdade para que se produza a evolução completa dos folículos (foliculogênese) que darão como resultado as primeiras ovulações. Este momento caracteriza-se, por um lado, pelo início gradual da secreção por parte da hipófise de quantidades importantes de hormonas gonadotropinas (hormonas folículo estimulante «FSH» e sobretudo luteinizante «LH»); por outro lado, pelo aumento da capacidade dos seus ovários para responder a estas secreções. A partir daí, o aparelho reprodutor feminino das fêmeas domésticas deve apresentar, durante todo o período de atividade sexual, alterações morfológicas, endócrinas e fisiológicas, que devem ser repetidas sequencialmente e periodicamente, consoante com a duração e a frequência do ciclo estral característico de cada espécie animal, assegurando assim a liberação de um ou mais ovócitos férteis nos ciclos estrais correspondentes. -/- 2. EVOLUÇÃO DO OVÓCITO E DOS FOLÍCULOS OVÁRICOS O ovário constitui um órgão de armazenamento de ovócitos formados durante a vida fetal ou após o nascimento, os quais permanecerão «latentes», num estado de imaturidade, paralisando a sua atividade de desenvolvimento e crescimento após o processo de mitose pelo qual as células germinativas ou ovogonias evoluem para ovócitos primários. Estes ovócitos devem ser rodeados por células foliculares para alcançar sua maturação e posterior ovulação, constituindo-se, desta maneira, os folículos. Estes últimos, que se localizam no parênquima ovárico, sofrem uma série de mudanças evolutivas que os fazem passar de folículos primordiais (constituídos por um ovócito rodeado de células planas) a folículos maduros ou de Graaf, passando pelos estágios primário, secundário e terciários. A estrutura do ovário e a terminologia correspondente, bem como a sua fisiologia, já foram tratados em trabalhos anteriores. Basicamente, o folículo maduro ou de Graaf, que ressalta já na superfície ovariana como se tratasse de uma pequena vesícula cheia de líquido, encontra-se constituído, no caso dos mamíferos, pelas tecas externa e interna, a folha basal, o ovócito e o seu núcleo ou vesícula germinativa e um acúmulo de células da granulosa chamado cumulus. O antro-folicular ou cavidade intrafolicular formada durante o estágio de folículo terciário possui no seu interior um líquido cuja composição provém do plasma sanguíneo. Por outro lado, o ovócito, que desde a constituição da reserva de folículos primordiais se encontrava em estado de ovócito primário, começa a aumentar de volume (durante a fase de evolução do folículo terciário a folículo maduro) e a cobrir-se de uma membrana celular denominada zona pelúcida. Nos momentos que precedem imediatamente à ovulação reativa-se a meiose, liberando-se o primeiro corpúsculo polar e convertendo-se o ovócito em secundário. Produzida a ovulação retoma-se de novo a meiose, que tinha permanecido em repouso, e depois de ocorrer a fecundação libera-se o segundo corpúsculo polar, passando a ser uma ovotida ou óvulo maduro. -/- 3. A OVULAÇÃO Acabado o crescimento, o folículo maduro ou de Graaf é capaz de responder à descarga pré-ovulatória de gonadotropinas (LH e em menor medida FSH) de tal forma que se produza uma reestruturação completa do mesmo e a subsequente liberação de um ovócito fértil através de um pequeno orifício (estigma) produzido no ponto de ruptura da sua parede celular e das camadas celulares mais superficiais do córtex ovárico, cuja espessura, neste momento, é muito reduzida. No momento da ovulação tanto o líquido folicular como o ovócito são projetados, entre outras causas, pela contração da musculatura lisa que rodeia os folículos para a cavidade peritoneal caindo perto das fimbrias do oviduto ou trompas de Falópio. Esta expulsão, no caso das vacas e ovelhas, ocorre sob a forma de um fluxo fluido, enquanto na coelha ocorre sob a forma de um jato súbito ou de um processo explosivo. No caso da égua, a estrutura dos seus ovários difere das outras fêmeas domésticas, no sentido em que a zona vascular se localiza superficialmente e os folículos se distribuem no interior do ovário. Ao mesmo tempo, a ovulação ocorre unicamente num determinado ponto denominado fossa de ovulação. Por tudo isso, durante a foliculogênese, os folículos vão migrando para a fossa de ovulação, chegando em algumas ocasiões a ficarem presos no interior do ovário, não conseguindo desenvolver-se nem evolucionar (folículo cístico) e que, ao apresentar uma secreção contínua de estrogênios, produz na fêmea um estado de cio permanente ou ninfomania. Nas espécies cuja ovulação é espontânea, o processo supra ocorre periódica e sequencialmente em todos os ciclos estrais com um intervalo conhecido a partir do início do estro ou, no caso da vaca, após o término deste (tabela 1). Por outro lado, nas espécies de ovulação induzida (coelha, gata e fêmeas de furão e camelo) esta ocorre pouco depois de realizado o coito. Nestas espécies, o estímulo coital, favorecido pelas espículas localizadas no pênis do macho, determina por via eferente nervosa a liberação hipotalâmica de GnRH, que em poucos minutos depois provoca a secreção adeno-hepática de LH, que por via sistêmica alcança os folículos, desencadeando os processos fisiológicos que conduzem à ovulação. Tabela 1: Parâmetros que definem o ciclo sexual e tipo de ovulação de algumas espécies domésticas (adaptado e elaborado a partir de DUKES, et. al. 1996). -/- Espécie Duração do ciclo estral Atividade sexual Tipo de ovulação E/I N° de ovócitos Duração do estro Momento da ovulação Vaca 21 dias Poliéstrica contínua E 1 18 horas 11 horas após o final do estro Ovelha 17 dias Poliéstrica estacional E 1-3 29 horas Ao final do estro Porca 21 dias Poliéstrica contínua E 11-24 45 horas 24-36 horas do começo do estro Égua 21 dias Poliéstrica estacional E 1 6 dias 24-48 horas antes do final do cio Cabra 20 dias Poliéstrica estacional E 1-3 40 horas 33 horas do começo do estro Cadela 9 dias Monoéstrica a cada 4-8 E — 7-9 dias 3-4 dias do começo do estro Gata 5 dias Poliéstrica estacional I 3-4 4 dias 27 horas postcoito Coelha 16 dias Poliéstrica I 4-12 Não definida 10 horas postcoito -/- Dado que a vida fértil dos ovócitos, uma vez produzida a ovulação, raramente ultrapassa as 10-12 horas, é importante, sobretudo quando se realiza inseminação artificial ou monta dirigida, determinar, a partir da presença dos sintomas de cio, o período de tempo durante o qual a fertilização numa exploração específica será efetuada, evitando-se assim uma redução da fecundidade. 3.1 Ovulação simples e múltipla Em algumas ocasiões, dependendo da espécie (ver tab. 1), são vários os folículos que apresentam uma evolução completa, chegando a possuir nas células da granulosa receptores de LH, com o qual realiza-se a descarga ovulante de gonadotropinas e produz-se uma ovulação múltipla ou multiovulação, sendo, neste caso, libertados vários ovócitos férteis. No esquema abaixo, observa-se os processos de recrutamento, seleção e dominação da espécie ovina, a partir dos quais um ou vários folículos em crescimento chegam a ovular, bem como a influência das gonadotropinas FSH e LH em cada uma destas fases. Independentemente da influência genética, manifestada pelas diferenças entre espécies, raças e mesmo estirpes, os processos que determinam que entre um grupo de folículos em crescimento sejam um ou vários deles que cheguem a ovular englobam-se sob os termos de recrutamento, seleção e dominação folicular (fig. 1). -/- Figura 1. Recrutamento, seleção e dominação folicular na espécie ovina e influência do FSH e LH nas fases. SILVA, 2019. O recrutamento é definido como a entrada em crescimento terminal de um grupo de folículos gonadodependentes, ou seja, que dentre os folículos em crescimento que existem no reservatório ovariano iniciarão seu crescimento terminal aqueles que possuem receptores à FSH (a partir do estágio primário já os possuem) e tenham igualmente atingido um tamanho determinado, que varia entre as diferentes espécies (2 mm Ø em ovelhas). Geralmente o número de folículos recrutados é duas ou três vezes superior ao número de folículos ovulados. O recrutamento no caso da ovelha ocorre três dias antes da ovulação sob a regressão do corpo lúteo e aumento de FSH. A seleção é caracterizada porque entre os folículos recrutados um ou vários folículos continuam a aumentar de tamanho, enquanto o resto se torna atrésico. No caso da ovelha, o tamanho do folículo no momento da seleção corresponde ao tamanho em que aparecem os receptores de LH sobre a granulosa (folículo terciário) ou quando, como se verá posteriormente, a aromatização de andrógenos em estrogênios é máxima. Por outro lado, a produção de inibina (hormônio gonodal não esteroide) é igualmente elevada. A interação destes dois fatores de retroalimentação (estrogénios e inibina) para a secreção de FSH provoca uma redução dos níveis desta hormona, facilitando a seleção: neste contexto, verificou-se que a injeção de FSH em ovinos bloqueia a seleção produzindo, com efeito, uma multiovulação. No caso da vaca, poderia existir um segundo mecanismo regulador: o folículo maior poderia secretar, em um momento da seleção, um composto de ação parácrina, diminuindo a resposta de outros folículos à ação dos níveis existentes de FSH. A dominância que produz os folículos selecionados está associada com a regressão ou atresia de outros folículos recrutados e com a inibição do recrutamento de novos folículos. Embora os níveis de FSH diminuam, os folículos dominantes persistem porque reduzem suas necessidades em FSH. Esta adaptação a meios mais pobres em FSH poderia explicar-se, entre outras causas, pela ampliação da resposta a esses níveis baixos em FSH graças à produção de IGFI (Insulin Like Growth Factor l), no caso da ovelha, pelo folículo dominante. O IGFI estimula a aromatização dos androgênios em estrogênios e, por sua vez, o estradiol estimula a produção de IGFI nas células granulosas, tornando-a ao mesmo tempo mais sensível ao IGFI. Este laço formado pelo estradiol e IGFI pode desempenhar um papel importante na produção do folículo dominante do estradiol. -/- 4. MECANISMOS NEUROENDÓCRINOS QUE CONDUZEM À OVULAÇÃO A ovulação, propriamente dita, pode ser um bom ponto de partida para explicar os mecanismos neuroendócrinos que se sucedem para alcançar, no próximo ciclo estral, uma nova ovulação. Imediatamente após a ocorrência da ovulação, forma-se um coágulo de sangue no interior do folículo em consequência da hemorragia causada pela ruptura celular (folículo hemorrágico) e que servirá de substrato para o crescimento das células granulosas. Em seguida, as células da granulosa hipertrofiam e proliferam rapidamente, acumulando lipídios e pigmentos carotenoides (luteína) que lhe conferem uma cor amarelada (corpo lúteo). Esta estrutura formada, sob a ação do LH e também da prolactina, começa a produzir progesterona, a qual além de preparar o aparelho reprodutor para uma possível gestação inibe, a nível da hipófise, a secreção cíclica de LH, impedindo assim novas ovulações. À medida que os níveis de progesterona diminuem devido à regressão do corpo lúteo sob a ação da PGF2a (prostaglandina 2a), vários folículos começam seu crescimento sob a ação dos níveis de FSH (cada vez maiores), atingindo o seu crescimento final na fase folicular. Alcançado o estado de terciário, as células da teca interna do folículo, estimuladas pela secreção tônica do LH liberada pela hipófise em pequenas ondas (sem chegar a atingir a quantidade que provoca a ovulação), sintetizam a partir do colesterol, passando por alguns passos intermediários, testosterona, que é depois aromatizada a estradiol sob a ação do FSH pelas células da granulosa (fig. 2). A prolactina, juntamente com o FSH, também influencia o crescimento e a maturação dos folículos, bem como a produção de estrogênios. À medida que avança o crescimento e maturação dos folículos, a concentração de estradiol aumenta (os folículos que em um momento da evolução se tornam atrésicos aportam também uma quantidade importante de estradiol), sendo máxima nos momentos imediatos à ovulação (fig. 3). Este aumento, sustentado na taxa circulante de estrogênios, é a responsável pelo aparecimento do cio nas fêmeas, cujo final, geralmente, exerce um efeito feedback positivo sobre o eixo hipotálamo-hipofisário induzindo o pico pré-ovulatório de LH (e também FSH), que conduz a nova ovulação. Figura 2. Processo de aromatização dos andrógenos em estrógenos. (Adaptado e elaborado a partir de ILLERA, 1994). -/- Figura 3. Crescimento prático folicular, e níveis de progesterona e 17 estradiol (a) e FSH e LH (b), durante o ciclo estral da ovelha. (Elaborado a partir de DURÁN DEL CAMPO, 1980). Nota importante: a ovulação em algumas espécies não é acompanhada do cio (ovulações silentes ou silenciosas), sobretudo nas primeiras ovulações da puberdade e após o anestro estacionário, devido a produção nula da estimulação prévia da progesterona. Embora citado anteriormente que o crescimento folicular começa no final da fase lútea no caso da vaca, a ovelha e a égua, a população de folículos ovulatórios se renova ao longo do ciclo estral, produzindo-se um crescimento e regressão dos folículos, denominado onda folicular. Nestas ondas, que também podem ocorrer durante o período pré-púbere, anestro estacionário e pós-parto, os folículos são receptores à descarga de LH, no entanto, a sua capacidade de produzir estradiol é muito limitada devido a uma deficiência de precursores em tecas ou a uma inadequação da aromatização dos androgênios em estrogênios, com o qual não se atinge a quantidade de estrogênios necessários para produzir a ativação nervosa necessária para a liberação cíclica de LH. Do ponto de vista prático, o conhecimento dos mecanismos neuroendócrinos que se sucedem durante o ciclo estral e que conduzem à ovulação, bem como a sua possível regulação mediante técnicas culturais ou tratamentos hormonais, é de vital importância quando o que se pretende é realizar um controle e sincronização tanto do cio quanto da ovulação. -/- 5. ALTERAÇÕES MORFOLÓGICAS ASSOCIADAS À OVULAÇÃO Nos momentos prévios à ovulação, o folículo ovulatório experimenta uma série de mudanças morfológicas e histológicas regulamentadas endocrinamente e cuja finalidade será a modificação da estrutura do folículo, facilitando a liberação do ovócito fértil. Logo após a descarga pré-ovulatória, ocorre um aumento do fluxo sanguíneo associado a um acúmulo de sangue que dependerá, entre outros, da prostaglandina E2 (PGF2) secretada pelas células granulosas. A teca externa é edemaciada pela difusão do plasma sanguíneo e o volume do antro folicular aumenta pela atração de água exercida pelo ácido hialurônico secretado pelas células do cumulus sob a ação do FSH/LH. Este aumento de volume é facilitado pela dissociação dos feixes de fibras de colágeno da teca externa e da túnica albugínea sob a ação de duas enzimas: a colagenase e a plasmina. A plasmina age em primeiro lugar e aparece como resultado da produção de ativadores do plasminogênio pelas células da granulosa e do cumulus; sua atividade é máxima no ápice do folículo dissociando a matriz proteica dos feixes de fibras de colágeno e ativando o precursor da colagenase. Além disso, a atividade da colagenase é máxima no momento da ruptura do folículo. A maioria das células da granulosa que estão fixadas na lâmina basal se soltam, perdem sua união em colônia e deixam de se dividir (fig. 4). As ligações que as ligavam desaparecem, mas a sua dissociação não é completa devido, provavelmente, à produção local de inibidores da colagenase. As células do cumulus sofrem as mesmas transformações, mas a sua dissociação é total porque estas secretam ácido hialurônico. No entanto, as células que asseguraram, desde o início do crescimento folicular, a ligação entre a granulosa e o ovócito permanecem durante um período mais ou menos longo, ligadas à coroa radiada. Figura 4. Estado de um folículo pouco antes da ovulação. DRIANCOURT, et al. 1991. Pouco antes da ovulação, a lâmina basal desaparece de seu lugar, ocorre uma individualização dos vasos sanguíneos e as células da teca interna penetram no folículo. No ápice do folículo, produz-se uma deficiência na irrigação sanguínea e, portanto, de oxigênio, o que faz com que as células do epitélio ovariano morram. As hidrolases, que nesse momento são liberadas, contribuem para a destruição completa dos tecidos subjacentes. Em definitivo, é o conjunto de fatos comentado supra que conduzem à ruptura do ápice do folículo e provocam um aumento da pressão hidrostática que se traduz em uma contração do folículo expulsando o ovócito e as células da coroa radiada. -/- 6. CONTROLE, SINCRONIZAÇÃO E INDUÇÃO DA OVULAÇÃO 6.1 Introdução O controle e a sincronização da ovulação se situa dentro de um contexto muito mais amplo como é o controle da reprodução, entendendo como tal o governo dos elementos manipuláveis do processo reprodutivo. No âmbito do controle da reprodução, existem muitos objetivos, entre os quais a indução da puberdade, a cobertura em época de anestro, aumento da prolificidade, entre outras. Além disso, o controle da reprodução é necessário para a utilização de determinadas técnicas, como a inseminação artificial ou a transferência de embriões. Com efeito, e consoante com o objetivo pretendido, poderão ser utilizadas diferentes técnicas e métodos, tais como os tratamentos hormonais, o efeito macho, a alimentação (Flushing) e os cruzamentos, tudo isso, por sua vez, empregado nos esquemas de seleção. Neste sentido e como passo prévio à sincronização e indução da ovulação, em muitas ocasiões se realiza também um controle e sincronização do cio. Este último, além de permitir que o criador regule o momento do estro e da cobrição, podendo em algumas espécies suprimir o anestro estacionário, permite que os animais se agrupem em lotes homogêneos e assim poder alimentá-los com as dietas adequadas segundo o estado de gestação, atender os partos e assim diminuir a mortalidade neonatal, programar os desmames e engordar os animais para, por fim, vender os animais por lotes. Na sincronização do cio o que se pretende é atuar sobre o intervalo entre a fase folicular e a fase luteica, modificando, portanto, a duração do ciclo estral (fig. 5). Figura 5. Representação dos métodos de sincronização do ciclo estral: (a) duração normal das fases luteica e folicular: (b) fase luteica cortada: (c) extensão da fase luteica. HUNTER, 1987. Para alcançar esse objetivo, os criadores podem adotar dois métodos: a) Induzindo a regressão do corpo lúteo de um grupo de animais de forma que todos eles iniciem a fase folicular e apresentem o cio num espaço de tempo bastante semelhante (injeções de prostaglandinas) (fig. 5b). b) Alargando artificialmente, através de um bloqueio hormonal, a fase luteica de tal modo que, ao cessar esse bloqueio e injetar-lhes gonadotropinas exógenas, os animais iniciem conjuntamente uma fase folicular seguida de um cio sincronizado (injeções de progesterona, implantes de progesterona ou progestágenos, esponjas vaginais impregnadas de progestágenos) (fig. 5c). 6.2 Objetivos e fundamentos Os tratamentos de controle e sincronização da ovulação têm por objetivo tentar regular, por um lado, o momento exato da ovulação, e por outro, o número de folículos que possam chegar a liberar ovócitos férteis, ao qual pode-se conseguir mediante a intervenção nos processos de recrutamento e seleção dos folículos. O primeiro objetivo permitirá que se realize a inseminação artificial no momento propício, evitando o envelhecimento dos ovócitos e que se possa calcular o momento da fertilização e a fase de desenvolvimento dos embriões (realização de transplantes). Por outro lado, o segundo objetivo ajudará a aumentar a fertilidade e a prolificidade em um rebanho e, no caso de fêmeas doadoras para a transferência de embriões, a relação: número de embriões/fêmea doadora. A indução da ovulação e/ou o aumento da taxa de ovulação pode ser conseguida aumentando os níveis de gonadotropinas no sangue antes do início da atresia folicular, ou seja, 3 a 5 dias antes da ovulação. Por outro lado, a taxa de ovulação pode também ser aumentada através da imunização contra esteroides, embora, por outro lado, permitam uma sincronização de cios. Além disso, o aumento dos níveis de gonadotropinas pode ser conseguido estimulando a sua secreção pelo próprio organismo do animal, por injeção de fatores de liberação hipotalâmicos que estimulem na hipófise a secreção de gonadotropinas, através do manejo dos reprodutores (efeito macho) e da alimentação (Flushing) ou por injeção das gonadotropinas no animal. 6.3 Imunização contra esteroides A imunização contra esteroides é uma técnica eficaz para aumentar a taxa de ovulação de animais que encontram-se em atividade sexual, ou seja, fora do anestro, uma vez que o seu mecanismo de ação baseia-se na alteração do controle endócrino da ovulação devido à ação dos anticorpos contra os esteroides ováricos, especialmente contra a androstenediona. Esta última regula a produção de uma proteína denominada «interleucina l», secretada pelos macrófagos do sistema imunitário e que inibe a diferenciação dos receptores à LH nos folículos, sem afetar a quantidade de sangue do FSH. Por isso, a teoria que tenta explicar o mecanismo de ação dos tratamentos de imunização é a seguinte: «O bloqueio dos esteroides pelos anticorpos do tratamento reduziria a produção de «interleucina l», permitindo assim que um maior número de folículos tivessem receptores à LH e pudessem ovular». Existem dois tipos de imunização: imunização ativa e imunização passiva. Na primeira, a metodologia consiste em tratar o animal com uma série de vacinas por via subcutânea ou intradérmica, pelo menos em duas ocasiões, até que a resposta imunitária atinja o nível desejado e ele próprio produza os anticorpos contra o antígeno (androstenediona) contido no conteúdo da vacina. Por outro lado, na imunização passiva o animal tratado recebe soro, por via intravenosa, de outro animal que foi imunizado (anticorpos policlonais), ou anticorpos monoclonais produzidos mediante técnicas imunológicas modernas. 6.4. Injeções de hormonas gonadotropinas As preparações hormonais de gonadotropinas injetadas num momento adequado do ciclo estral permitem, por um lado, aumentar o número de folículos em desenvolvimento (preparações ricas em atividade FSH) e, por outro lado, controlar e sincronizar o momento da ovulação (preparações ricas em atividade LH). Atualmente, os preparados hormonais à base de LH e FSH puros obtidos a partir de glândulas pituitárias em matadouros deixaram de ser utilizados, já que, além de não serem economicamente rentáveis, a sua conservação e utilização acarreta inúmeros problemas. a) A PMSG ou gonadotropina do soro de égua gestante com atividade predominante em FSH. Este hormônio, que permite aumentar o número de folículos em desenvolvimento, deve ser injetado (em doses variáveis segundo a espécie; tabela 2) no início da fase folicular, imediatamente após a regressão do corpo lúteo, quando as gonadotropinas endógenas do próprio animal estimulam o crescimento folicular. Para determinar esse exato momento, normalmente se realiza uma sincronização do cio. Tabela 2. Doses de aplicação do PMSG e do HCG (em unidades internacionais SI) para regular a quantidade e o momento da ovulação Espécie PMSG HCG Vaca 2000 - 3000 500 - 2500 Ovelha 500 - 800 250 - 500 Porca 750 - 1500 500 - 1000 Adaptado e elaborado a partir de HUNTER, 1987. b) A HCG ou gonadotropina coriónica humana com atividade predominante em LH. Pode ser obtida facilmente, já que se acumula na urina da mulher gestante, servindo sua detecção como teste para a determinação da gestação (teste da rã: origina a ejaculação na rã macho). Uma vez que com esta hormona se pretende controlar o momento da ovulação, a injeção deve ser feita por via intravenosa ou intramuscular, algumas horas antes do animal ter iniciado o estro e portanto a liberação das hormonas gonadotropinas. Pode-se conseguir mediante a injeção, com um intervalo conhecido e em doses adequadas (2), após estimulação com PMSG ou após sincronização do estro. 6.5 Limites das técnicas de controle, sincronização e indução à ovulação Os objetivos almejados durante o tratamento de sincronização e indução da ovulação, acima mencionados, não chegaram a ser alcançados em sua totalidade devido, principalmente, aos seguintes fatores: a) O hipotálamo mediante a liberação em forma de ondas ou pulsações cada um ou dois minutos de fatores liberadores (GnRH) estimula a hipófise para a secreção de hormônios gonadotropinas, o que na prática é muito difícil de se artificializar. b) Como resultado das injeções de hormonas gonadotropas produz-se um feedback dos esteroides gonodais, o qual interfere na secreção de hormonas endógenas e na precisão da resposta. c) As preparações hormonais de natureza proteica provocam a formação de anticorpos no animal, pelo qual a relação dose-resposta não é exata. d) Uma vez que os níveis de resposta tenham sido atingidos, a administração de doses excessivas de gonadotropinas produz uma redução do número de ovulações e interfere nos mecanismos ovulatórios. -/- 7. RESUMO E PRIMEIRAS CONCLUSÕES A ovulação marca o culminar de uma série de alterações morfológicas, fisiológicas e endócrinas que se sucedem no aparelho reprodutor feminino e mais concretamente no ovário e nos folículos ováricos e cujo objetivo é a liberação, após a descarga ovulante de LH, de um ou mais ovócitos férteis, de acordo com as espécies. Da mesma forma, a ovulação se caracteriza pela retomada da meiose e a liberação do primeiro corpúsculo polar, bem como a iniciação da luteinização das células da granulosa e a reestruturação da parede do folículo. Isto ocorre tanto em espécies de ovulação espontânea como induzida. Todas estas alterações são condicionadas pela variação da concentração sanguínea das hormonas gonadotropinas devido ao feedback positivo ou negativo que os esteroides ováricos exercem sobre o hipotálamo em cada uma das fases do ciclo estral. Por este motivo, se num momento preciso do ciclo estral estimula-se a secreção, por parte da hipófise, de hormonas gonadotropinas mediante a injeção de fatores de liberação hipotalâmicos (GnRH) ou a aplicação de algumas técnicas de manejo (efeito macho e Flushing) ou mediante a incrementação da sua concentração no sangue através de injeções de preparações hormonais, será obtido um controle, sincronização e indução da ovulação. Os diferentes tratamentos de sincronização e indução da ovulação, embora apresentem algumas limitações, permitem regular o momento da ovulação e o número de folículos que chegarão a ovular, alcançando em alguns casos uma superovulação, objetivo pretendido na técnica de transplante de embriões. -/- 8. REFERÊNCIAS BIBLIOGRÁFICAS -/- BARUSELLI, Pietro Sampaio; GIMENES, Lindsay Unno; SALES, José Nélio de Sousa. Fisiologia reprodutiva de fêmeas taurinas e zebuínas. Revista Brasileira de Reprodução Animal, v. 31, n. 2, p. 205-211, 2007. -/- BINELLI, Mario; IBIAPINA, Bruna Trentinaro; BISINOTTO, Rafael Siscôneto. Bases fisiológicas, farmacológicas e endócrinas dos tratamentos de sincronização do crescimento folicular e da ovulação. Acta Scientiae Veterinariae, v. 34, n. Supl 1, p. 1-7, 2006.p -/- BRACKETT, B. G.; JÚNIOR, G. E. A.; SEIDEL, S. M. Avances en zootecnia. Nuevas técnicas de reproducción animal. 1ª ed. Zaragoza: Editorial Acribia, 1988. -/- COLE, H. H.; CUPPS, P. T. Reproduction in domestic animals. 1ª ed. Londres: Academic Press, 1977. -/- CORTEZ, A. A.; TONIOLLI, R. Aspectos fisiológicos e hormonais da foliculogênese e ovulação em suínos. Revista Brasileira de Reprodução Animal, v. 36, p. 163-173, 2012. -/- CUNNINGHAM, James. Tratado de fisiologia veterinária. Elsevier Health Sciences, 2011. -/- DA SILVA, Emanuel Isaque Cordeiro. Características Gerais dos Bovinos/General Characteristics of Cattle Bovine. Disponível em: philpeople. Acesso em: Fevereiro de 2020. -/- DERUSSI, A. A. P.; LOPES, M. D. Fisiologia da ovulação, da fertilização e do desenvolvimento embrionário inicial na cadela. Revista Brasileira de Reprodução Animal, v. 33, n. 4, p. 231-237, 2009. -/- DRIANCOURT, M. A. et al. The ovarian function. Paris: INRA, 1991. -/- DUKES, Henry Hugh; SWENSON, Melvin J.; REECE, William O. Dukes fisiologia dos animais domésticos. Rio de Janeiro: Guanabara Koogan, 1996. -/- DURÁN DEL CAMPO, A. Anatomia, fisiologia de la reproduccion e inseminación artificial en ovinos. Montevideo, Editorial Hemisferio Sur, 1980. 245p. -/- HAFEZ, E. S. E.; HAFEZ, B. Reprodução animal. São Paulo: Manole, 2004. -/- HUNTER, R. H. F. Reproducción de los animales de granja. Zaragoza: Acribia, 1987. -/- ILLERA, M. Endocrinología Veterinaria y Fisiología de la Reproducción. Zaragoza: Fareso, 1994. -/- MARTIN, Ian; FERREIRA, João Carlos Pinheiro. Fisiologia da ovulação e da formação do corpo lúteo bovino. Veterinária e Zootecnia, v. 16, n. 2, p. 270-279, 2009. -/- RASWEILER IV, John J.; BADWAIK, Nilima K. Anatomy and physiology of the female reproductive tract. In: Reproductive biology of bats. Academic Press, 2000. p. 157-219. (shrink)
REPRODUÇÃO ANIMAL: FECUNDAÇÃO E GESTAÇÃO -/- ANIMAL BREEDING: FERTILIZATION AND PREGNANCY -/- Emanuel Isaque Cordeiro da Silva Departamento de Zootecnia da UFRPE E-mail: [email protected] WhatsApp: (82)98143-8399 -/- REPRODUÇÃO ANIMAL: FECUNDAÇÃO E GESTAÇÃO -/- 1. INTRODUÇÃO Em geral, a reprodução dos animais domésticos constitui o eixo sobre o qual se ramificam as produções animais mais importantes (leite, carne e ovos). Conhecer os fenômenos fisiológicos que ocorrem durante as diferentes fases da função reprodutiva e os mecanismos que a regulam demonstrou ser primordial (...) para a posterior aplicação das técnicas reprodutivas destinadas a regulá-la de acordo com os nossos interesses. Dentro deste amplo tema, a fecundação e a gestação, temas que se desenvolvem nesse trabalho, representam uma etapa relativamente longa e delicada sobre a qual apenas podemos intervir diretamente. No entanto, podemos facilitar as condições ambientais ideais, implantando um manejo cuidadoso e uma alimentação equilibrada, de acordo com os nossos conhecimentos. 2. A FECUNDAÇÃO As células sexuais cumprem a finalidade para a qual foram criadas no instante em que ocorre a sua união. Este fato, que garante a sobrevivência da espécie, é denominado fecundação. Consiste, em primeira instância, numa aproximação de ambos os gametas num lugar concreto do aparelho reprodutor feminino, para, posteriormente, ocorrer a penetração do espermatozóide no interior do ovócito. Segue-se a fusão dos elementos nucleares e citoplasmáticos dos dois gametas, constituindo-se uma célula ovo ou zigoto com a dotação cromossômica própria da espécie. A parte central do oviduto, a ampola tubária, é o local ou zona de fecundação. Esta experimenta, ao longo do ciclo estral e sob a ação hormonal, modificações internas destinadas a garantir o êxito da importante missão deste lugar das vias genitais femininas. 2.1 Transporte gamético Após a ruptura do folículo de Graaf, o oócito é captado pelo infundíbulo e introduzido no aparelho genital feminino, iniciando-se assim o seu percurso pelo oviduto. Na maioria dos mamíferos a ovulação ocorre antes de completar a segunda meiose, reiniciando-se esta e produzindo-se a expulsão do segundo corpúsculo polar uma vez ocorrida a penetração espermática. O deslocamento do gameta feminino pelo oviduto é promovido pela ação conjunta da atividade muscular do órgão (contrações peristálticas), os movimentos ciliares das células que tapizam o interior do tubo e, em algumas espécies, soma-se a ação dos fluidos internos. Da mesma forma, a velocidade de deslocamento depende do equilíbrio hormonal estrogênio-progesterona, com a mesma diminuição da ação estrogênica. Geralmente, a passagem do infundíbulo ao ponto de fecundação é rápida. O tempo requerido é estimado por uma oscilação de 30 a 180 minutos. Assim como o gameta feminino, os espermatozoides, uma vez depositado o sêmen na vagina, cérvix ou útero da fêmea, devem deslocar-se até a ampola tubária para que a fecundação possa realizar-se. O deslocamento destas células é geralmente também muito rápido, encontrando-se espermatozoides na zona tubária a poucos minutos depois de efetuada a cobrição. A velocidade com que ocorre depende de diversos fatores, entre os quais se incluem, o volume de ejaculação, o lugar em que se deposita e a anatomia do trato genital feminino. A própria mobilidade do gameta, a atividade contrátil da musculatura do órgão (motivada pela liberação de oxitocina durante a cobrição) e a atividade das células ciliadas do oviduto são os máximos responsáveis pela franquia da distância que separa o lugar de ejaculação e a ampola tubária. O transporte espermático constitui, em última análise, um modelo de seleção progressiva de células entre o ponto de deposição e o ponto de fecundação, no qual se vão auto-eliminando os espermatozoides menos viáveis. Na realidade os gametas se selecionam a si mesmos segundo sua capacidade, em especial ao atravessar a zona de barreira ou passagem do aparelho genital feminino. Por isso, apenas um número relativamente reduzido de células consegue atingir a zona de fertilização. Segundo Derivaux (1984), este número não excederá de 1.000 na rata, 5.000 na coelha e de 6.000 na ovelha, dos vários milhões que se derramam em cada ejaculação. Em suma, as células mais dotadas serão as que competem, uma vez atravessada a união útero-tubária, pela fertilidade do óvulo. 2.2 Duração da capacidade fertilizante dos gametas As células sexuais têm, após a sua liberação no aparelho reprodutor feminino, uma vida útil relativamente curta (tabela 1). Espécie Duração da fertilidade (horas) Ovócito Espermatozoide Duração da motilidade espermática (horas) Coelhos 6 – 8 30 – 36 43 - 50 Bovinos 8 – 12 28 – 50 15 - 56 Ovinos 16 – 24 30 – 48 48 Ratos 8 – 12 14 17 Equinos 6 – 8 144 144 Suínos 8 – 10 24 – 48 56 Homem 6 – 24 24 – 48 60 - 96 Tabela 1. Duração da fertilização e da motilidade espermática em ambos os gametas. Adaptado e elaborado a partir de COLE, 1977. Além disso, sabe-se que o envelhecimento dos gametas é incompatível com o desenvolvimento embrionário. Tais circunstâncias, condicionam o momento da cobrição ou da inseminação artificial, o qual deve estar praticamente sincronizado com o da ovulação da fêmea. Isto permitirá a ligação das células num momento propício, garantindo que as células espermáticas cheguem a zona de fecundação, enquanto o ovócito é expelido do folículo. Nas espécies em que a formação espermática é muito longa, o espermatozoide deve encontrar-se no trato genital feminino várias horas antes da ovulação. A viabilidade dos espermatozoides é determinada por dois aspectos: motilidade e fertilidade. Seu envelhecimento traduz-se em uma diminuição de ambas qualidades, sendo a fertilidade a primeira a diminuir depois da ejaculação. O envelhecimento do ovócito implica na diminuição da sua capacidade fecundante e origina um aumento do número de embriões anormais, aparentemente devido a uma falha no bloqueio contra a polispermia. Na maioria dos mamíferos o ovócito deve ser fertilizado nas horas imediatas a sua liberação e poucos deles podem ser fertilizados uma vez decorridas 12 horas desde a ovulação. 2.3 Capacitação e penetração espermática Os espermatozoides culminam o seu processo de maturação e se convertem em células aptas para a fertilização ao experimentarem, no interior do aparelho genital feminino, uma mudança fisiológica que lhes confere maior mobilidade e a faculdade de emitir enzimas proteolíticas pela região acrossômica da cabeça. Esta mudança física é chamada de capacitação espermática. A capacitação é considerada o resultado de dois mecanismos: a inativação de agentes antifertilidade ou fatores de descapacitação do plasma seminal que se encontram unidos à cabeça espermática e a produção de enzimas acrossômicas (reação acrossômica). A reação acrossômica origina uma mudança estrutural na parte anterior da cabeça espermática que permite a liberação de uma série de enzimas, fato que facilitará a penetração das coberturas do ovócito. Estas alterações incluem fusões diversas e progressivas entre a membrana acrossômica externa e a membrana plasmática celular, ficando a parte anterior da cabeça espermática limitada por uma série de vesículas, entre as quais fluem enzimas, principalmente hialuronidase e a acrosina. A primeira parece ter a missão de dissolver o ácido hialurônico, que mantém unido o cumulus oophorus, ao passo do espermatozoide. Durante a passagem pela zona pelúcida há a intervenção da acrosina. A capacitação e reação acrossômica são modificações prévias e indispensáveis para a penetração espermática ou parte mecânica do processo de fertilização, a qual termina com a passagem da membrana vitelina depois de ter salvado as barreiras que supõem as células do cumulus, a coroa radiada e a zona pelúcida. Em certas espécies (mulher, rata e cobaia), a penetração do espermatozoide é completa. Noutras (vaca, ovelha, coelha e cadela) é limitada exclusivamente à cabeça, permanecendo a cauda (flagelo) no exterior. A penetração do ovócito pelo espermatozoide dá lugar a uma série de fenômenos conducentes a um desenvolvimento normal do ovo fertilizado: o bloqueio da polispermia e a finalização da segunda meiose. Consumada a penetração, a reação da zona pelúcida e da membrana vitelina impedem a penetração de outro espermatozoide, evitando assim a polispermia, a qual originaria indivíduos poliploides não viáveis, sendo uma dotação cromossômica 3n ou mais uma alteração letal. Este mecanismo de reação, junto ao reduzido número de gametas masculinos que alcançam o oviduto, são aspectos que minimizam as possibilidades de fertilização polispérmica. O mecanismo de bloqueio da polispermia em mamíferos ainda não é conhecido com precisão. No entanto, sabe-se que as estruturas citoplasmáticas ovocíticas denominadas grânulos corticais desempenham um papel importante e que, ao descarregar o seu conteúdo, alteram a penetrabilidade da zona pelúcida e, por vezes, da membrana vitelina. O bloqueio, uma vez iniciado, propaga-se pela superfície ovular, estendendo-se a partir do ponto de origem, ou seja, do lugar onde o espermatozoide conecta-se com a superfície vitelina. Na maioria dos mamíferos domésticos (exceto cadela e égua) o ovócito é mantido na metafase da segunda divisão meiótica até que ocorre a penetração espermática, instante em que se estimula a sua reinicialização, completando-se a meiose com a expulsão do segundo corpúsculo polar. A partir daqui começam a desenvolver-se os pronúcleos masculino e feminino, os quais se convertem em duas massas cromossômicas que se repartem ao redor da placa equatorial na prófase da primeira mitose e que permitirá restabelecer o número cromossômico da espécie. A mistura de substâncias nucleares parentéricas é denominada anfimixis. As primeiras segmentações do zigoto ocorrem a nível do oviduto, pois, depois da fertilização os embriões permanecem durante algumas horas acima da junção ampola-istmo. Esta zona é abandonada para assim alcançar o meio uterino, onde transcorrerá o período de gravidez ou gestação. 3. A GESTAÇÃO A gestação compreende o espaço de tempo que vai desde o momento da fecundação até o parto. Podemos, a priori, diferenciar três fases do ponto de vista do desenvolvimento: fase de ovo, fase embrionária e fase fetal. A fase embrionária compreende a organogênese e a fase fetal o crescimento posterior dos órgãos, sendo a delimitação entre ambas muito difícil, uma vez que não existe nenhum fato ou circunstância determinante que as separe claramente, pelo que na prática se encontram sobrepostas. 3.1 Fase do ovo Esta fase, de curta duração, vai desde a fertilização do óvulo até à eclosão do blastocisto. O transporte do ovo para a zona uterina ocorre 2 dias depois na porca e entre o terceiro e o quarto dia em ruminantes, regulado por contrações da musculatura lisa da parede do oviduto sob a influência das hormonas esteroides ováricas. Seu estado de segmentação quando penetra no útero varia com as espécies: de 8 a 16 blastômeros na égua e na vaca, 16 na ovelha e 4 na porca. Durante estes primeiros momentos do desenvolvimento em que o ovo se desloca pelo oviduto (figura 1) sua nutrição é garantida pelas reservas citoplasmáticas do óvulo e pelo fluxo tubárico, especialmente abundante imediatamente após a ovulação. Entretanto, e sob a influência da progesterona proveniente do corpo lúteo em fase de crescimento, o útero experimenta mudanças destinadas a receber o embrião em fase de crescimento. Em primeiro lugar ocorre a proliferação de leucócitos polimorfonucleares que fagocitam os restos seminais e germes introduzidos durante a cobrição procurando esterilizar e adequar o ambiente. Em segundo lugar, verifica-se a proliferação do epitélio glandular uterino ou endométrio, produtor do fluido uterino ou histótrofo, que garantirá a nutrição do embrião até a posterior implantação do mesmo e, com isso, sua viabilidade. Figura 1. Esquema do deslocamento e do desenvolvimento do zigoto pelo interior do oviduto. Elaborado a partir de COLE, 1977 e HUNTER, 1987. Os embriões continuam o seu desenvolvimento através da mitose. A partir de 16 células os blastômeros são chamados de mórulas. Estes blastômeros segregam um fluido metabólico que se acumula no centro do blastocisto. Nesta fase, as células internas aumentam de tamanho e se diferenciam, sendo as destinadas a formar o botão embrionário a partir do qual terá lugar a organogênese embrionária; e as periféricas, mais pequenas e abundantes, que darão lugar ao trofoblasto ou membranas embrionárias. O conjunto encontra-se rodeado de uma membrana (zona pelúcida) que posteriormente se dilui ou se dissolve permitindo a eclosão, por pressão interna do fluido acumulado, do blastocisto. 3.2 Fases embrionária e fetal A eclosão do blastocisto põe, em contato direto, o aglomerado de células embrionárias com a mucosa uterina e permite, ao eliminar-se a retenção da zona pelúcida, o alongamento, mediante proliferação e reordenação das camadas celulares, dos embriões, afim de aumentar a superfície de contato com o endométrio, facilitando assim a nutrição das células. Neste momento, nas espécies multíparas, tem lugar o deslocamento e redistribuição dos embriões pelos córneos uterinos, assegurando-se espaço suficiente para cada um antes da implantação dos mesmos. Em geral, a implantação é considerada efetiva quando a posição do embrião no útero é fixa (tabela 2), estabelecendo-se contato definitivo com o mesmo; para isso, as camadas externas do blastocisto liberado diferenciam-se dando lugar às membranas fetais que constituirão a parte embrionária da placenta. Espécie Porca Ovelha Vaca Égua Dias 12 – 24 12 – 18 33 – 35 55 – 65 Tabela 2. Momento da implantação embrionária em diferentes espécies. Fonte: COLE, 1977 e HUNTER, 1980. A placenta é a estrutura que permite um contato vascular eficaz entre as membranas fetais e a superfície do endométrio materno, através do qual ocorre a troca de oxigênio e de princípios nutritivos fornecidos pelo sangue materno e CO2, além de produtos de excreção provenientes do sangue fetal. Para além desta função metabólica, a placenta protege e isola o feto, tendo também uma importante missão endócrina para a manutenção da gestação. Do ponto de vista anatômico, a placenta fetal está diferenciada em quatro membranas: âmnio, saco vitelínico, alantoide e córion. a) Âmnio - É o invólucro mais interno que envolve totalmente o feto. Em seu interior, vai-se gradualmente acumulando o líquido amniótico, que é o meio pelo qual flutuam o embrião e o feto durante sua vida intrauterina. Este líquido tem a missão mecânica de proteger o embrião, bem como de distender o útero e favorecer seu crescimento. Nos estágios mais avançados da gestação, permite ao feto efetuar as evoluções necessárias para adotar posturas eutocicas para o parto. No entanto, o papel fundamental é de natureza nutritiva, uma vez que o feto absorve e deglute grandes quantidades de líquido amniótico. O líquido amniótico é inicialmente incolor e de natureza mucosa, variando seu aspecto conforme avança a gestação já que vai acumulando substâncias de reserva e restos metabólicos excretados pelo feto. O seu conteúdo é rico em sais minerais, seroalbuminas, gorduras, frutose e aminoácidos essenciais. b) Saco de vitelino - É uma estrutura primitiva que desenvolve-se no início do período embrionário a partir do endoderma, desaparecendo rapidamente e ficando apenas um resíduo dentro das membranas fetais. A sua missão é nutritiva nos primeiros estágios da gestação, agindo de certa forma, como uma placenta rudimentar, uma vez que absorve e acumula o histotrofo e os resíduos metabólicos do jovem embrião. Sua importância diminui à medida que avança a gestação e instaura-se a definitiva placenta. c) Alantoide - Esta fina membrana aparece como um divertículo da parte posterior do intestino. Em sua parte externa vai desenvolver uma abundante rede vascular ligada à aorta fetal pelas artérias umbilicais e à veia cava posterior e fígado pelas veias umbilicais. O alantoide se funde com o trofoblasto, constituindo o alantocorion, que, como veremos, estará intimamente ligado ao endométrio. Sua camada interna, muito pouco vascularizada, se apoia contra o âmnios. Na vaca, porca e ovelha o alantoides e o âmnios estão unidos em vários pontos; na égua o âmnios flutua livremente. Entre as camadas internas e externas do alantoide se encontra a cavidade alantoide, que basicamente armazena os produtos de resíduos dos rins fetais, sendo importante a concentração de resíduos do metabolismo nitrogenado: ureia, ácido úrico, alantoína etc. c) Córion - É o invólucro mais externo derivado do trofoblasto, sendo um saco fechado que abriga o resto das membranas fetais e o feto. Nas espécies multíparas, no final da gestação, há um único corion comum que envolve todos os fetos e suas membranas fetais. A face externa do corion, à medida que a gestação avança, vai desenvolvendo vilosidades bastante vascularizadas (vilosidades coriais) que são as que vão estabelecer a relação entre a placenta fetal e o endométrio, possibilitando, em toda sua extensão, os intercâmbios materno-fetais (figura 2). Figura 2. 1 – Córion; 2 – Saco vitelínico; 3 e 4 – Alantoides; 5 – Âmnio e 6 – Corpo fetal. Fonte: RUTTER e RUSSO, 2002. Dependendo da ligação placentária entre a mãe e o feto, diferente para cada espécie, podem ser estabelecidas diferentes classificações de placentas. Limito a comentar dois tipos, alicerçado pelo ponto de vista anatômico e do ponto de vista histológico. Anatomicamente - levando em conta a distribuição das conexões útero-coriais podemos falar de: a) Placenta difusa: Conexão em toda a extensão de contato uterocorial (égua e porca). b) Placentas localizadas: 1. Cotiledônea - Trata-se de botões coriais distribuídos mais ou menos uniformemente pela superfície de contato (ruminantes). 2. Zonal - A ligação ocorre apenas numa zona específica central, como um anel (cães e gatos). 3. Discoide - A conexão ocorre em uma zona ou zonas de forma oval; é típica de roedores. Histologicamente - baseado no número e tipo de camadas histológicas que separam a circulação materna e fetal (classificação de Grosser), o que determinará, em parte, a permeabilidade placentária. Deste modo, o feto receberá mais ou menos, e diretamente, os elementos nutritivos, imunitários ou tóxicos que circulam no sangue materno. Há quatro tipos diferentes: a) Epiteliocorial - Aqui, encontramos seis camadas tecidulares entre as duas circulações: tecidos endotelial, conectivo e epitelial corial, por parte fetal, e tecidos epitelial e conectivo uterino e a membrana capilar materna. Este tipo de placenta encontra-se na égua e na porca. b) sindesmocorial - O tecido epitelial corial está ligado diretamente à conjuntiva uterina. Tradicionalmente, têm-se considerado esta placenta como sendo típica de ruminantes; todavia, atualmente, esta classificação aparece como demasiado simplista à luz dos progressos das investigações ultraestruturais; verificou-se que o epitélio materno persiste em bovinos e caprinos, pelo qual estas duas espécies devem ser consideradas epiteliocoriais. c) Endoteliocorial - O tecido epitelial corial está em contato direto com as membranas capilares maternas. Esta placenta é típica de carnívoros. d) Hemocorial - O sangue materno banha diretamente ao epitélio corial, estando suprimidas todas as camadas tecidulares maternas. 3.3 Nutrição fetal A nutrição inicial é garantida pelo histotrofo ou leite uterino e, posteriormente, pelo hemotrofo ou substâncias nutritivas que o alantocorion absorve pelos pontos de contato do sangue materno. Dentro dela podemos distinguir: a) Troca gasosa - A passagem do oxigênio, por difusão, da mãe para o feto, ocorre devido à grande afinidade que existe com a hemoglobina fetal e à grande capacidade de dissociação da oxihemoglobina materna que o libera. Também acontece que os capilares maternos e fetais situam-se paralelamente com fluxos contracorrentes que originam importantes diferenças de pressão de oxigênio, o que facilita a difusão do gás. A troca de CO2 funciona por mecanismos semelhantes, mas vice-versa. b) Aporte de princípios imediatos - Os glicídios são trocados por osmose favorecida pelas menores concentrações que se desenrolam no sangue fetal em relação à materna. É interessante destacar que no sangue fetal aparecem glicose e frutose e no sangue materno apenas glicose. A síntese de frutose ocorre na placenta e não flui do feto para a mãe. No que diz respeito aos lipídios, a placenta é apenas um local de passagem. Quanto aos prótidos, além da difusão de aminoácidos e proteínas da mãe para o feto, a placenta também é capaz de sintetizar seus próprios aminoácidos, bem como desdobrar proteínas maternas e resintetizar outras para suas próprias necessidades. Em relação às proteínas de elevado peso molecular, só são permeáveis as placentas de tipo endoteliocorial e hemocorial, uma vez que as imunoglobulinas maternas (anticorpos) não podem ultrapassar esta barreira nas espécies que apresentam placenta sindesmocorial e epiteliocorial (nestas espécies (bovinos à exemplo) a imunidade será transferida por via colostral durante as primeiras horas de vida do neonato). 3.4 Mecanismos hormonais de regulação da gestação Na presença do ovo fecundado, no ovário desenrolam-se uma série de transformações. O corpo lúteo, que geralmente involuciona pelo efeito luteolítico da prostaglandina F2a, no caso da gestação permanece e se mantém produzindo progesterona. Parece que o estímulo antiluteolítico ocorre após a eclosão do blastocisto. A presença do ovário é fundamental em todas as espécies para a manutenção da gestação, sobretudo em seus primeiros momentos, tanto pela produção de progesterona como de estrogênio. Neste sentido, difere bastante uma espécie de outra, assim em ovelhas são citados 55 dias como tempo mínimo em que a produção de progesterona ovariana é indispensável, na égua 150 dias: no entanto, em vacas, cabras e porcas, uma ovariectomia realizada em qualquer momento da gestação provoca a sua interrupção. Ou seja, nas primeiras espécies, a partir de certos momentos, a placenta pode assumir o equilíbrio endócrino da gestação; nas segundas parece haver uma sinergia desta com o ovário, mas sem chegar a substituí-lo. a) Papel dos estrogênios - Embora os níveis de estrogênios, após a fecundação, baixem consideravelmente no sangue, a secreção ovárica continua, e é sobre os órgãos mais ativados pelos estrogênios que se manifestam mais as concentrações crescentes de progesterona, aumentando a permeabilidade capilar do útero, a multiplicação das suas células epiteliais, a acumulação de glicogênio nas suas células musculares, a hipertrofia das mesmas, etc. À medida em que a gestação progride, os níveis plasmáticos de estrogênios aumentam devido, sobretudo, à produção placentária. b) Papel da progesterona - A progesterona atua sobre o útero em diferentes níveis: — A nível da mucosa facilita as mudanças da mesma, preparados pelos estrogênios, aumentando também o desenvolvimento glandular. — Ao nível da musculatura uterina inibe, durante toda a gestação, as contrações do miométrio. — Ao nível do lobo anterior da hipófise bloqueia a produção de FSH e LH, parando as ondas cíclicas de maturação folicular. 3.5 Duração da gestação A duração da gestação é diferente segundo as espécies e dentro destas, com porcentagens menores de variação de acordo com a raça, o indivíduo, o estado sanitário, o sexo do feto, o número de fetos, a estação, etc. (tabela 3). Espécie Porca Ovelha/Cabra Vaca Égua Coelha Dias 114 (102-128) 154 (140-159) 283 (273-295) 340 (329-345) 31 (30-32) Tabela 3. Duração média e intervalo da gestação em diferentes espécies. Fonte: COLE, 1977. -/- 3.6 Diagnóstico da gestação O diagnóstico de gestação precoce é de grande importância nas espécies de interesse zootécnico, já que nelas procura-se, em geral, intensificar ao máximo o ciclo produtivo, limitando, na medida do possível, os períodos de incerteza. Nas espécies de ciclo curto e produção de carne, como a porca e a coelha, a intensificação é ainda maior e, portanto, o interesse do diagnóstico precoce de gestação aumenta. Os métodos de diagnóstico de gestação mais frequentes são: a) palpação - Para ser viável, é necessária a qualificação prática da pessoa que a realiza. Distinguem-se basicamente dois tipos: 1. Retal - Muito usada nos grandes animais como bovinos e equinos, permitem-nos diagnosticar, com uma porcentagem de cerca de 90% de acerto, a gestação da égua entre 45 e 60 dias após a cobrição e cerca de 45 dias na vaca. 2. Abdominal - Esta é praticada com sucesso quase exclusivamente em coelhas, podendo ser feito o diagnóstico entre os dias 11 e 14 de gestação. b) Ultrassons - Utilizados em ovelhas e porcas com bons resultados, embora, teoricamente, poderia ser utilizado em mais espécies. Em ovelhas permite-nos diagnosticar entre os 60 e 70 dias e na porca cerca dos 40 dias. c) hormonais - Utilizados principalmente em éguas. Baseado na presença de PMSG no sangue durante a gestação e a ação folículo estimulante e luteinizante da mesma ao ser injetado plasma de égua prenha em outra espécie animal de laboratório. 4 RESUMO E PRIMEIRAS CONCLUSÕES A fecundação pressupõe a fusão do gameta masculino e feminino numa zona específica do aparelho reprodutor da fêmea: a ampola tubária. Tal acontecimento é possível quando o óvulo e o esperma conseguem alcançar essa zona, se sua capacidade fecundante é ótima no momento do encontro, se produz a capacitação espermática e se, finalmente, o espermatozoide consegue penetrar o interior do óvulo. A fusão gamética representa o início da fase mais delicada na vida de uma reprodutora: a gestação. Regida hormonalmente pela progesterona, o período gestante compreende uma fase embrionária em que ocorre a organogênese e uma etapa fetal de desenvolvimento e crescimento do mesmo. A gestação, de duração variável segundo a espécie, termina com o parto ou expulsão da cria ou crias para fora do corpo materno. Emanuel Isaque Cordeiro da Silva – Departamento de Zootecnia da UFRPE. Recife, 2020. REFERÊNCIAS BIBLIOGRÁFICAS -/- BRACKELL, B. G.; JR SEIDEL, G. E.; SEIDEL, S. Avances en zootecnia nuevas técnicas de reproducción animal. Zaragoza: Acribia, 1988. COLE, H. H.; CUPPS, P. T. Reproduction in domestic animals. 1ª ed. Londres: Academic Press, 1977. CUNNINGHAM, James G. Fisiología veterinaria. São Paulo: Elsevier, 2003. DERIVAUX, Jules; ECTORS, F. Fisiopatología de la gestación y obstetricia veterinaria. Zaragoza: Acribia, 1984. DERIVAUX, Jules; BARNABÉ, Renato Campanarut. Reprodução dos animais domésticos. Zaragoza: Acribia, 1980. DA SILVA, Emanuel Isaque Cordeiro. Definição de Conceitos Básicos na Reprodução Animal: Fertilidade, Fecundidade e Prolificidade-Suínos. Philarchive. Disponível em: ----. Acesso em: Fevereiro de 2020. DA SILVA, Emanuel Isaque Cordeiro. Características Gerais dos Bovinos/General Characteristics of Cattle Bovine. Philarchive. Disponível em: ----. Acesso em: Fevereiro de 2020. DA SILVA, Emanuel Isaque Cordeiro. Fisiologia da Reprodução Animal: Ovulação, Controle e Sincronização do Cio. Disponível em: ----. Acesso em: Fevereiro de 2020. FERNÁNDEZ ABELLA, Daniel Héctor. Principios de fisiología reproductiva ovina. Montevidéu: Hemisferio Sur1993. GONZÁLEZ, Félix HD. Introdução a endocrinologia reprodutiva veterinária. Porto Alegre: UFRGS, v. 83, 2002. GRUNERT, E.; BOVE, S.; STOPIGLIA, A. Fisiología de la gestación. Guía de Obstetricia Veterinari - fisiología de la gestación. Buenos Aires: Editorial Universitaria de Buenos Aires, p. 1-12, 1971. HAFEZ, E. S. E.; HAFEZ, B. Reprodução animal. São Paulo: Manole, 2004. HUNTER, R. H. F. Reproducción de los animales de granja. Zaragoza: Acribia, 1987. HUNTER, Ronald Henry Fraser et al. Physiology and technology of reproduction in female domestic animals. Londres: Academic Press, 1980. ILLERA, M. Endocrinología Veterinaria y Fisiología de la Reproducción. Zaragoza: Fareso, 1994. JAINUDEEN, M. R.; HAFEZ, E. S. E. Gestação, fisiologia pré-natal e parto. Revista Brasileira de Reprodução animal, v. 7, p. 141-142, 2004. PÉREZ PÉREZ, F.; PÉREZ GUTIÉRREZ, F. Reproducción animal, inseminación animal y transplante de embriones. Barcelona: Cientifico-medica, 1985. ROBERTS, Stephen J. Obstetricia veterinaria y patología de la reproducción. Montevidéu: Hemiferio Sur, 1979. SALISBURY, G. W.; VANDERMARK, N. L. Phisiology of the reproduction and artificial insemination of cattle. San Francisco : Freeman e Company, 1961, 630 p. SHILLE, V. M. Fisiologia reprodutiva e endocrinologia da fêmea e do macho. Tratado de medicina interna veterinária. São Paulo: Manole, p. 1857-68, 1992. RUTTER, Bruno; RUSSO, Angel F. Fundamentos de la fisiología de la gestación y el parto de los animales domésticos. Buenos Aires: Eudeba, 2002. UNGERFELD, Rodolfo. Reproducción en los animales domésticos. Montevidéu: Melibea, 2002. (shrink)
This article intend to elucidate how Wilhelm Windelband employed the Kantian critic method without devoid its typical features, going through this, what is fundamental for the approach from speculative reason to practical reason would be identified. We understand that practical reason, as a theoretical interest, is prefigured on the first critic, and that the Kantian system suffers mutations until his second critic formulation. Windelband’s critical view, can offer the tips of how to interpreter Kant’s passage from speculative to practical reason, (...) observing the elements witch are kept, as constant elements, the third antinomy for stance, and witch one changes among the course, as the ideas of liberty and nature in both theoretical and practical sense. Windelband can unfold to notice those variations and help to understand them in the development of Kantian theories as elements not contradictories with the canon of speculative reason. (shrink)
A meliponicultura é a criação racional de abelhas nativas sem ferrão. A criação r acional de abelhas indígenas é uma atividade auxiliar na geração de trabalho e renda, contribuindo para a melhoria da qualidade de vida dos criadores, além de ser uma atividade economicamente viável, ecologicamente sustentável e socialmente justa. -/- O conhecimento sobre as abelhas sem ferrão e a meliponicultura nas Américas é muito antigo quando comparado com as atividades envolvendo, nesse continente, as abelhas Apis mellifera. Há muito tempo, (...) povos indígenas de diversos territórios se relacionam com os meliponíneos de muitas formas, seja estudando-os, criando-os de forma rústica ou explorando-os de forma predatória. -/- Antes da chegada da abelha Apis mellifera no continente americano, ou da exploração da cana para fabricação de açúcar, o mel das abelhas nativas caracterizava-se como principal adoçante natural, fonte de energia indispensável em longas caçadas e caminhadas que esses povos realizavam na busca por alimento. -/- Muito do conhecimento tradicional acumulado pela população nativa foi gradativamente assimilado pelas diferentes sociedades pós-colonização, tornando a domesticação das abelhas sem ferrão uma tradição popular que se difundiu principalmente nas regiões norte e nordeste do Brasil. A herança indígena presente na atual lida com as abelhas é evidenciada pelos nomes populares de muitas espécies, como é o caso da Uruçu Nordestina ou Uruçu Verdadeira (Melipona scutellaris), uma palavra que vem do tupi "eiru'su", que nessa língua indígena significa “abelha grande”. -/- O nome "uruçu" está relacionado com diversas abelhas do mesmo gênero, encontradas não só no Nordeste, mas também na região amazônica. A tendência, porém, é a de reservar o termo “uruçu” para a abelha da zona da mata do litoral baiano e nordestino, que se destaca pelo tamanho avantajado (semelhante à Apis), pela produção de mel expressiva entre os meliponíneos e pela facilidade do manejo, pois são abelhas mansas. -/- Estudos já realizados mostraram o relacionamento da uruçu com a mata úmida, que apresenta as condições ideais para as abelhas construírem seus ninhos, além de encontrarem, em árvores de grande porte, espécies com floradas mais abundantes, que são seus principais recursos alimentares, bem como locais de morada e reprodução. A Uruçu (Melipona scutellaris) possui uma preferência floral mais seletiva do que as abelhas africanizadas, razão porque se encontram em vias de extinção. (shrink)
'Godel's Way'에서 세 명의 저명한 과학자들은 부정성, 불완전성, 임의성, 계산성 및 파라불일치와 같은 문제에 대해 논의합니다. 나는 완전히 다른 해결책을 가지고 두 가지 기본 문제가 있다는 비트 겐슈타인의 관점에서 이러한 문제에 접근. 과학적 또는 경험적 문제가 있다, 관찰 하 고 철학적 문제 언어를 어떻게 이해할 수 있는 (수학 및 논리에 특정 질문을 포함) 에 대 한 조사 해야 하는 세계에 대 한 사실,우리가 실제로 특정 컨텍스트에서 단어를 사용 하는 방법을 보고 하 여 결정 될 필요가. 우리가 어떤 언어 게임을 하고 (...) 있는지 명확히 알 면, 이 주제는 다른 언어와 마찬가지로 평범한 과학적이고 수학적 질문으로 보입니다. 비트겐슈타인의 통찰력은 거의 동등하지 않았고 결코 능가하지 않았으며, 그가 블루와 브라운 북을 지시했을 때 80 년 전과 마찬가지로 오늘날과 관련이 있습니다. 완성된 책이 아닌 일련의 노트가 실패했음에도 불구하고, 이것은 반세기 이상 물리학, 수학, 철학의 출혈 가장자리에서 일해온 이 세 명의 유명한 학자들의 작품의 독특한 원천입니다. 다 코스타와 도리아는 울퍼트에 의해 인용된다 (그들은 보편적 인 계산에 쓴 이후 울퍼트와 야노프스키의 '이성의 외부 한계'에 대한 내 리뷰에, 대한 내 리뷰) 그리고 그의 많은 업적 중, 다 코스타는 파라 불일치의 선구자입니다. 현대 의 두 systems보기에서인간의 행동에 대한 포괄적 인 최신 프레임 워크를 원하는 사람들은 내 책을 참조 할 수 있습니다'철학의 논리적 구조, 심리학, 민d와 루드비히 비트겐슈타인과 존 Searle의언어' 2nd ed (2019). 내 글의 더 많은 관심있는 사람들은 '이야기 원숭이를 볼 수 있습니다-철학, 심리학, 과학, 종교와 운명 행성에 정치 - 기사 및 리뷰 2006-2019 3 rd 에드 (2019) 및 21st 세기 4번째 에드 (2019) 및 기타에서 자살 유토피아 망상. (shrink)
Nietzsche's Ewige Wiederkunft; (Eternal Return), as a possible interpretation of 'The Third River Bank';, a poignant tale by the great Brazilian writer João Guimarães Rosa [1908-1967]. As such, this paper is a part of 'Genealogy of the Real. Nietzsche, Freud'; a Doctorate Dissertation at the Institute of Philosophy of the University of São Paulo (1993).
In his monumental work Das Gastmahl des Platon (1869) the artist Anselm Feuerbach depicted the scene in Plato’s Symposium in which a drunken Alcibiades, accompanied by a band of revelers, enters the dining chamber of the house of the poet Agathon. We have reason to attribute three aims to the artist: (1) to recreate a famous scene from ancient Greek literature, making extensive use of recent archaeological discoveries in southern Italy; (2) through the depiction of a senate and dignified Agathon, (...) to convey a sense of the nobility of the ancient Greeks; and (3) to express in visual terms the contrast of reason with desire. As he set out to accomplish these objectives Feuerbach displayed considerable indifference to the details in Plato’s depiction. Thus, what Das Gastmahl offers us is less Plato’s symposium and more Feuerbach’s symposium, a visually striking but in several respects unfaithful recreation of the Platonic original. -/- . (shrink)
SOCIOLOGIA DO TRABALHO: O CONCEITO DO TRABALHO DA ANTIGUIDADE AO SÉCULO XVI -/- SOCIOLOGY OF WORK: THE CONCEPT OF WORK OF ANTIQUITY FROM TO THE XVI CENTURY -/- RESUMO -/- Ao longo da história da humanidade, o trabalho figurou-se em distintas posições na sociedade. Na Grécia antiga era um assunto pouco, ou quase nada, discutido entre os cidadãos. Pensadores renomados de tal época, como Platão e Aristóteles, deixaram a discussão do trabalho para um último plano. Após várias transformações sociais entre (...) diferentes eras e povos, o trabalho foi ganhando espaço nos debates entre os povos, como os caldeus, hebreus e romanos. O trabalho conferiu-se no escopo da discussão social. Na Idade Média, com Agostinho, Santo Aquino e outros o labor foi concebido como algo benéfico e divino. O que se via como algo “escravo” ao povo, transformou-se em necessidade e benevolência divina. -/- Palavras-chave: Conceito; Trabalho; História; Definição. -/- ABSTRACT -/- Throughout the history of mankind, work has figured itself in different positions in society. In ancient Greece it was a little matter, or almost nothing, discussed among the citizens. Renowned thinkers of such a time, like Plato and Aristotle, left the discussion of the work for a last plan. After several social transformations between different eras and peoples, work was gaining space in the debates among peoples, such as the Chaldeans, Hebrews and Romans. The work has taken place within the scope of social discussion. In the Middle Ages, with Augustine, Saint Aquinas and others the work was conceived as something beneficial and divine. What was seen as something “slave” to the people, became need and divine benevolence. -/- Keywords: Concept; Work; History; Definition. -/- BASES TEMÁTICAS DESSE TRABALHO -/- ➢ O trabalho é um conceito construído socialmente; -/- ➢ A modernidade trouxe consigo mudanças significativas quanto à valorização do trabalho; -/- ➢ A origem dos mercados de trabalho, juntamente com o surgimento do capitalismo, minimizou o trabalho como um mero emprego assalariado; -/- ➢ O trabalho, no entanto, apresenta múltiplas manifestações nas nossas sociedades. -/- 1. A VISÃO GREGA DE TRABALHO -/- Comecemos pelos gregos, uma civilização excitante que, durante muitos séculos antes de Cristo, já começava a elaborar riquíssimas reflexões sobre vários aspectos da vida humana. No entanto, surpreende aqueles de nós que já ler os primeiros filósofos gregos, como entre tantas análises rigorosas e “diálogos”, um elemento tão central na vida social dos povos, como o trabalho havia tido escassa repercussão. A explicação só faz sentido, justamente, ao analisar a valorização que esses grandes pensadores tinham acerca do nosso objeto de estudo que é o trabalho. Embora, como supracitado, os gregos não tivessem uma visão unânime sobre o trabalho, não é menos certo assinalar que para esta civilização o trabalho foi considerado um fato altamente desvalorizado. O trabalho, para eles, dado a sua vinculação com a dimensão de constrangimento e necessidades, limitava a liberdade dos indivíduos, condição indispensável para integrar o mundo da “pólis” na qualidade de cidadão. O homem livre realizava atividades absolutamente desinteressadas: a atividade intelectual (que não era considerada trabalho) fazia parte do ócio e da contemplação. O trabalho, reservado apenas aos escravos, como bem sinala Hopenhayn (1955), significava uma mera função produtiva. Portanto, o escravo passou a ser unicamente uma força de trabalho. Como tal, ele não tem personalidade e pertence ao seu mestre, como uma coisa entre muitas. Como objeto de propriedade, escapa ao pensamento antropológico que domina a filosofia sofista e socrática, porque para o cidadão grego falar de escravo não implica um sujeito pensante, senão uma coisa ou, no máximo, a força. Também escapa ao pensamento platônico, porque, como uma coisa, parece totalmente desvalorizado na construção idealista-dualista da realidade (HOPENHAYN, 1988. p. 23 – Tradução própria). -/- Três termos fundamentais que devemos recordar da tradição grega: -/- 1 – Ponos: penalidade, fadiga; -/- 2 – Banausia: trabalho mecânico, e -/- 3 – Ergon: realização. -/- Vejamos como essa noção de trabalho é construída como algo servil (ponos), ao qual uma visão positiva de lazer e contemplação foram contrastadas como uma atividade puramente humana e libertadora. As raízes do supracitado são encontradas no valor eticamente supremo da autarquia socrática. Segundo essa noção alcunhada por Sócrates (469-399 a.C.), todo aquele que trabalha está submetido tanto à matéria como aos homens para quem trabalha. Nessa medida, sua vida carece de autonomia e, portanto, de valor moral. Naturalmente, não só os escravos, mas também qualquer trabalhador dedicado a todos os tipos de tarefas manuais, foram desprezados por um pensamento helênico indubitavelmente aristocrático. Para Platão (427-347 a.C.), de origem aristocrática, descendente do último rei de Atenas e discípulo de Sócrates, a autarquia continua a ser perpetrada como um valor ético supremo e, em consonância com os interesses da aristocracia fundiária, afirmava que somente a agricultura evocava autêntica autonomia. Dessa forma, o pensamento platônico restringiu a participação política a escravos, comerciantes e artesãos. Todos eles têm em comum a dependência das condições materiais em que produzem e trocam mercadorias. O plano político estará intimamente relacionado ao econômico-trabalhista: somente quem é capaz de governar a si mesmo (e como sabemos, acontece com aqueles que não trabalham ou possuem terras), pode governar os outros. Somente a liberação total da prática mundana do trabalho abre as possibilidades de dedicar-se, como fez Platão, à contemplação (σχολή), à filosofia e às ciências, e por meio disso saber distinguir o bem do mal, o justo do injusto, o verdadeiro do falso. Quem poderia dedicar-se a tais “tarefas nobres”? Evidentemente, aqueles que não precisam fazer parte da população trabalhadora, isto é, a aristocracia. Esse sistema de governo aristocrático foi defendido, obviamente, por Platão. Em sua “A República” sinala que o governo perfeito é o aristocrático, e que a este se sucedem a timocracia (governo dos guerreiros), a oligarquia (dos ricos) e a democracia (“governo daqueles que amam o prazer, a mudança e a liberdade), que perece por seus excessos nas mãos de alguns homem audaz que se coloca à frente do povo para defender a democracia e “do tronco desses protetores do povo nasce o tirano”, dando origem à tirania.(2) Em seu diálogo “Político” podemos ler: Aqueles que possuem a si mesmos através da compra, e aqueles que podem ser chamados sem nenhuma discussão de escravos, não participam da arte real [...] E todos aqueles que são livres, se dedicam espontaneamente a atividades servis como as supracitadas, transportando e trocando produtos da agricultura e de outras artes; que nos mercados, indo de cidade em cidade por mar e terra, trocando dinheiro por outras coisas ou por dinheiro, o que chamamos de banqueiros, comerciantes, marinheiros e revendedores, poderão, por acaso, reivindicar para eles algo da ciência política? [...], mas também aqueles que estão dispostos a prestar serviços a todos por salários ou por subsídios, nunca os encontramos participantes na arte de governar [...] Como os chamaremos? Como você acabou de dizer agora: servidores, mas não governantes dos estados (PLATÃO, 1983. pp. 237-8 – adaptado). Esse estado ideal que Platão projetou em seus ensinamentos estava longe, a propósito, da democracia ateniense defendida por Péricles. De certa forma, Platão só confiava em uma elite no poder constituída por uns poucos (oligarquia) que não deveriam se render às tarefas servis da produção e circulação das riquezas. Para ele, as crianças aristocráticas deveriam ser selecionadas desde a infância, recebendo uma educação suficiente tanto em filosofia quanto nas “artes da guerra”. Aos trinta anos, eles já seriam capazes de passar por um exame donde seriam selecionados os “filósofos-reis” encarregados do governo. De fato, no entanto, suas concepções de governo nunca poderiam ser executadas com pureza; ou pela chamada “contrarrevolução aristocrática”, ou pela invasão estrangeira subsequente. Essa visão do trabalho que estamos a analisar, como bem sinala Henri Arvon (1914- 1992), conduz a uma sociedade basicamente conservadora e estancada no produtivo. (3) A ideia de liberdade, ócio e contemplação como valores superiores, propõe um desprezo pelo trabalho que, como vimos, é uma atividade puramente transformadora. Há aqueles que, mediante tal contestação, arriscam fundamentar que grande parte do subdesenvolvimento tecnológico na Grécia derive justamente a essa cultura tão peculiar em relação ao trabalho. Caso contrário, se houvesse escravos, por que avançar em conhecimentos que facilitaram o trabalho? Não nos surpreende, nesse sentido, que uma civilização capaz de criar conhecimentos espetaculares em áreas particularmente complexas como a geometria (Euclides), por outro lado, não soubesse (ou não gostaria) de avançar em conhecimentos técnicos aplicáveis ao campo econômico-trabalhista. Já vimos como a cidadania era o escopo da de alguns aristocratas da civilização helênica. Hannah Arendt (1906-1975) sinalava que os gregos distinguiam entre os escravos, os inimigos vencidos (dmôes ou douloi) que estavam encarregados do trabalho doméstico, e os demiourgoi, homens livres para se deslocarem do domínio privado para o público. Somente depois do século V, sinala Arendt, a pólis começou a classificar as ocupações de acordo com os esforços que eles exigiam. Nisso, Aristóteles (384-322 a.C.) teve que desempenhar um papel preponderante que colocou aqueles cujo “corpo está mais deformado” na faixa mais baixa. Ele não admitiria, portanto, aos estrangeiros (os escravos), nem tampouco aos banausoi, antes dos demiourgoi, trabalhadores e artesãos que deviam resignar-se ao mundo dos “oikos”. Estes, não só estavam submetidos à necessidade como eram incapazes de ser livres, mas também incapazes de governar a parte “animal” do seu ser (República, 590). Serão eles, não obstante, aqueles que permitem o florescimento da chamada democracia helênica, pois, quem senão os trabalhadores (escravos ou artesãos) poderia manter com seu esforço o ócio e a contemplação dos “homens livres”, cidadãos do mundo? Como foi supracitado, será Aristóteles quem delimitará ainda mais os direitos de cidadania. Sua cidade ideal, como em Platão, diferenciaria os governantes dos governados. O primeiro, constituído pela classe militar, estadistas, magistrados e sacerdócio. O segundo, pelos agricultores, artesãos e os camponeses. Com os comerciantes há uma certa ambivalência: embora ele considerava uma ocupação antinatural, estava disposto a admiti-los até certo ponto em sua cidade ideal, cuja base seguiria sendo a escravidão. Em sua Política, ele explana: A cidade mais perfeita não fará do trabalhador manual (artesão) um cidadão. Caso o admitir como tal, a definição de virtude cívica [...] não alcança todos os cidadãos, nem apenas os homens livres, mas só os que estão isentos de trabalhos indispensáveis à sobrevivência. Destes, os que estão a serviço de um só indivíduo, são escravos; os que servem a comunidade, são trabalhadores manuais (artesãos) ou trabalhadores não qualificados (ARISTÓTELES, 1998. p. 203). Tampouco compreenderá os agricultores como reivindicava Platão: “Tampouco deverão ser agricultores os futuros cidadãos, pois para a formação de sua virtude e para a atividade política, o ócio é necessário”. Essa prolifera discussão ocorreu em uma civilização onde começaram a surgir as primeiras mudanças produtivas derivadas do crescimento econômico feito do descobrimento do ferro, e sua posterior divisão do trabalho, onde florescem os grupos de comerciantes e a aristocracia proprietária de terras começa a dominar. Os pensadores da época, mais aliados a estes últimos, contrariavam os princípios da acumulação comercial. Em sua Política, Aristóteles aconselha os cidadãos a absterem-se de qualquer profissão mecânica e de toda especulação mercantil. O primeiro, porque limita intelectualmente, e o segundo, porque degrada o ético. Somente o ócio (scholé), para esses pensadores, permite a virtuosidade e a capacidade de julgar. A Koinonia politiké (comunidade dos homens livres) era típica daqueles que não precisavam de trabalho, relegando a população trabalhadora ao mero âmbito da reprodução material (chrematistiké), o que só era possível em um contexto de alta divisão do trabalho onde um grupo minoritário (oligarquia) vivia à custa do trabalho da maioria (muitos deles escravos). O termo “ócio” provém de “scholé”, entendido entre os gregos como tempo para si mesmo, para a contemplação (sjolé) e, portanto, para a formação (scholé = escola). Desse ponto de vista, o ócio para os gregos é um fim em si mesmo. Entre os romanos, no entanto, adquire outra conotação. Em latim octium, designa o campo contraposto ao neo-octium (negócio), ou seja, é o tempo de descanso que permite dedicar-se ao negócio. Tal visão sobre o trabalho e o ócio, respectivamente, não foi, no entanto, como supracitado no início, unanimemente desenvolvida em toda a história da civilização helênica. Os textos de Homero(4) (séculos IX e VIII a.C.) são mais reservados a respeito, mas acima de tudo, na Grécia antiga encontramos autores como Hesíodo (século VIII), que postulavam outras teses. Para o autor de “Os trabalhos e os dias”, o trabalho se constituía em um justo e necessário castigo que Zeus impôs aos homens pelo pecado de Prometeu. Note a similitude com a crença bíblica que veremos adiante. Hesíodo explana: Lembre-se sempre do meu conselho e trabalhe [...] os deuses e os homens se indignam com quem ocioso vive, semelhante em caráter aos zangões sem ferrão, que consomem o esforço das abelhas [...] O trabalho não é nenhuma desonra; desonra é não trabalhar (HESÍODO, 2012. p. 93 e 95). Também entre alguns sofistas (aqueles que vendiam sua sabedoria a quem gostaria de comprá-la), como Protágoras (século V a.C.), “o primeiro e o maior deles”(5), coloca o estudo e a arte (técnica) na mesma faixa, e Antifonte (século V a.C.) disse: “[...] e as honras e preços, e toda a espécie de encorajamento que Deus incumbiu aos homens, devem necessariamente resultar de fadiga e suor”. Como conviveu a cultura grega com essas noções tão diferentes? Tenho a ideia, juntamente com Hopenhayn, que o desprezo dos pensadores gregos pelo manual foi causado pela violência dos guerreiros e dos aristocratas de plantão, que impuseram aos seja derrotados o jugo. Do trabalho árduo e difícil. Porque a aristocracia queria trabalhar nessas condições? A própria divisão do trabalho em si possibilitou o crescimento da civilização helênica, estava gerando diferentes classes com visões distintas sobre o trabalho. Por outro lado, surgiram os camponeses pobres, os derrotados e aqueles que tinham que viver do trabalho artesanal. Essas pessoas, na maioria das vezes isoladas do mundo da “polis”, gerariam suas próprias leituras dos acontecimentos, seus próprios espaços para o desenvolvimento cultural, inclusive sua própria religião, distante daquela imposta pela visão aristocrática, olímpica, contemplativa e estética dos “homens livres”. -/- 2. A VISÃO DOS CALDEUS ACERCA DO TRABALHO -/- A leitura de outros povos e civilizações sobre este tema tem sido diferente. Entre os caldeus, por exemplo, a visão pejorativa analisada entre os gregos não é registrada. Nas escrituras sagradas da religião de Zaratustra (o Avesta), lemos: “É um santo aquele que constrói uma casa, na qual mantém o fogo, o gado, sua mulher, seus filhos, os bons párias. Aquele que faz a terra produzir trigo, que cultiva os frutos do campo, cultiva corretamente a pureza” (HOPENHAYN, 1988. p. 35). Para os caldeus, como se pode observar, o trabalho implica, de uma posição diametralmente oposta à helênica, uma contribuição na ordem econômica, mas também na espiritual. Trabalhar não é só “cultivar o trigo” (dimensão das necessidades fisiológicas), mas também “cultivar a pureza”, dimensão esta, relacionada com a satisfação das necessidades espirituais. Por que apreciamos uma diferença tão acentuada entre essas culturas? Provavelmente, os diferentes graus de desenvolvimento dos povos levaram a isso. Enquanto entre os gregos primava uma divisão do trabalho, onde alguns tinham o status de “homens livres” dedicados à contemplação e ao ócio, outros não tinham escolha a não ser trabalhar, em uma situação de domínio em relação às naturezas daqueles que o empregaram. Esse não foi o caso dos caldeus, que possuía um escasso dividido trabalho, em que a todos se correspondia uma atividade laboriosa. -/- 3. A VISÃO DOS HEBREUS SOBRE O TRABALHO -/- No meio do caminho entre os caldeus e os gregos, encontramos a avaliação do trabalho feita pelos hebreus, dessa vez, tingindo de ambivalências. Tal como ponderava Hesíodo entre os gregos, para os hebreus, o trabalho se constituía de um mal necessário; em um meio para expiar os pecados; dessa vez não de Prometeu, mas de Adão e Eva. Vamos ver, no entanto, alguns aspectos mais complexos. A primeira coisa a se notar da perspectiva hebraica (compartilhada com o cristianismo) é o que se resulta da leitura do livro de Gênesis, aquela história poética e cheia de imagens para elucidar facilmente a origem da criação. Lá se estabelece a ideia de um deus criador-trabalhador: “No princípio Deus criou o céu e a terra [...] No sétimo dia Deus já havia concluído a obra que realizara, e nesse dia descansou [...] de toda a obra que realizara na criação”.(7) Esse Deus como primeira causa (São Tomás de Aquino (1225-1274)) denota laboriosidade seu correspondente descanso, um binômio que será fundamental para compreender a evolução do direito do trabalho e do direito ao descanso semanal contemporâneo. Digamos, em segundo lugar, que o Senhor Deus providenciou o trabalho no Éden: “O Senhor Deus colocou o homem no jardim do Éden para cuidar dele e cultivá-lo”.(8) Portanto, não é certa a ideia de que o trabalho é o resultado do pecado: ao contrário, é um trabalho árduo aquele que deriva do pecado segundo a tradição hebraico-cristã. Antes, na ausência do pecado, havia uma espécie de bom trabalho. Foi o pecado original, que levou Deus a condenar Adão e Eva, e por isso a toda a humanidade, a “ganhar o pão com o suor da sua testa”. “Por isso o Senhor Deus o mandou embora do jardim do Éden para cultivar o solo do qual fora tirado”. (9) O Talmude diz: “Se o homem não encontra seu alimento como animais e pássaros, precisa ganhá-los, isso se deve ao pecado”. Essa sentença, de caráter histórico, promove a ideia de trabalho como meio para expiar o pecado original, mas também como meio para produzir; isto é, legitimando a mudança inerente a todo trabalho e, portanto, legitimando também aquela vontade transformadora que caracterizou desde sempre os povos hebreus.(10) Agora, ao contrário dos caldeus, para os hebreus da antiguidade, o trabalho nunca teve um fim ético em si mesmo, mas foi constituído apenas como um meio. Essa visão esteve sempre presente, e caracteriza muito claramente a concepção que muitos integrantes de nossas sociedades contemporâneas possuem sobre o trabalho, além da religião de cada um. -/- 4. OS ROMANOS E O TRABALHO -/- Os romanos, por sua vez, deram uma importante contribuição para o desenvolvimento do conceito de trabalho. Se bem que, a grosso modo, não houvesse grandes diferenças com o pensamento dos gregos, com quem eles tinham em comum, além disso, uma maior divisão do trabalho fruto do desenvolvimento econômico e o uso massivo de mão de obra escrava(11); a maior contribuição do ponto de vista de sua originalidade histórica estava presente na tradição jurídica que inauguraria o Império Romano. O maior impacto por meios jurídicos e não filosóficos é explicado pelo fato de que os romanos, ao contrário dos gregos, não conseguiram “inspirar” a produção de grandes pensadores sociais. Com efeito, para os romanos, como o escravo não era considerado uma pessoa, o viam-no desprovido de personalidade jurídica. Isso conduziu a negação da relação de trabalho entre a pessoa encarregada de um trabalho manual (escravo) e seu dono. Tal relação correspondia, acima de tudo, ao direito de propriedade que os juristas romanos haviam garantido quase sem limites para seus cidadãos. O problema, como aponta Hopenhayn, surgiu quando o proprietário não ocupa seu escravo, mas aluga-o para terceiros. Surge assim a figura do arrendamento de serviços, que deriva do arrendamento das coisas. Porém, como na realidade o que se alugava era a força de trabalho, a qualidade jurídica desloca-se para a atividade realizada pelo escravo. Dessa forma, a atividade do trabalhador, primeiro do escravo, posteriormente do homem livre, começa a ser tratada como uma coisa, e se converte em antecedente do arrendamento de serviços do Direito Civil moderno. Ademais, na tradição romana, o trabalho manual estava desprestigiado. Cícero (106-43 a.C.) em De Officiis, estabeleceu com fria claridade “ipsa merces est auctoramentum servitius”(12) (todo trabalho assalariado é trabalho escravo). A vida era difícil para esses trabalhadores: nos territórios sob domínio romano, Augusto (63-14 a.C.) tinha imposto um tributo à todos os homens que exerciam algum tipo de trabalho manual, além do imposto à residência, às valas e outros mais particulares como o imposto para a detenção de porcos. Certamente, aqueles que levaram a pior parte no tempo da Roma Imperial foram os escravos (servi) sob domínio e propriedade de seus donos (domini). Me seus tempos de auge, a demanda de escravos em Roma era de 500.000 ao ano. Se compararmos com os 60.000 escravos negros trazidos a América nos anos de maior tráfico, teremos uma ideia mais ou menos exata da magnitude desse triste fenômeno. -/- 5. O CRISTIANISMO E O TRABALHO -/- As mensagens do cristianismo primitivo, são inseridas logo, nesse tempo histórico, onde Roma se tornava o centro das maiores mobilizações de rebeldia da antiguidade. Isaías, nesse sentido, proclamaria que o Messias viria: “[...] a pregar boas novas aos abatidos, a vendar aos quebrantados de coração, a publicar liberdade aos cativos, e aos presos a abertura do cárcere”.(13) Jesus, efetivamente, incluiu em sua missão, mensagens de libertação aos pobres e oprimidos. Porém, ao contrário do supracitado, como bem sinala Eric Roll (1907-2005), dos antigos profetas hebreus, não o faria saudando as comunidades tribais com seu espírito de grupo; mas animado por uma mensagem mais universal e permanente, proclamando uma mudança mais completa e integral na conduta do homem em sociedade, onde os valores de justiça e amor se colocariam em um primeiro plano. Evidentemente, a mensagem do cristianismo primitivo, e mais concretamente de Cristo, distava muito dos filósofos gregos. Deixemos que Roll explique: Temos visto que as doutrinas econômicas de Platão e, em certa medida, de Aristóteles, nasciam da aversão aristocrática ao desenvolvimento do comercialismo e da democracia. Seus ataques contra os males que acarreta o afã de acumular as riquezas são reacionárias: olham para trás, e o de Cristo olha para frente, pois exige uma mudança total, mas relações humanas. Aqueles sonhavam com um estado ideal destinado a proporcionar a “boa vida” para os cidadãos livres unicamente e cujas fronteiras eram as da cidade-estado daquele tempo; Cristo pretendeu falar por todos e para todos os homens. Platão e Aristóteles haviam justificado a escravidão; os ensinamentos de Cristo sobre a fraternidade entre todos os homens e o amor universal eram incompatíveis com a ideia da escravidão, apesar das opiniões expostas depois por São Tomás de Aquino. Os filósofos gregos, interessados somente pelos cidadãos, sustentaram opiniões muito rígidas sobre a diferente dignidade das classes de trabalho, e consideravam as ocupações servis, com exceção da agricultura, como próprias apenas para os escravos. Cristo, ao dirigir-se aos trabalhadores de seu tempo, proclamou pela primeira vez a dignidade de todas as classes de trabalho, assim materiais como espirituais (1942. p. 42 – Tradução própria). Não pode escapar desse estudo, o fato de que o próprio Jesus Cristo herdou o ofício de carpinteiro de seu “Pai” José; e que escolheu seus discípulos entre os pescadores e artesãos da região. Essa visão primitiva do cristianismo, no entanto, deve ser analisada no quadro das escrituras sagradas do Antigo Testamento que compartilha com a cultura (e obviamente a religião) hebraica. Nesse sentido, o trabalho não deixa de ser um meio, descartando-se como um fim em si mesmo. Mas, agora atribuindo-lhe um novo valor, sempre em tento um meio para um fim virtuoso: o trabalho será fundamental para permitir a satisfação das necessidades de cada um, mas também seus frutos, deverão ser inseridos em uma dimensão comunitária, onde o “próximo” necessitado esperará a contribuição fraterna e solidária do cristão. O trabalho, nessa perspectiva, não só possibilita o “tomar”, mas também o “dar”. Em relação a dupla perspectiva, é onde podemos entender a crítica do cristianismo a acumulação da riqueza. Como aponta o evangelista Mateus, “acumular o tesouro no céu, onde nem a traça nem a ferrugem os consomem, e onde os ladrões não perfuram nem roubam. Onde está o seu tesouro está seu coração”. (14) Com São Paulo se incorpora um novo componente valioso: a obrigatoriedade moral do trabalho. Em sua carta aos Tessalonicenses dita claramente “ao que não trabalha que não coma”. Diz São Paulo: Vocês sabem em que forma têm que nos imitar: nós trabalhamos enquanto estivemos entre vocês, não pedimos a ninguém um pão que não teríamos ganhado, senão que, de noite e dia, trabalhamos duramente até nos cansarmos, para não ser carga para nenhum de vocês [...] Além disso, quando estávamos com vocês lhes demos está regra: se alguém não quiser trabalhar, não coma. Mas agora ouvimos que há entre vocês alguns que vivem sem nenhuma disciplina e não fazem nada, muito ocupados em meter-se em tudo. A estes lhes mandamos e lhes rogamos, por Cristo Jesus, nosso Senhor, que trabalhem tranquilos para ganhar a vida (II Tes. 3:10). Essa frase, entendida somente no contexto de uma sociedade donde não existia um conceito de desemprego tal como entendemos atualmente, é curiosamente reproduzida pelo modelo soviético em pleno século XX. Com efeito, a Constituição da União Soviética estabeleceu em seu Artigo 12: “O trabalho é, na Rússia, uma questão de dever e de honra para todo cidadão fisicamente capaz. Essa obrigação é baseada no princípio: “quem não trabalha não come”. (15)(16) Para São Paulo, o trabalho deve ser o meio para ganhar a vida. Ele quis ser exemplo e enquanto pregava continuava trabalhando, presumivelmente como tecelão de tendas. A obrigatoriedade moral se aplica na medida em que a pessoa está em condições de o fazer. Para os incapacitados a fazê-lo (idosos, crianças, deficientes, doentes, acidentados etc.) existia a obrigatoriedade do socorro segundo a máxima do amor (ágape) ao próximo. Essas sentenças morais têm hoje em dia uma importante quota de explicação para com as contemporâneas políticas sociais. -/- 6. O TRABALHO NA IDADE MÉDIA -/- A Idade Média, período que ocupa desde o crepúsculo do Império Romano do Ocidente no século V pelos bárbaros, até o século XV, com a queda de Constantinopla, evidentemente mostra um conjunto importante de escolas e pensadores que marcaram pautas importantes para discernir o valor do trabalho nas diferentes culturas. A organização econômica mais visível nestes mil anos, onde operou o trabalho, consistia em extensões grandes de latifúndios errados do Império Romano (o sistema econômico denominado feudalismo), onde (mediante a falta de escravos) recorreu-se à mão de obra camponesa para o trabalho. O sistema, implicava o arrendamento de parte dessas terras a ex-escravos ou homens livres, em troca de uma renda em dinheiro e espécies, além do cultivo das próprias terras senhoriais. Por certo, a figura do servo não distava muito da do escravo se tivermos em conta as condições de funcionamento do contrato de trabalho. O comércio também teve seu lugar no sistema feudal, o mesmo adquiriu grande importância em certas regiões ou lugares, à exemplo de Constantinopla. A atividade econômica seguia seu rumo na história, e depois dos séculos IX e X, o crescimento das forças produtivas deu lugar a uma maior acumulação por parte de componentes e artesãos e, por certo, a uma maior apropriação de excedentes por parte do Senhor feudal. Essa situação foi ativante para a construção dos primeiros Burgos ou cidades, onde o comércio e a indústria artesanal teriam um marco mais adequado para o seu desenvolvimento. Essa é a etapa do nascimento dos primeiros grêmios corporativos (17). Então para o século XII, a estrutura feudal começa a desmoronar porque a produção de determinados bens começa a ser mais eficiente em cidades e não no feudo. O dinheiro, então, passou a ganhar maior peso que a terra, o que obriga os senhores feudais a aumentar seus rendimentos. Isso leva a um empobrecimento lógico dos camponeses, o que não dura muito, porque na primeira metade do século XIV, a maior parte dos servos alcança sua liberdade. Por sua vez, nessa apertada síntese da história econômica da Idade Média, devemos assinalar que pelo século XIV, e depois das Cruzadas e o posterior desenvolvimento do comércio internacional entre os impérios arábico e bizantino, inaugura-se uma etapa pré-capitalista que durará três séculos. É lá que se levanta mais energética a voz de alguns homens da Igreja contra a tendência à exaltação da riqueza já começava a avivar-se na Europa. São Tomás de Aquino, nesse sentido, não considerará ao comércio pré-capitalista bom ou natural. No entanto, ele o julgava inevitável uma vez que era o meio ao qual o comerciante tinha que manter a sua família. Dessa forma, os lucros do comércio não era outra coisa senão o fruto do trabalho. Se tratava, então, de colocar o acento na justiça da mudança efetuada, para o qual Aquino recorre a Aristóteles, cuja análise sobre o valor de mudança é figurado no seu estudo da Justiça. Muitos padres da Igreja, desde então, pretenderam formular um conceito de “preço justo”. Nesse sentido, o Cristianismo apresenta uma evolução do seu pensamento sobre o comércio que partia de uma visão absolutamente contrária ao começo da Idade Média (Santo Agostinho (354-430), São Jerônimo (347-420) etc.), a outra mais transacionável, que acompanhou, sobretudo, o pensamento de Aquino. Algo similar ocorreu com outro dos “preceitos” da Igreja em matéria econômica: a usura. Esta era considerada pela igreja como a melhor forma de obter lucro. O mesmo evangelista Lucas (século I d.C.) foi categórico ao rejeitar essa linha de operações. A lei hebraica também fez isso, e podemos encontrar no livro do Êxodo (22,25) tal proibição a respeito. Mais atrás no tempo, há antecedentes de condenação à usura entre os hindus (Rigveda, cerca de 1500 a.C.) e budistas (século VI d.C.), além do Islã mais próximo do nosso tempo (século VI d.C.). Ao princípio da Idade Média, como testemunha Roll, a proibição somente alcançava a Igreja, já que o escasso desenvolvimento mercantil não merecia outra coisa. No final da Idade Média, no entanto, que a situação é outra; e a prática secular foi orientada no sentido de promover o empréstimo de dinheiro cobrando por isso um juro. Alarmada ante esses fatos, a Igreja condena mais uma vez a usura no Terceiro Concílio de Latrão de 1179. No mesmo escreveu e ensinou São Tomé (século I d.C.) e outros discípulos da Igreja. No entanto, as práticas econômicas foram minando a autoridade eclesial e está terminou, através de sucessivas etapas, por aceitar, em certas condições e sob certas circunstâncias, a cobrança de juros sobre a concessão de um empréstimo. Em tal sentido, um dos autores mais representativos só início da Idade Média foi Santo Agostinho. Foi este um dos pilares, em seu tempo, das noções “anticapitalistas” que foram seguidas e complementadas por homens do tamanho de São João (347-407), São Ambrósio (340-397), São Clemente (150-215), São Cipriano (200-258) entre outros. (18) Santo Agostinho valoriza o trabalho recordando em tal sentido a São Paulo, a que cita com muita frequência em seus textos. Segundo o Bispo de Hipona, todo trabalho manual é bom pelas razões dadas pelo cristianismo primitivo. Concilia, além disso, seu dualismo platônico, ao sustentar que enquanto o homem trabalha tem a alma livre, de modo que é perfeitamente compatível pensar em Deus ao mesmo tempo em que se trabalha. Essa particular sintonia entre o trabalho e a oração foi perfeitamente posta a prova pelos monges beneditinos, cujo lema “Ora Et Labora” (orar e trabalhar) é paradigmático. “Trabalha e não desesperes” dizia seu fundador, São Bento de Núrsia (480-547), de seus monastérios distribuídos em um primeiro momento a Subiaco, no início do século VI. Também corresponde a São Bento uma sentença que perdura até o dia de hoje no imaginário moral sobre o trabalho: “Otiositas inimica est animae” (a ociosidade é inimiga da alma), tal qual diz uma expressão popular castelhana: “el ocio es la madre de todos los vicios” (o ócio é a mãe de todos os vícios). Tomás de Aquino, alguns séculos depois, continua a reflexão sobre o trabalho e estabelece uma hierarquia de profissões, onde localiza o trabalho agrícola e artesanal acima do comercial. Uma quota de originalidade na história do pensamento sobre o trabalho consistiu em considerá-lo como uma obrigação somente se necessário para subsistir; ou dito de outra maneira: quem não tem necessidade de trabalhar não tem que fazê-lo. Isso sim, à falta de trabalho, devia dedicar-se à oração e contemplação divina, atividades por certo mais elevadas para o autor da Suma Teológica. Logo, considerará que Deus é a causa primária, a que tudo deve a sua existência; por derivação, o homem é causa segunda, procurando atreves do trabalho “criar” em suas dimensões humanas. “Entre todas as formas com que a criatura humana tenta realizar a semelhança divina, não há outra de relevo mais destacado que a de trabalhar, isto é, ser em o mundo causa novos efeitos”, disse o Santo. (19) Aquino, além disso, utilizando categorias platônicas, hierarquiza o trabalho, considerando o intelectual acima do manual. Chama “artes servis” a estes últimos, enquanto que o trabalho intelectual corresponde ao conjunto das “artes liberais”, dignas de maior remuneração ao fazer uso da inteligência. Esta distinção própria da Escolástica, dá lugar à divisão clássica entre as 7 artes liberais: o Trívium (gramática, retórica e dialética) e quadrivium (astronomia, geometria, aritmética e música). Outras contribuições de São Aquino têm a ver com sua posição diante do trabalho agrícola ao qual o considera como o melhor meio para assegurar a subsistência de um povo; a maior importância dada à vida contemplativa sobre a ativa, embora considerando a primeira como “laboriosa”; sua posição sobre a escravidão, que não considerava como natural, no entanto, entendê-la “útil”(20); e sua interpretação sobre o contrato de trabalho: neste, o operário não vende a si mesmo, nem seu corpo, nem sua inteligência, nem sequer sua faculdade de trabalho. Isso significa que o Direito Natural proíbe considerar o trabalho como um objeto de mudança. Propõe, em vez disso, considerar o contrato como um arrendamento de serviço. Em termos gerais, a valorização que sobre o trabalho se realiza na Idade Média, rebaixando ao trabalho manual em relação a outras tarefas, fica explícita na divisão tripartida que recorre, entre outros, Adalberão Bispo de Laon (947-1030): “Triplex Dei ergo domus est quae Creditor uma nunca oran, alii pugnat, Aliique laborant” (ternária é a casa do Senhor e não uma: aqui sobre a terra uns oram, outros lutam e outros trabalham). Não gostaria de deixar passar por alto, finalmente, entre os movimentos originados na Idade Média, a contribuição que sobre o tema do trabalho teve a ordem franciscana. Essa, contra o que muitos podem crer, é uma ordem não mendicante no sentido estrito, mas sim trabalhadora e de pobreza. São Francisco de Assis (1181/82-1226), no final do século XII, marcaria como ninguém dentro do cristianismo, uma vida ascética baseada no trabalho e na pobreza. Inclui, além disso, um elemento pela primeira vez descoberto na cultura europeia: o sentido da alegria que acompanha o trabalho. “Essa condição de 'suor de sua testa' com 'a alegria de seu coração' outorga ao trabalho uma condição diferenciada”. Avançando então na história da humanidade, entramos na época moderna, caracterizada por cinco grandes eventos: -/- 1. A decadência do poder moral da Igreja e o enfraquecimento de seu poder econômico frente ao da crescente burguesia; -/- 2. O renascimento intelectual e artístico; -/- 3. As viagens paras as índias e a descoberta da América; -/- 4. A formação e a constituição dos Estados-nação; -/- 5. As reformas religiosas de Lutero (1483-1546) e Calvino (1509-1564). -/- Nesse contexto, os séculos XV e XVI mostraram como o mercantilismo ia avançando apesar dos esforços de alguns pensadores da Igreja que eventualmente perderam o pulso diante do desenrolar dos acontecimentos. Sucessivas encíclicas papais terminaram por legitimar o interesse nos empréstimos e, por meio desta, levou-se a maior acumulação de riquezas por parte dos banqueiros. Esse foi o meio ideal para o desenvolvimento da atividade do mercador, para quem, o trabalho passou a ser considerado um meio para obter sucesso. Ao dinamizar-se a atividade econômica e mercantil, a visão humanista do trabalho começa a perder valor, realçando-se ao mesmo como um simples meio para fins de enriquecimento. Talvez a exceção a essa noção estendida entre os novos atores tenha sido a proporcionada pelo humanismo renascentista. Para Campanella (1568-1639), por exemplo, sua “Cidade solar”, não existe o divórcio entre trabalho manual e intelectual, isso quando o segundo começa a ser supervalorizado por sua ação no plano das invenções e das novas técnicas.(22) Na mesma linha se situa Thomas More (1478-1535), o autor de “Utopia”, outra reação do cristianismo às projeções que estava adquirindo o cada vez mais influente mercantilismo. Embora o trabalho não seja considerado como um mau, pelo contrário, apresenta características humanizadoras, é sugestivo comprovar como em Utopia a jornada do trabalho não supera as seis horas diárias e na Cidade solar não se devia trabalhar mais que quatro horas. Indubitavelmente, essas versões de sociedades ideais terminariam por impactar sobre maneira a constituição das Missões Jesuítas na América do Sul; e as Franciscanas na Baixa Califórnia. É o Renascimento, o lugar propício, além disso, para renovar o conceito da virtuosidade, agora traduzida na figura do empresário ou financista audacioso e empreendedor. Essa linha foi reforçada logo por Calvino, para quem os negócios são um bom serviço a Deus, e a riqueza não é mais que um fruto de uma vida dedicada ao trabalho desde uma perspectiva ética que analisarei com Weber mais tarde, mas que confere ao trabalho a particularidade de ser um caminho para o sucesso. Esse puritanismo impulsionou sobremaneira a versão do “homo economicus” que mais tarde, em pleno auge do capitalismo pós-industrial, ao qual, segundo Daniel Bell (1919-2011), fora substituído pelos valores hedonistas. -/- REFERENCIAL TEÓRICO AGOSTINHO. Cidade de Deus: contra os pagãos. Trad. O. P. Leme. 2ª ed. Bragança Paulista: Editora Universitária, 2008. (Col. Pensamento humano). _____________. O livre-arbítrio. Trad. N. A. Oliveira. 1ª ed. São Paulo: Paulus, 1995. AQUINO, T. de. Suma Teológica. 2ª ed. São Paulo: Loyola, 2001. ARENDT, H. A condição humana. Trad. Roberto Raposo. Posfácio de Celso Lafer. 10ª ed. Rio de Janeiro: Forense Universitária, 2007. ARISTÓTELES. Política. Trad. A. C. Amaral e Carlos Gomes. 1ª ed. Lisboa: Vega, 1998. ARVON, H. A filosofia do trabalho. Trad. João Carlos Cunha. 1ª ed. Lisboa: Socicultur, 1961. AUGUSTI, J. C. W. Corpus Librorum symbolicorum. 1ª ed. Elberfeldi, 1827. BAVA, A. C. Introdução a sociologia do trabalho. 1ª ed. São Paulo: Ática, 1990. BÍBLIA SAGRADA. Trad. J. F. Almeida. Rio de Janeiro: King Cross, 2008. BOMENY, H. et al. Tempos modernos, tempos de sociologia. 2ª ed. São Paulo: Editora do Brasil, 2013. CAMUS, A. O mito de Sísifo. In: FALABRETTI, E.; OLIVEIRA, J. Filosofia: o livro das perguntas. 1ª ed. Curitiba: IESDE, 2011. ELDERS, L. J. O Pensamento de Santo Tomás de Aquino sobre o Trabalho. Trad. D. N. Pêcego. Aquinat, n° 9, (2009), 2-12. ISBN 1808-5733. FOSSIER, R. O trabalho na Idade Média. Trad. Marcelo Barreiro. 1ª ed. Petrópolis: Vozes, 2019. FRIEDMANN, G.; NAVILLE, P. Tratado de Sociologia do Trabalho. 1ª ed. São Paulo: Cultrix, 1973. HERZOG, J. S. Historia del pensamiento económico-social: de la antigüedad al siglo XVI. 4ª ed. México: FCE, 1939. HOPENHAYN, M. El Trabajo, itinerario de um concepto. 1ª ed. Santiago: PET, 1988. _________________. Repensar el trabajo – Historia, profusión y perspectivas de un concepto. 1ª ed. Buenos Aires: Norma, 2001. LUDWIG, E. Stalin. 1ª ed. Rio de Janeiro: Calvino, 1943. MACHADO, I. J. de R.; AMORIM, H. J. D.; BARROS, C. R. de. Sociologia hoje. 1ª ed. São Paulo: Ática, 2013. MERCURE, D.; SPURK, J. (Orgs.). O Trabalho na história do pensamento Ocidental. Petrópolis: Vozes, 2005. NOGUERA, J. A. El concepto de trabajo y la teoría social crítica. Barcelona: Papers, 2002. O'CONNOR, D. J. Historia crítica de la filosofía occidental. Tomo I – La filosofía en la antigüidad. 1ª ed. Buenos Aires: Paidós, 1967. OLIVEIRA, P. S. de. Introdução a sociologia. 24ª ed. São Paulo: Ática, 2001. PLATÃO. A República. 2ª ed. São Paulo: Martin Claret, 2000. (Col. A obra-prima de cada autor). _______. Político. Trad. J. C. de Souza, J. Paleikat e J. C. Costa. 2ª ed. São Paulo: Abril Cultural, 1983. (Col. Os Pensadores). ROLL, E. Historia de las doctrinas económicas. 1ª ed. México: FCE, 1942. SIMÓN, Y. R. Work, society and culture. 1ª ed. Nova Iorque: Fordham University Press, 1971. SILVA, A. et al. Sociologia em movimento. 2ª ed. São Paulo: Moderna, 2016. THE ZONDERVAN CORPORATION (Ed.). A História – a bíblia contada como uma só história do começo ao fim. Trad. Fabiano Morais. 1ª ed. Rio de Janeiro: Sextante, 2012. (shrink)
FISIOLOGIA DO PARTO E DA LACTAÇÃO ANIMAL -/- ANIMAL REPRODUCTION: PHISIOLOGY OF PARTURITION AND ANIMAL LACTATION -/- Emanuel Isaque Cordeiro da Silva Departamento de Zootecnia da UFRPE WhatsApp: (82)98143-8399 -/- 1. INTRODUÇÃO O sucesso biológico do processo de reprodução culmina com a sobrevivência das crias. Durante a gestação, o feto desenvolve-se no útero materno protegido das influências externas, e obtendo os nutrientes e o oxigênio através da mãe. O parto é o processo biológico que marca o fim da gestação e (...) o início da vida extrauterina do animal. Para garantir a sobrevivência do recém-nascido o parto deve ser um processo controlado para que se inicie unicamente quando o feto tiver alcançado desenvolvimento suficiente que lhe permita enfrentar a vida extrauterina. Após o nascimento, a secreção de leite pela glândula mamária proporciona ao neonato tanto os nutrientes necessários para seu desenvolvimento como as defesas (imunoglobulinas) que lhe protegerão contra as possíveis infecções durante as primeiras fases de sua vida. Parto e lactação constituem a última etapa de um ciclo reprodutivo completo nas fêmeas dos animais domésticos, estando ambos os processos regulados e sincronizados por complexas mudanças hormonais na mãe. Estas mudanças são, em última análise, provocadas e governadas pelo próprio feto ou recém-nascido, o qual acomoda as respostas maternas às suas necessidades garantindo a sua sobrevivência. 2. O PARTO O parto é definido como o processo fisiológico pelo qual ocorre a expulsão de um ou mais fetos maduros, bem como das membranas fetais existentes no útero materno. Este processo é desencadeado por uma interação complexa entre as hormonas maternas (fatores maternos) e fetais (fatores fetais). Para que se realize a expulsão do feto é necessário que o útero deixe de ser um órgão quiescente, essencial para a manutenção da gestação, para ser um órgão contrátil. Ao mesmo tempo, o cérvix ou colo uterino, que durante a gestação permanece firmemente fechado para impedir a expulsão prematura do feto e evitar a entrada de agentes infecciosos, relaxa e dilata para facilitar a passagem do feto na hora do parto. Esta modificação na atividade do útero e do colo uterino, ocorrem como consequência das mudanças hormonais que o organismo materno experimenta à medida que a data do parto se aproxima. 2.1 Fatores maternos A gestação dos animais domésticos ocorre com elevada concentração de progesterona que, dependendo da espécie animal, é secretada seja pelo corpo lúteo do ovário (vaca, porca e cabra) ou pela placenta (ovelha e égua). A progesterona desempenha um papel fundamental durante a gestação, inibindo as contrações da musculatura lisa do útero (miométrio), permitindo assim a acomodação do feto durante o seu crescimento. Os estrogênios, estimulantes da atividade contrátil do miométrio, mantêm-se a baixas concentrações durante a maior parte da gestação. À medida que se aproxima o momento do parto, os níveis destes hormônios esteroides modificam-se, produzindo-se a diminuição nos níveis circulantes da progesterona ao mesmo tempo que se incrementam os valores sanguíneos dos estrogênios (figura 1). A redução dos níveis de progesterona suprime a sua ação inibitória sobre a atividade contrátil do miométrio, permitindo que se manifestem os efeitos estimulantes dos estrogênios sobre este órgão. A concentração de estrogênios começa a aumentar geralmente no final da gestação, atingindo os seus valores máximos no momento do parto (figura 1). O aumento da concentração de estrogênios favorece a atividade contrátil espontânea do útero ao: a) estimular a síntese de proteínas contráteis; b) aumentar, sob medida, a sensibilidade do miométrio uterino à ação estimulante das prostaglandinas; c) induzir a formação de receptores de oxitocina no útero. -/- Figura 1. Níveis de progesterona e estrógenos durante a gestação e parto das espécies ovina, caprina, suína e bovina. Fonte: HAFEZ, 2013. Os estrogênios estimulam a síntese e secreção de prostaglandina (PGF2a), que constitui o elemento essencial para o início do parto devido aos efeitos que esta substância provoca. Assim, nas fêmeas, cujos níveis de progesterona gestacional dependem da presença do corpo lúteo, a secreção de PGF, origina a regressão deste (luteólise), com a consequente diminuição da progesterona a níveis basais. Além disso, a PGF2a origina contrações de crescente intensidade no útero sensibilizado pela ação dos estrogênios. Esta ação contrátil da PGF2a deve-se a um aumento da concentração de cálcio intracelular das fibras musculares uterinas. A PGF2a também está envolvida no relaxamento do colo do útero, inibindo a formação de colágeno cervical ao mesmo tempo que estimula a síntese de enzimas (colagenase) que degradam a matriz de colágeno formado no início da gestação. A dilatação do colo do útero está também associada à pressão que o feto exerce sobre o mesmo e, no caso da porca, a relaxina pode também estar envolvida. Esta hormona é também de grande importância para a preparação do parto em todas as espécies animais, uma vez que é responsável pelo relaxamento dos ligamentos e músculos que rodeiam o canal pélvico para favorecer a separação da sínfise púbica durante a expulsão do feto. Nos grandes animais (vaca, égua) as mudanças que ocorrem nos tecidos e ligamentos pélvicos são muito evidentes e constituem um sintoma de parto iminente. O início do parto, ou primeira fase do parto, caracteriza-se pelo aumento das contrações uterinas provocadas pela PGF2a coincidindo com a dilatação do colo uterino para permitir a passagem do feto para o canal do parto, momento em que começa a segunda fase do parto. A distensão vaginal que produz-se para a passagem do feto pelo canal do parto origina um estímulo nervoso que viaja através da medula espinal para o hipotálamo, onde se encontram os neurônios responsáveis pela síntese de oxitocina. As terminações nervosas destes neurónios são projetadas para o lobo posterior da hipófise (neurohipófise), onde a oxitocina é secretada para ser, posteriormente , transportada pela circulação sanguínea. Este reflexo neuroendócrino chamado reflexo de Ferguson determina a secreção súbita de oxitocina, provocando o aumento tanto na intensidade como na frequência das contrações uterinas necessárias para a expulsão final do feto. O papel da oxitocina é ativar a conclusão do processo de expulsão, uma vez que esta hormona não está envolvida no início do parto. A alteração mais significativa entre a gestação e o parto é a alteração na atividade contrátil do miométrio uterino. Esta mudança é devido às alterações hormonais que ocorrem na mãe quando a gestação chegou a fim. No entanto, para que estes mecanismos maternos sejam acionados, é necessário que o feto indique de alguma forma à mãe o seu estado de desenvolvimento, de modo que o nascimento realize-se quando o feto estiver preparado para enfrentar a vida extrauterina. 2.2 Fatores fetais A destruição experimental da hipófise e/ou das glândulas adrenais do feto origina o prolongamento da gestação nos animais domésticos. Pelo contrário, a administração exógena de cortisol (corticosteroides adrenais), ou do seu precursor hipofisário (ACTH), à circulação fetal provoca, em poucas horas, o início do parto. Estes fatos evidenciam a importância do eixo hipófise-adrenal do feto para desencadear o início do parto (figura 2). Figura 2. Mecanismos fetais que controlam o parto em ovelhas. Fonte: LIGGINS et al, 1972. No final da gestação, o feto maduro apresenta um aumento da concentração de corticosteroides plasmáticos devido ao efeito estimulante da hormona adrenocorticotróide (ACVH) secretada pela hipófise fetal sobre as glândulas adrenais do feto. Os corticosteroides fetais por sua vez estimulam as enzimas placentárias para transformar a progesterona em estrogênio. O resultado final é a diminuição dos níveis de progesterona ao mesmo tempo que se eleva a concentração de estrogênios que, por sua vez, estimulam a libertação de PGF2a responsável pelas contrações uterinas. Este raciocínio explica algumas doenças caracterizadas por gestação prolongada em ovelhas, como ocorre na África do Sul, onde estes animais são obrigados, durante as épocas de seca, a ingerir as folhas de um arbusto chamado Salsola tuberculate. O prolongamento da gestação ocorre quando estas folhas são ingeridas durante o último terço da gestação cujos efeitos estão relacionados com a supressão do eixo hipotálamo-hipófise, com o qual as adrenais não recebem o estímulo necessário (ACTH) para a síntese e liberação de corticoides. O efeito contrário é observado nas cabras da raça Angorá, nas quais se produzem, com relativa frequência, partos prematuros que podem estar relacionados com um desenvolvimento precoce das glândulas adrenais. Isto significa que, nos animais domésticos, o feto determina a data do parto. O sinal hormonal que indica à mãe o grau de maturidade do feto é o desenvolvimento do eixo hipotálamo-hipófise-adrenal que origina o aumento na secreção de corticoides fetais que são os responsáveis por desencadear as alterações hormonais no organismo materno necessárias para iniciar o parto. A figura 2 mostra como a remoção da hipófise e as adrenais do feto prolongam a gestação, enquanto a administração exógena de ACTH ou corticoides (cortisol) ao feto originam um parto prematuro. O momento em que ocorre o aumento da concentração plasmática de corticoides no feto varia de acordo com a espécie: de 25 a 30 dias antes do parto na vaca, de 7 a 10 dias na porca e de 2 a 3 dias na ovelha. 2.3 Desenvolvimento e fases do parto O parto inicia-se com o início das contrações peristálticas e regulares do miométrio uterino ao mesmo tempo que o colo do útero se dilata progressivamente. Nas fêmeas que gestam um único feto (monotecas), as contrações começam na extremidade anterior do córneo uterino, enquanto que nas espécies que gestam vários fetos (politocas) as contrações começam pela extremidade cervical para começar a expulsar o feto que se encontra mais próximo do cérvix. Durante o parto são reconhecidas três fases: 1. Fase preparatória - Na qual as contrações uterinas estimulam a rotação do feto (fêmeas monotecas) para adotar a posição dorsal (extremidades anteriores e cabeça forçadas contra o cérvix) que lhe permite oferecer a menor resistência para sua expulsão. A PGF2a provoca as contrações miometriais e a dilatação do cérvix, deslocando o feto contra e através desta estrutura. 2. Fase de expulsão - A passagem do feto através do colo uterino e da vagina causam a completa dilatação destas estruturas, originando a secreção de oxitocina (reflexo de Ferguson), que provoca contrações de maior frequência e intensidade. Por sua vez, estas contrações uterinas são reforçadas pela pressão e contração dos músculos abdominais, chegando estes últimos a ser a força principal (forças de expulsão) envolvida no processo de expulsão do feto. O cordão umbilical rompe-se bem ao levantar-se a mãe ou pelos movimentos do recém-nascido. 3. Fase de expulsão da placenta - Após o parto, as contrações rítmicas do útero continuam a facilitar a expulsão da(s) placenta(s). O tempo necessário para este processo varia de acordo com a espécie animal. Este processo é rápido na égua, já que a separação do corion (membrana fetal) de sua inserção uterina ocorre durante a expulsão do feto, com o qual o parto deve ser concluído rapidamente ou, caso contrário, o potro se asfixiaria. Nos ruminantes, a expulsão da placenta cotiledonaria é um processo mais lento que exige a separação dos cotilédones (membrana fetal) das carúnculas do útero. Por conseguinte, a troca de nutrientes e oxigênio entre a mãe e o feto continua até que este tenha sido totalmente expelido, devido ao cordão umbilical destes animais ser bastante longo. Nas fêmeas politocas, como a porca, geralmente as placentas de vários leitões são expulsadas no final, quando os leitões já foram expelidos, se bem que o último leitão poderá ser expelido durante a expulsão da massa placentária. 3. LACTAÇÃO A lactação constitui o processo que define os mamíferos como classe biológica. O desenvolvimento pós-natal dos mamíferos vai depender, em grande medida, dos nutrientes e defesas fornecidos pela mãe através da secreção de leite (imunoglobulinas). Assim, uma vez concluído o desenvolvimento gestacional do feto, a glândula mamária irá substituir, de certa forma, a função nutritiva e protetora da placenta durante a gestação. 3.1 Anatomia funcional da glândula mamária A estrutura funcional da glândula mamária é muito semelhante em todos os mamíferos, embora o tamanho, forma e número de glândulas varia dependendo da espécie animal. As glândulas mamárias desenvolvem-se como estruturas pares cujo número varia de um par (égua, cabra e ovelha), dois pares (vaca) até sete ou nove (porca). A localização das glândulas também difere sendo inguinal em vaca, égua, cabra e ovelha, enquanto que na porca, cadela e gata se estendem por todo o comprimento do tórax e abdômen. Nos animais domésticos em geral as glândulas mamárias recebem o nome de úberes. Tomando como modelo a vaca, a glândula mamária se organiza em duas estruturas: o estroma, formado por tecido conjuntivo procedente dos ligamentos suspensório medial, localizado entre os dois pares de glândulas, dando suporte à segunda estrutura que é o tecido secretor. Este é formado por acúmulos de células secretoras formando estruturas ocas chamadas alvéolos, que são as unidades fundamentais secretoras de leite. Os alvéolos estão circulados internamente por células epiteliais (secretoras) e rodeados externamente por células mioepiteliais contráteis, cuja contração origina a ejeção do leite (figura 3). O agrupamento de vários alvéolos adjacentes formam um lobo secretor. Figura 3. Diagrama de um agregado de alvéolos na glândula mamária de uma cabra. Fonte: COWIE et al, 1980. Os lobos expelem a secreção através de ductos que, por sua vez, drenam os ductos galactóforas (ductos lácteos) de maior diâmetro, para desembocar em áreas especializadas em armazenar o leite chamadas cisternas (vaca, cabra). Finalmente, a cisterna abre-se para o exterior através do canal papilar da teta. A presença do músculo liso na teta permite-lhe agir como esfíncter para impedir que o leite seja expelido passivamente do interior da glândula. O mamilo/teta é provido de numerosos receptores sensitivos cuja excitação durante a ordenha ou amamentação vai desencadear estímulos nervosos de grande importância para a manutenção da lactação. 3.2 Desenvolvimento da glândula mamária (mamogênese) A glândula mamária difere das demais glândulas do organismo no escasso desenvolvimento que apresenta no nascimento da fêmea, o qual não se inicia até que esta não atinja a puberdade. O início da atividade cíclica do ovário (puberdade) dá origem à síntese de estrogênios (fase folicular do ciclo estral) e progesterona (fase lútea). Os estrogênios originam o alongamento e ramificação dos ductos e a formação de pequenas massas esféricas de células (os futuros alvéolos). Embora este desenvolvimento seja dependente do estrogênio, é também necessária a ação sinérgica da prolactina, hormona do crescimento (GH) e corticoides adrenais, como demonstrado pelos estudos realizados em ratos aos quais foi removida a hipófise, glândulas suprarrenais e ovários (figura 4). A função da progesterona no desenvolvimento da glândula mamária é estimular o crescimento do lobo-alveolar, mas como no caso anterior também requer a ação conjunta dos hormônios acima mencionados. Figura 4. Hormonas relacionadas com o crescimento da glândula mamária e início da secreção de leite na rata hipofisectomizada-adrenoectomizada-ovariectomizada. Fonte: COWIE, 1980. O desenvolvimento da glândula, durante cada ciclo estral, vai depender da duração da fase folicular (níveis elevados de estrogênio), já que nas restantes fases do ciclo, quando os níveis de estrogênio são baixos, os ductos sofrem uma ligeira regressão. Nas espécies com ciclos curtos (rata), em que a fase folicular do ciclo é predominante, enquanto a fase lútea é quase inexistente, verifica-se um grande desenvolvimento dos ductos; enquanto que aquelas que apresentam um corpo lúteo funcional de longa duração (cadela e primatas), além do crescimento dos ductos, mostram um grande desenvolvimento lóbulo-alveolar semelhante ao que ocorre na gestação. É durante a gestação que o sistema alveolar sofre uma hipertrofia considerável, resultando em lobos proeminentes e no desenvolvimento da luz interna dos alvéolos, fato que é evidente na maioria dos animais domésticos por volta da metade do período gestacional. Em algumas espécies, as células que circundam interiormente os alvéolos contêm produtos secretores, indicando que a glândula mamária já está preparada para a fase da lactação. O desenvolvimento glandular durante a gestação deve-se ao efeito conjunto da progesterona e dos estrogênios com as hormonas hipofisárias acima mencionadas: prolactina, hormona do crescimento (GH) e adrenocorticotropina (ACTH). A proporção entre estrogênios e progesterona varia de acordo com a espécie, mas geralmente é necessária uma maior concentração de progesterona (proveniente do corpo lúteo ou da placenta). Quanto às hormonas hipofisárias, a prolactina desempenha um papel fundamental na diferenciação da glândula mamária (mesmo a baixas concentrações) ao estimular o desenvolvimento do epitélio secretor dos alvéolos. A GH favorece o crescimento dos ductos e a ACTH estimula a secreção de corticoides nas adrenais que, por sua vez, favorecem de forma generalizada o crescimento das glândulas. 3.3 Secreção da glândula mamária (lactogênese) A lactogênese, ou o processo pelo qual se produz a síntese e secreção do leite pela glândula mamária, começa no final da gestação coincidindo com o desencadeamento do parto. O primeiro leite formado imediatamente antes ou depois do parto é denominado colostro. No entanto, a lactação não pode desenvolver- se completamente até que se inicie o processo de parto. Isto deve-se ao fato de que o processo de lactação resulta de uma interação complexa de hormonas que preparam a glândula mamária para a secreção do leite. Os requisitos hormonais mínimos para o início da lactogênese são: aumento da secreção de estrogênios, prolactina e corticoides, juntamente com a diminuição da concentração de progesterona, perfis hormonais que estão intimamente relacionados com o desencadeamento do parto. Isto deve-se ao fato de que a progesterona inibe a atividade lactogênica da prolactina bloqueando a formação dos seus receptores na glândula mamária durante a gestação impedindo, assim, a prolactina de sintetizar os componentes fundamentais do leite. Pelo contrário, o aumento da concentração de estrogênios no final da gestação (figura 1, na seção do parto) estimula a síntese, o armazenamento e a secreção hipofisária de prolactina. Assim, apesar da glândula mamária estar preparada para iniciar a secreção de leite, muito antes da data prevista para o parto, a elevada concentração de progesterona (existente durante esse período de gestação) impede a fase láctea (saída do leite pelas tetas) de ocorrer antes da expulsão do feto. Desta forma, o feto poderá beneficiar das vantagens que o fornecimento do colostro materno irá trazer para a sua sobrevivência (imunização, nutrição e favorecimento da exoneração do mecônio). O aumento da concentração de estrogênios nos dias que antecederem o parto resulta num rápido aumento das concentrações plasmáticas de prolactina e corticoides. A prolactina é a hormona lactogênica mais importante na síntese dos componentes do leite. No entanto, para que esta hormona possa exercer a sua função, é necessária a participação dos corticoides, já que os mesmos são os responsáveis pelo desenvolvimento das organelas citoplasmáticas (retículo endoplasmático rugoso e aparelho de Golgi) onde se realiza a síntese do leite. No desenvolvimento da lactogênese, para além da prolactina e dos corticoides, participam também outras hormonas como a insulina, a tiroxina e o hormônio do crescimento. A insulina estimula a proliferação de novas células epiteliais na glândula mamária, enquanto a tiroxina, embora não seja essencial para a lactação, pode influenciar no volume de leite produzido pela fêmea (alta produção leiteira). Por último, a hormona do crescimento favorece, em geral, a lactação, existindo atualmente um interesse considerável no uso desta hormona para promover a produção adicional de leite em vacas através da sua administração exógena (trabalho e projeto desenvolvido pela professora titular e médica-veterinária do IFPB Campus Sousa Marianne Christina Velaqua). 3.3.1 Síntese e secreção dos componentes do leite Os principais constituintes do leite são: proteínas (caseína, alfa-lactalbumina, albumina sérica e imunoglobulinas), açúcares (lactose), gorduras (principalmente sob a forma de triglicerídeos), vitaminas, minerais e citrato (no caso dos ruminantes). As proteínas (caseína e alfa-lactalbumina) são sintetizadas no retículo endoplasmático rugoso e posteriormente embaladas em vesículas secretoras do aparelho de Golgi para serem liberadas da célula para a luz alveolar mediante um processo de exocitose. A lactose é o principal açúcar do leite que, além disso, atua regulando a pressão osmótica do mesmo de modo que o volume de leite que a glândula mamária segrega está diretamente relacionado com a quantidade de lactose presente. A síntese da lactose ocorre no aparelho de Golgi pela condensação de glicose e galactose; esta reação é catalisada por uma enzima (lactose sintetase) presente na membrana do aparelho de Golgi que, por sua vez, é ativada pela proteína alfa-lactalbumina. Esta proteína só aparece na glândula mamária e é essencial para a síntese da lactose, o que demonstra que este açúcar é exclusivamente formado no leite. A lactose é também embalada junto com o cálcio, o fosfato e as proteínas nas vesículas secretoras para ser expulsada ao lúmen alveolar por exocitose. As imunoglobulinas (anticorpos IgA) são formadas pelas células plasmáticas, derivadas dos linfócitos B do sangue, como consequência da exposição da mãe a diferentes microrganismos. Estes anticorpos passam para a glândula mamária por migração dessas células a partir dos tecidos adjacentes. Os triglicerídeos são sintetizados no citoplasma e no retículo endoplasmático liso a partir de ácidos graxos provenientes da circulação sanguínea; em seguida, unem-se formando glóbulos de gordura que se dirigem até o vértice da membrana plasmática para serem finalmente expelidos para a luz do alvéolo, rodeados pela membrana, formando assim uma dispersão de glóbulos de gordura (figura 5). Figura 5. Estrutura de três células alveolares durante a síntese do leite. Fonte: COWIE, 1980. Do ponto de vista quantitativo, a caseína e os triglicerídeos constituem as proteínas e as fontes de energia, respectivamente, mais importantes do leite. Por último, o citrato é um intermediário do metabolismo da glicose que ocorre em grande concentração no leite dos ruminantes. Este composto é também englobado no interior das vesículas secretoras, junto com os outros compostos, para sua expulsão à luz alveolar. A composição do leite varia dependendo da espécie animal, e difere também até entre a mesma espécie. Estas variações estão relacionadas com a raça, idade, estágio de lactação e estado nutricional do animal. O teor de gordura no leite de ovelhas, porcas, cadelas e gatas varia entre 7 e 10%. No gado leiteiro estes valores variam de 3,5 a 5,5%, dependendo da raça. Em relação às cabras, os valores de gordura são muito semelhantes aos das vacas, enquanto o leite das éguas é o que tem menor teor de gordura (tabela 1). Espécie Gordura Proteína Lactosa Cinzas/Cálcio Gata 7,1 10,1 4,2 0,5 Vaca holandesa 3,5 3,1 4,9 0,7 Cadela 9,5 9,3 3,1 1,2 Cabra 3,5 3,1 4,6 0,8 Égua 1,6 2,4 6,1 0,5 Tabela 1. Composição do leite em várias espécies (%). Fonte: JACOBISON, 1984. 3.4 Manutenção da lactação (galactopoiese) A capacidade da glândula mamária de secretar um grande volume de leite começa em/ou imediatamente antes do parto, para aumentar no período pós-parto durante um tempo variável e, posteriormente, diminuir de forma gradual. Em geral, existe um paralelismo entre a atividade secretora da glândula e a procura de leite por parte do lactente. Isto deve-se ao fato de sucção pelo lactente, ou a extração por ordenha, que constituem o fator fundamental para a manutenção da lactação. A sucção estimula a lactação de duas formas: a) reduzindo os efeitos inibitórios da pressão intramamária produzida pela acumulação de leite, e b) estimulando intensamente a secreção de hormonas necessárias para manter a síntese e secreção de leite nos alvéolos. As hormonas que desempenham um papel fundamental na manutenção da lactação são: I) a prolactina, que é responsável pela estimulação da síntese e secreção de leite nas células epiteliais nos alvéolos, e 2) a oxitocina, que provoca a contração das células musculares que circundam externamente os alvéolos e os ductos (células mioepiteliais). A libertação de ambos os hormônios ocorre como resultado de um reflexo neuroendócrino originado pela estimulação do mamilo. 3.4.1 Secreção reflexa de prolactina A secreção de prolactina é regulada por dois fatores hipotalâmicos: a dopamina, que inibe a secreção de prolactina e um fator cuja identidade não está bem definida, conhecido como fator liberador de prolactina (PRF)que estimula a liberação deste hormônio. O estímulo sensorial originado como sequência da estimulação do mamilo, pela sucção do lactente, é transportado através da medula espinhal para o hipotálamo, onde atua na inibição da dopamina ou estimulando a secreção do PRF para desencadear a secreção de prolactina da adenohipófise para a circulação sanguínea (figura 6). Figura 6. Reflexos neuroendócrinos secretores de prolactina e oxitocina. Fonte: HAFEZ, 2000. A prolactina estimula a secreção dos componentes do leite para a luz dos alvéolos, afim de repor o volume de leite extraído durante a última ordenha ou sucção. Ao mesmo tempo, a prolactina induz a síntese das proteínas, incluindo a alfa-lactalbumina para estimular novamente a síntese da lactosa, bem como as enzimas necessárias para a produção dos triglicerídeos. Desta forma, a secreção de prolactina originada pelo lactente durante o aleitamento proporciona um mecanismo simples para combinar o volume de produção de leite com as necessidades do lactente. A quantidade de prolactina liberada durante cada período de sucção depende do número de crias, da duração do estímulo e dos intervalos de tempo decorridos entre os períodos de sucção (ou ordenha). No caso das vacas leiteiras, as ordenhas são geralmente realizadas de doze em doze horas, intervalo de tempo suficiente para manter a lactogênese. Os valores plasmáticos de prolactina aumentam imediatamente após o início da ordenha, mas os valores mais elevados são obtidos cerca de meia hora após o início do estímulo (ordenha ou sucção). A secreção de prolactina e a produção de leite são influenciadas de alguma forma pelo fotoperíodo, uma vez que, em alguns animais se comprovou como o aumento do número de horas de exposição à luz dá origem a um aumento da concentração de prolactina circulante, bem como uma maior produção de leite (entre 6 e 10%) (trabalho e projeto elaborado pelos estudantes do curso técnico em agropecuária e da graduação em Medicina Veterinária do IFPB Campus Sousa sob a coordenação e orientação da profa. Me. Esp. Marianne C. Velaqua). 3.4.2 Reflexo da ejeção do leite A sucção do mamilo pelo lactente estimula os receptores sensoriais presentes nesta estrutura, originando a geração de impulsos nervosos que são transmitidos pelas vias nervosas ascendentes da medula espinhal para os corpos celulares produtores de oxitocina no hipotálamo. O estímulo desencadeia a síntese e liberação de um bolo de oxitocina através das terminações nervosas dos núcleos hipotalâmicos para a neurohipófise, da qual é transmitida, através do sangue, para a glândula mamária, provocando a contração das células mioepiteliais que rodeiam os alvéolos (figura 6). Além da estimulação direta do mamilo provocada pela sucção, qualquer estímulo relacionado à ordenha é capaz de gerar o reflexo da ejeção, por exemplo: os estímulos sensoriais auditivos (ruído dos cubos na hora da ordenha), visuais (ambiente da sala de ordenha), táteis (lavagem manual dos mamilos antes da ordenha) e os estímulos olfatórios que se produzem em torno do animal. O desencadeamento do reflexo de ejeção pelos estímulos sensoriais, que não estão diretamente relacionados com a sucção ou ordenha, indica a possível participação de centros superiores do sistema nervoso central para controlar a secreção de oxitocina. Esta teoria é baseada em que os estímulos relacionados com situações de estresse em animais de estimação (medo, ansiedade, frio, etc.) inibem a ejeção do leite. A contração das células mioepiteliais gera um aumento da pressão intra-alveolar mamária, provocando o deslocamento do leite para os ductos maiores da glândula. Este efeito é popularmente conhecido como diminuição do leite e constitui um mecanismo fisiológico muito eficaz para controlar a expulsão do leite para o mamilo, assegurando que a ejeção do leite se realize unicamente quando o lactente o demanda. O efeito estimulante da oxitocina é de grande importância já que a maior parte do leite se encontra nos alvéolos e nos ductos, com o qual, a ausência deste hormônio provocaria um lento movimento do leite para a cisterna do úbere e, portanto, uma menor quantidade de leite. Assim, quando os alvéolos e ductos menores são contraídos, ocorre o relaxamento dos ductos principais, bem como da cisterna (ruminantes) e do mamilo, o que dá origem a um aumento destas estruturas para alojar o volume de leite expelido. Como resultado da volumosa ejeção do leite dos alvéolos e ductos menores, ocorre um aumento da pressão intramamária de modo que o lactente terá que vencer a resistência do esfíncter do mamilo para poder extrair o leite. A produção de leite pela glândula mamária diminui gradualmente à medida que os intervalos de tempo entre os dois períodos de amamentação do lactente diminuem e os estímulos necessários para manter as concentrações de prolactina e oxitocina na circulação sanguínea. A diminuição ou cessação da secreção de leite, geralmente coincide com a mudança na alimentação das crias (desmame) para passar à dieta característica da espécie. 3.5 Colostro O colostro é o primeiro leite que se forma na glândula mamária coincidindo com o parto. A ingestão de colostro por recém-nascidos é de grande importância para a sua sobrevivência, não só pelo seu elevado valor nutritivo, mas também pelo seu teor em imunoglobulinas (IgA) que lhe confere a imunização passiva necessária para o proteger contra patologias. Em algumas espécies (homem, coelho e cobaia) grande parte dos anticorpos passam para a circulação do feto através da placenta durante a gestação. Nos animais domésticos (vaca, égua, ovelha, cabra, porco) as características da placenta (número de camadas entre a circulação materna e fetal) não permitem a passagem destas proteínas. Como resultado, a imunização das crias nestas espécies animais vai depender da transferência das imunoglobulinas através do colostro. O epitélio intestinal dos recém-nascidos permite a passagem destas imunoglobulinas durante as primeiras 24 a 48 horas de vida. Passado este tempo, o epitélio torna-se impermeável à passagem dos anticorpos, fato que põe em evidência a importância que tem para os animais recém-nascidos e desprovidos de defesas a ingestão do colostro durante os primeiros dias. A composição do colostro caracteriza-se (em relação ao leite normal) por um teor mais elevado de proteínas, vitaminas, minerais e uma menor concentração de lactose. A composição do colostro muda gradualmente durante os primeiros três dias após o parto para se transformar em leite normal. 4. RESUMO E PRIMEIRAS CONCLUSÕES O parto, ou processo fisiológico pelo qual se expulsa o feto, é o resultado da maturação sequencial de um sistema de comunicação hormonal. A sequência inicia-se no sistema nervoso central do feto de onde os sinais são transmitidos e amplificados, através da hipófise, para as glândulas adrenais fetais, as quais respondem ao estímulo mediante a secreção de cortisol. O aumento da concentração de cortisol por parte do feto indica que este conseguiu o desenvolvimento necessário para enfrentar a vida extrauterina e, portanto, é hora de interromper a gestação. O cortisol atua sobre a placenta para aumentar a secreção de estrogênios que, por sua vez, estimulam a síntese e a liberação de prostaglandinas. O resultado é a diminuição da progesterona, que é a hormona encarregada de manter a gestação ao inibir as contrações espontâneas do útero, impedindo assim a expulsão prematura do feto. O útero, sob os efeitos da prostaglandina, começa a contrair-se ao mesmo tempo que o colo uterino amolece e dilata progressivamente (fase preparatória do parto). A passagem do feto ao canal do parto origina a secreção reflexa de oxitocina (fase de expulsão), causando contrações de maior frequência e intensidade que culminam com a expulsão do feto. Finalmente, as contrações uterinas continuam durante algum tempo até que finalmente é expulsa a placenta (fase de expulsão da placenta). O desenvolvimento da glândula mamária durante a gestação e a subsequente capacidade desta estrutura para secretar leite, coincidindo com o parto, oferece aos animais pertencentes à classe biológica dos mamíferos a vantagem de alimentar as suas crias para assegurar a sua sobrevivência durante as primeiras fases do seu desenvolvimento e, portanto, a continuidade da espécie. A lactação constitui um dos processos fisiológicos mais complexos em consequência do grande número de hormonas que, segregadas de forma coordenada, controlam as diferentes fases pelo que atravessa este processo: I) mamogênese ou desenvolvimento dos dutos e estruturas lóbulo-alveolares durante a gestação; 2) lactogênese ou síntese láctea por células epiteliais e sua secreção para a luz alveolar coincidindo com o parto, e 3) galactopoiese ou manutenção da síntese e secreção do leite como consequência da sua extração da glândula mamária seja pela sucção da cria ou pela ordenha. -/- Emanuel Isaque Cordeiro da Silva – Departamento de Zootecnia da UFRPE. Recife, 2020. -/- REFERÊNCIAS BIBLIOGRÁFICAS -/- BEIGHLE, D. E. The effect of gestation and lactation on bone calcium, phosphorus and magnesium in dairy cows. Journal of the South African Veterinary Association, v. 70, n. 4, p. 142-146, 1999. BRACKELL, B. G.; JR SEIDEL, G. E.; SEIDEL, S. Avances en zootecnia nuevas técnicas de reproducción animal. Zaragoza: Acribia, 1988. COLE, H. H.; CUPPS, P. T. Reproduction in domestic animals. 1ª ed. Londres: Academic Press, 1977. COWIE, Alfred T.; FORSYTH, Isabel A.; HART, Ian C. Lactation. In: Hormonal control of lactation. Springer, Berlin, Heidelberg, 1980. p. 146-229. CUNNINGHAM, James G. Fisiología veterinaria. São Paulo: Elsevier, 2003. DERIVAUX, Jules; BARNABÉ, Renato Campanarut. Reprodução dos animais domésticos. Zaragoza: Acribia, 1980. DA SILVA, Emanuel Isaque Cordeiro. Definição de Conceitos Básicos na Reprodução Animal: Fertilidade, Fecundidade e Prolificidade-Suínos. Philarchive. Disponível em: -----. Acesso em: Fevereiro de 2020. DA SILVA, Emanuel Isaque Cordeiro. Características Gerais dos Bovinos/General Characteristics of Cattle Bovine. Philarchive. Disponível em: -----. Acesso em: Fevereiro de 2020. DA SILVA, Emanuel Isaque Cordeiro. Reprodução Animal: Fecundação e Gestação. Disponível em: Acervo IFPE. Acesso em: Março de 2020. FERNÁNDEZ ABELLA, Daniel Héctor. Principios de fisiología reproductiva ovina. Montevidéu: Hemisferio Sur1993. GONZÁLEZ, Félix HD. Introdução a endocrinologia reprodutiva veterinária. Porto Alegre: UFRGS, v. 83, 2002. HAFEZ, E. S. E.; HAFEZ, B. Reprodução animal. São Paulo: Manole, 2004. HAFEZ, Elsayed Saad Eldin; HAFEZ, B. (Ed.). Reproduction in farm animals. Nova Jersey: John Wiley & Sons, 2013. HUNTER, R. H. F. Reproducción de los animales de granja. Zaragoza: Acribia, 1987. HUNTER, Ronald Henry Fraser et al. Physiology and technology of reproduction in female domestic animals. Londres: Academic Press, 1980. ILLERA, M. Endocrinología Veterinaria y Fisiología de la Reproducción. Zaragoza: Fareso, 1994. JACOBSON, N. L.; MCGILLIARD, A. D. The mammary gland and lactation. Duke’s Physiology of Domestic Animals. 10th edition. Comstock Publishing Associates, Cornell University Press, Ithaca, New York, USA, p. 863-880, 1984. JAINUDEEN, M. R.; HAFEZ, E. S. E. Gestação, fisiologia pré-natal e parto. Revista Brasileira de Reprodução animal, v. 7, p. 141-142, 2004. LIGGINS, G. C. et al. physiological roles of progesterone, oestradiol-17beta and prostaglandin F2alpha in the control of ovine parturition. J Reprod and Fert Suppl, 1972. PÉREZ PÉREZ, F.; PÉREZ GUTIÉRREZ, F. Reproducción animal, inseminación animal y transplante de embriones. Barcelona: Cientifico-medica, 1985. ROBERTS, Stephen J. Obstetricia veterinaria y patología de la reproducción. Montevidéu: Hemiferio Sur, 1979. SALISBURY, G. W.; VANDERMARK, N. L. Phisiology of the reproduction and artificial insemination of cattle. San Francisco : Freeman e Company, 1961, 630 p. SHILLE, V. M. Fisiologia reprodutiva e endocrinologia da fêmea e do macho. Tratado de medicina interna veterinária. São Paulo: Manole, p. 1857-68, 1992. RUTTER, Bruno; RUSSO, Angel F. Fundamentos de la fisiología de la gestación y el parto de los animales domésticos. Buenos Aires: Eudeba, 2002. UNGERFELD, Rodolfo. Reproducción en los animales domésticos. Montevidéu: Melibea, 2002. (shrink)
This essay is part of a doctoral dissertation presented to the Department of Philosophy, University of São Paulo, in 1993, named 'Genealogy of the Real' . Its core idea is a Nietzschean approach to a masterpiece among philosophical inspired movies, namely, Akira Kurosawa's Rashomon, which surely touches deep groundings of the concept of truth and reality.
The tragic death in Tolstoy's writings has helped both Max Weber and György Lukács in characterizing the modern pathos as a tragic contemplation of the emptiness of life. Through Tolstoy's readings, Weber and Lukács found an interesting source of denying arts and modern sciences autonomy, considering, from the aesthetics sphere, the meaningless of this new immanent reality. Both has assumed Tolstoy main theme from the same perspective, contrasting ancient and modern worldviews. Max Weber presented this theme in his disenchantment of (...) world theory and Lukács, in a very similar way, following the paradox of religious needing as a mainline. -/- O tema da morte trágica, presente nos escritos de Liev Tolstói, auxiliou tanto a Max Weber como a György Lukács a caracterizarem o pathos moderno de pressentimento da morte como uma contemplação do vazio. Weber e Lukács encontraram, através das leituras de Tolstói, uma interessante maneira de questionar a autonomia da arte e da ciência moderna, considerando pela esfera estética, como se mostra sem sentido a recente realidade imanente. Ambos assumiram o tema central das obras de Tolstói segundo uma mesma imagem, derivada do contraste entre o mundo antigo e o moderno. Max Weber adequou esse tema a sua teoria do desencantamento do mundo e Lukács, de modo muito semelhante, seguindo seu conceito do paradoxo da necessidade religiosa. (shrink)
Known as the Darwin of the twenty-first century, the German biologist Ernst Walter Mayr (1904-2005) studied a great variety of subjects such as Ornithology, Genetics, Evolution, Classification, History, and Philosophy of Biology. This scientist was a giant of the previous century and an icon of Evolutionary Biology. He became famous for his Biological Species Concept and his conclusion that allopatry is the main cause for the origin of species. He provided a decisive contribution to the New Systematics and was the (...) pioneer of the punctuated equilibrium idea. Mayr was one of the main architects of the evolutionary synthesis as also of the Neo-Darwinian wave. Evaluated together, all of his works reveal several elements of his ambition – to organize a philosophical conception inherent for Biology. An assiduous defender of autonomous Biology, Mayr asserted that four sets of factors in Biology differ from those in the Exact Sciences: (I) refutation of essentialism, mechanism, vitalism, and teleology; (II) some physical principles cannot be applied to Biology; (III) absence of general laws in Biology; and (IV) basic principles of biology and their specific character cannot be applied to the inanimate world. The present study took as an axis a minor or even invisible theme from the Ernst Mayr literature and aims to analyze critically the theoretical and epistemological basis that subsidizes – or not– the affirmation that Biology is an autonomous Science. - O biólogo alemão Ernst Walter Mayr (1904-2005), conhecido como o Darwin do século XXI, trabalhou com uma grande variedade de temas: Ornitologia, Genética, Evolução, Classificação, História e Filosofia da Biologia. Esse cientista foi um dos gigantes do século XX e um ícone para a Biologia Evolutiva. Ficou famoso com o seu Conceito Biológico de Espécie e sua conclusão de que a alopatria era a principal causa da origem das espécies. Forneceu uma contribuição decisiva à Nova Sistemática, foi precursor da ideia de equilíbrio pontuado e um dos principais arquitetos da síntese evolutiva, bem como do movimento Neodarwinista. Quando avaliados em conjunto, seus trabalhos revelam os diversos elementos de sua ambição – organizar um corpo de concepções filosóficas próprias da Biologia. Defensor assíduo de uma Biologia autônoma, Mayr afirmou que há quatro conjuntos de fatores que diferenciam a Biologia do conjunto das Ciências Exatas: (I) refutação do essencialismo, do mecanicismo, do vitalismo e da teleologia; (II) convicção de que certos princípios da Física não podem ser aplicados à Biologia; (III) ausência de leis naturais universais em Biologia; e (IV) percepção do caráter único de certos princípios básicos da Biologia não aplicáveis ao mundo inanimado. O presente artigo tomou por eixo um tema aparentemente menor ou mesmo invisível na obra de Ernst Mayr e pretende realizar uma análise crítica acerca de suas bases teóricas e epistemológicas que subsidiaram – ou não – a afirmação da Biologia como uma Ciência autônoma. (shrink)
Lars von Trier's works give us allways plenty of exquisite philosophical food for thought, mostly in very dense and hermetic language. 'Melancholia' , a 2011 movie, has been seen by us as a brilliant dramatization of Schopenhauer's and Nietzsche's philosophy, also available on PhilArchives. 'Antichrist', another movies of his from 2009, deploys a similar doom perspective regarding our times, now focusing the perpetual struggle between men and women as a leitomotiv. This brief review, however, does not intend to go beyond (...) an exposition of the mental structures which grounds both so different reactions: the husband's, and the wife's. (shrink)
Based on the notion of proem as exposed in Aristotle’s Rhetoric, we examine in detail Metaph. A1. Our goal is to understand the argument contained in this chapter, as we also endeavour to show how the Stagirite introduces with uttermost caution the theme of wisdom [σοφία], that which is the incarnation of the preeminent science in the first book of the Metaphysics. The attention we devote to the proem of this work is explained by the importance we attribute, unlike much (...) of contemporary scholars, to σοφία, that is, the science of first causes and principles, which we consider to be, ultimately, the pivotal formulation of the supreme science in the Metaphysics. (shrink)
Um saco misto dominado pelo absurdo reducionista da H & D. Esta é uma continuação do famoso (ou infame como eu diria agora, considerando seu absurdo implacável) Godel, Escher, Bach (1980). Assim como seu antecessor, preocupa-se em grande parte com os fundamentos da inteligência artificial, mas é composto principalmente por histórias, ensaios e extratos de uma ampla gama de pessoas, com alguns ensaios de DH e DD e comentários para todas as contribuições de um ou outro deles. Para minhas opiniões (...) sobre as tentativas de D e H para entender o comportamento, consulte minha revisão de "Eu sou um Ciclo Estranho" de Hofstadter e outros escritos. Muito disso é muito reducionista no tom (ou seja, " explica " tudo em termos de física/matemática e nega " realidade " da psicologia), mas como Hofstadter observa, as equações de campo quântico de uma molécula de água são muito complexas para resolver (e assim é um vácuo)e ninguém tem uma pista sobre como explicar a forma como as propriedades emergem (por exemplo, propriedades de água de H2 e 02) à medida que você sobe a escala do vácuo para o cérebro, então o reducionismo, como o holismo, requer muita fé e, de fato, é incoerente, pois não se pode sequer enquadrar seus argumentos sem pressupor da coerência do pensamento de ordem superior. Problemas adicionais para o reducionismo são o princípio da incerteza, o caos (por exemplo, não há como prever como uma pilha de areia cairá), a incompletude logicamente necessária da matemática (e todo o pensamento) e a impossibilidade de combinar comportamentos de ordem superior (por exemplo, linguagem) com fenômenos de ordem inferior (por exemplo, bioquímica), ou seja, a explosão combinatória ou subdeterminação. Em suma, embora existam muitos comentários interessantes, como quase todos escrever sobre comportamento, este trabalho não tem qualquer relato coerente da estrutura lógica da racionalidade, que eu tento dar em meus escritos. Aqueles que desejam um quadro até à data detalhado para o comportamento humano da opinião moderna dos dois sistemas consultar meu livros Falando Macacos 3ª Ed (2019), A Estrutura Lógica da Filosofia, Psicologia, Mente e Linguagem em Ludwig Wittgenstein e John Searle 2a Ed (2019), Suicídio Pela Democracia,4aEd(2019), Entendendo as Conexões entre Ciência, Filosofia, Psicologia, Religião, Política e Economia Artigos e Análises 2006-2019 (2020), Ilusões Utópicas Suicidas no Século 21 6a Ed (2020), A Estrutura Lógica do Comportamento Humano (2019), e A Estrutura Lógica da Consciência (2019) y outras. (shrink)
Michel Foucault defends the thesis that man is a recent invention and with a foretold death. In this article, we will present a study that Foucault carried out on Kant’s Anthropology from a Pragmatic Point of View, and his complementary thesis, as the basis of the thesis of the birth and death of the subject in modernity. Foucault’s philosophy will be presented as a chapter of Kantianism, a critique of anthropological reason that is rooted in Heidegger’s study on Kant. In (...) addition to identifying what influenced the creation of these philosophies, we seek to understand the complex anthropological problems that overlap contemporary philosophy and psychoanalysis. Keywords: Foucault; Kant; Heidegger; death of the subject; anthropology. (shrink)
This article aims to grope how Paul Veyne's thought operates from his interlocutors. For this, seeking to clarify the “methodological” issues of his historiographic making and his aesthetic bases, a series of relations will be introduced between the mentioned author and Nietzsche, Deleuze, Foucault, and Borges. Starting from Nietzsche, in the first part, entitled “Veyne and the relational methodology”, it will be justified how it is possible to make a historiographical theory that merges philosophy and anthropology in its constitution. In (...) the second half, called “Mental categories of relational mediation in Veyne”, the possible aesthetic bases that operate within Veynian thought will be presented –for this purpose, mainly studies on the Baroque will be used. (shrink)
The purpose of this article is to present and analyze the relationship between the concept of State (Staat) and the concept of freedom (Freiheit) as expounded by the German philosopher Georg Wilhelm Friedrich Hegel (1770-1831) in his Lectures on Philosophy of History (Vorlesungen über die Philosophie der Geschichte), published posthumously for the first time in 1837. The article’s exposition will generally follow the second chapter of the work in question – called the Determination of the Spirit in Universal History (Bestimmung (...) der Geistes in der Weltgeschichte) – and more precisely, the subchapter The form of its realization (Die Gestalt dieser Realisierung). (shrink)
John Locke (1632 – 1704) is one of the thinkers of Enlightenment philosophy. His moral views are a reflection of the natural understanding of religion formed by the Enlightenment philosophy. The purpose of natural religion is to build a religion that is separate from the traditional view and historical religious understanding. Advocates of this view necessarily base the existence of God and adopt a deist view. Locke advocated a similar idea, and because he was an empiricist thinker, he wanted to (...) base his understanding of morality and God, which he emphasized in nature. He thinks there is a law in nature. This law of nature can be discovered with the light of nature, man can live ethically by reaching this law and reach the existence of God. But Locke cannot explain and obscure what he means here with the light of nature in his Essays on the Law of Nature. This natural light is sometimes an innate ability, sometimes mind, and sometimes sensory data. Sometimes he thinks of these three as complementary elements. After all, the combination of these three is known as the law of nature, and people have to comply with the moral principles that are necessarily caused by the knowledge of the law of nature. In this sense, Locke, who also restricts human liberty, reaches a deterministic understanding of morality, human and existence depending on nature. Emile Boutroux (d. 1921) criticized this determinist view. (shrink)
In the Bṛhadāraṇyaka Upaniṣad, one of the principal Upaniṣads, we find a venerable and famous story where the god Prajāpati separately instructs three groups of people (gods, humans, and demons) simply by uttering the syllable “Da.” In this paper, our concern is not with ethics but theories of meaning and interpretation: How can all divergent interpretations of a single expression be correct, and, indeed, endorsed by the speaker? As an exercise in cross-cultural philosophical reflection, we consider some of the leading (...) modern theories of meaning—those of Grice, Quine, and Davidson—in order to see if the Upaniṣadic story receives a natural home in any of them. We conclude that the story is best understood through Grice’s theory of meaning rather than Quine’s or Davidson’s. (shrink)
Der Rezension versucht den Versuch des Autors zu bewerten, die Möglichkeiten und Grenzen gegenwärtigen philosophischen Systemdenkens aufzuzeigen. Dabei wird einerseits der Ansatz sowie die Auswahl der Schwerpunkte in die Kritik genommen, während andererseits eine Einordnung dessen erfolgt, was der Autor hätte untersuchen können, um seine vorgeschlagene Idee in die richtige Richtung zu lenken.
In dieser Rezension geht es um eine Bewertung des Versuchs des Autors, die Möglichkeiten und Grenzen eines philosophischen Systems in der Gegenwart aufzuzeigen. Nach einer Einordnung der vom Autor vorgestellten Thesen folgt eine Erläuterung von Hegels Dialektik der Zeit, die für eine adäquate Einordnung der zeitgenössischen Philosophie notwendig gewesen wäre.
In the following pages, the main proposal is to indicate how Max Weber has dialogued directly with some prerogatives from Kant’s Critic of practical Reason, following the reception of Wilhelm Windelband’s concept of “responsibility” (Verantwortlichkeit) and his theory of values. In sight of these influences, in this paper will be argued how Weber adherence to the neo-Kantian value concept has made possible a review on the categorical imperatives, which has turned his reading from Kantian philosophy to the proposal of an (...) antinomy between the ethic of conviction and the ethic of responsibility inside the Kantian moral maxims. -/- Nessa abordagem será proposto que a recepção de Max Weber do conceito de “responsabilidade” (Verantwortlichkeit) de Wilhelm Windelband, bem como sua revisão de certos elementos da filosofia dos valores neokantiana do sudoeste da Alemanha, permitiram que Weber estabelecesse um diálogo mais direto com os pressupostos de Kant em sua Crítica da razão prática. Em vista dessas influências, o presente artigo argumentará que a maneira como Weber revisa os imperativos categóricos direcionou sua compreensão da filosofia kantiana pelo conceito de “valores”, o permitindo ainda, propor a existência de uma antinomia entre a ética da convicção e da responsabilidade no interior das máximas morais kantianas. (shrink)
[GER] Michael Lewin geht es in seinem Buch nicht nur um philosophiehistorische Perspektiven der Kant- und Fichte-Forschung, sondern ebenso sehr um die Sache selbst: das Konzept der Vernunft im engeren Sinne als ein potenziell wohlbegründetes und in zeitgenössischen Kontexten fortführbares Forschungsprogramm. Dabei sind verschiedene, in einer Reihe der Reflexion stehende Theoriegefüge bewusst zu machen, die sich aus den vielfältigen Arten und Funktionen der Ideen ergeben, mit deren Hilfe die Vernunft das Verstehen und Wollen steuert und selbstreflexiv wird. Nach der Untersuchung (...) von sieben Ideenarten bei Kant und ihrer von der Tathandlung (der Selbstsetzung der reinen Vernunft) ausgehenden Systematisierung bei Fichte wird die Frage erörtert, ob, wie und unter welchen Bedingungen sich ein solches Projekt inmitten alternativer Vernunftkonzepte, basaler und radikaler Einwände sowie postidealistischer Vernunftkritik als ein kooperations- und konkurrenzfähiges Unternehmen bewähren kann. Dazu entwickelt der Autor unter dem Stichpunkt „reflektierter Perspektivismus“ das Programm einer perspektivistischen Metaphilosophie, die den Hintergrundparametern hinter den philosophischen Positionierungen – forschungsprogrammatische Festlegungen (in Anlehnung an Imre Lakatos), Ansprüche und (Wissens-)Ziele – nachspürt und dadurch die Möglichkeiten und Grenzen der verschiedenen Projekte offenlegt. ||| -/- [ENG] Michael Lewin’s book is not only concerned with philosophical-historical perspectives of research on Kant and Fichte, but also with the matter itself: the concept of reason in the narrower sense as a potentially well-grounded research program that can be continued in contemporary contexts. In this, various theoretical structures related to the manifold types and functions of ideas are analyzed, by means of which reason controls the understanding and will, and becomes selfreflexive. After the examination of seven types of ideas in Kant and their systematization in Fichte’s work based on the fact-act (the self-positing of pure reason), the question is discussed as to whether, how and under what conditions such a project can prove itself as a cooperative and competitive enterprise in the midst of alternative concepts of reason, fundamental and radical objections and post-idealistic criticism of reason. To this end, the author develops the program of a perspectivistic metaphilosophy under the heading of »reflected perspectivism«, which traces the background parameters behind the philosophical positionings – research-programmatic determinations (following Imre Lakatos), demands and (knowledge) goals – and thereby reveals the possibilities and limits of the various projects. (shrink)
The book, Autonomous Agents: From Self-Control to Autonomy (1995), by Alfred R. Mele, deals primarily with two main concepts, “self-control” and “individual autonomy,” and the relationship between them. The book is divided into two parts: (1) a view of self-control, the self-controlled person, and behaviour manifesting self-control, and (2) a view of personal autonomy, the autonomous person, and autonomous behaviour. Mele (Ibid.) defines self-control as the opposite of the Aristotelian concept of akrasia, or the contrary of akrasia, which implies weakness (...) of will, incontinence, or lack of self-control—the state of mind in which one acts against one’s better judgement. According to Mele, the concept of self-control can be approached from two perspectives: (a) how self-control affects human behaviour, and (b) how self-control-associated behavior can enhance our understanding of ‘personal autonomy’ and ‘autonomous behaviour’—personal autonomy requires self-control, and autonomous persons and autonomous behaviour are naturally found together. Therefore, I might say that self-control is essential to enhancing one’s autonomy. -/- In part I, we find an account of self-control where Mele argues that even an ideally self-controlled person might lack autonomy. In part II, Mele gives an explicit account of autonomy and explains what must be added to self-control to achieve autonomy. This is the pivotal claim made by Mele (dismantling the intuitively connected notions of self-control and autonomy). (shrink)
The article examines the following interpretive hypothesis: from the formulation of the concept of “precariousness” in Precarious Life (2004), Judith Butler's thought undergoes a inflection towards a ethical-political foundation normatively understood and previously rejected by the author as evidenced in her debate with Nancy Fraser and Seyla Benhabib in the 1990s. It is therefore a matter of questioning the impact of this theoretical mutation on the notions of universal and subject that are embedded in the argumentative lines of the author’s (...) texts, thus establishing “precariousness” and “co-dependence” as ethical-political conditions that should guide political guidelines aimed at making life possible and viable. The article is divided into three moments: 1) the universal denied in form and content; 2) The universal affirmed in its form, but denied in its content; 3) the universal materially and formally affirmed. It will also address the different notions of subject that emerge from each of these three understandings of universal. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.