Results for 'Turing machine model'

999 found
Order:
  1. Turing Machines and Semantic Symbol Processing: Why Real Computers Don’t Mind Chinese Emperors.Richard Yee - 1993 - Lyceum 5 (1):37-59.
    Philosophical questions about minds and computation need to focus squarely on the mathematical theory of Turing machines (TM's). Surrogate TM's such as computers or formal systems lack abilities that make Turing machines promising candidates for possessors of minds. Computers are only universal Turing machines (UTM's)—a conspicuous but unrepresentative subclass of TM. Formal systems are only static TM's, which do not receive inputs from external sources. The theory of TM computation clearly exposes the failings of two prominent critiques, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. ‘The Action of the Brain’. Machine Models and Adaptive Functions in Turing and Ashby.Hajo Greif - 2017 - In Vincent C. Müller (ed.), Philosophy and theory of artificial intelligence 2017. Berlin: Springer. pp. 24-35.
    Given the personal acquaintance between Alan M. Turing and W. Ross Ashby and the partial proximity of their research fields, a comparative view of Turing’s and Ashby’s work on modelling “the action of the brain” (letter from Turing to Ashby, 1946) will help to shed light on the seemingly strict symbolic/embodied dichotomy: While it is clear that Turing was committed to formal, computational and Ashby to material, analogue methods of modelling, there is no straightforward mapping of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. From Analog to Digital Computing: Is Homo sapiens’ Brain on Its Way to Become a Turing Machine?Antoine Danchin & André A. Fenton - 2022 - Frontiers in Ecology and Evolution 10:796413.
    The abstract basis of modern computation is the formal description of a finite state machine, the Universal Turing Machine, based on manipulation of integers and logic symbols. In this contribution to the discourse on the computer-brain analogy, we discuss the extent to which analog computing, as performed by the mammalian brain, is like and unlike the digital computing of Universal Turing Machines. We begin with ordinary reality being a permanent dialog between continuous and discontinuous worlds. So (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Can machines be people? Reflections on the Turing triage test.Robert Sparrow - 2012 - In Patrick Lin, Keith Abney & George Bekey (eds.), Robot Ethics: The Ethical and Social Implications of Robotics. MIT Press. pp. 301-315.
    In, “The Turing Triage Test”, published in Ethics and Information Technology, I described a hypothetical scenario, modelled on the famous Turing Test for machine intelligence, which might serve as means of testing whether or not machines had achieved the moral standing of people. In this paper, I: (1) explain why the Turing Triage Test is of vital interest in the context of contemporary debates about the ethics of AI; (2) address some issues that complexify the application (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  5. Turing Test, Chinese Room Argument, Symbol Grounding Problem. Meanings in Artificial Agents (APA 2013).Christophe Menant - 2013 - American Philosophical Association Newsletter on Philosophy and Computers 13 (1):30-34.
    The Turing Test (TT), the Chinese Room Argument (CRA), and the Symbol Grounding Problem (SGP) are about the question “can machines think?” We propose to look at these approaches to Artificial Intelligence (AI) by showing that they all address the possibility for Artificial Agents (AAs) to generate meaningful information (meanings) as we humans do. The initial question about thinking machines is then reformulated into “can AAs generate meanings like humans do?” We correspondingly present the TT, the CRA and the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  6. Quantum Computer: Quantum Model and Reality.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (17):1-7.
    Any computer can create a model of reality. The hypothesis that quantum computer can generate such a model designated as quantum, which coincides with the modeled reality, is discussed. Its reasons are the theorems about the absence of “hidden variables” in quantum mechanics. The quantum modeling requires the axiom of choice. The following conclusions are deduced from the hypothesis. A quantum model unlike a classical model can coincide with reality. Reality can be interpreted as a quantum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Minimal models of consciousness: Understanding consciousness in human and non-human systems.Wanja Wiese - manuscript
    Should models of consciousness be detailed _mechanistic_ models of particular types of systems, or should they be _minimal_ models that abstract away from the underlying mechanistic details and provide generalisations? Detailed mechanistic models may afford a complete and precise account of consciousness in human beings and other, physiologically similar mammals. But they do not provide a good model of consciousness in other animals, such as non-vertebrates, let alone artificial systems. Minimal models can be applicable to a wide range of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. A Mathematical Model of Quantum Computer by Both Arithmetic and Set Theory.Vasil Penchev - 2020 - Information Theory and Research eJournal 1 (15):1-13.
    A practical viewpoint links reality, representation, and language to calculation by the concept of Turing (1936) machine being the mathematical model of our computers. After the Gödel incompleteness theorems (1931) or the insolvability of the so-called halting problem (Turing 1936; Church 1936) as to a classical machine of Turing, one of the simplest hypotheses is completeness to be suggested for two ones. That is consistent with the provability of completeness by means of two independent (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. The x86 language has Turing Complete memory access.P. Olcott - manuscript
    An abstract machine having a tape head that can be advanced in 0 to 0x7FFFFFFF increments an unlimited number of times specifies a model of computation that has access to unlimited memory. The technical name for memory addressing based on displacement from the current memory address is relative addressing.
    Download  
     
    Export citation  
     
    Bookmark  
  10. Laws of Form and the Force of Function: Variations on the Turing Test.Hajo Greif - 2012 - In Vincent C. Müller & Aladdin Ayesh (eds.), Revisiting Turing and His Test: Comprehensiveness, Qualia, and the Real World. AISB. pp. 60-64.
    This paper commences from the critical observation that the Turing Test (TT) might not be best read as providing a definition or a genuine test of intelligence by proxy of a simulation of conversational behaviour. Firstly, the idea of a machine producing likenesses of this kind served a different purpose in Turing, namely providing a demonstrative simulation to elucidate the force and scope of his computational method, whose primary theoretical import lies within the realm of mathematics rather (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. On the Claim that a Table-Lookup Program Could Pass the Turing Test.Drew McDermott - 2014 - Minds and Machines 24 (2):143-188.
    The claim has often been made that passing the Turing Test would not be sufficient to prove that a computer program was intelligent because a trivial program could do it, namely, the “Humongous-Table (HT) Program”, which simply looks up in a table what to say next. This claim is examined in detail. Three ground rules are argued for: (1) That the HT program must be exhaustive, and not be based on some vaguely imagined set of tricks. (2) That the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  12. The Turing Machine on the Dissecting Table.Jana Horáková - 2013 - Teorie Vědy / Theory of Science 35 (2):269-288.
    Since the beginning of the twenty-first century there has been an increasing awareness that software rep- resents a blind spot in new media theory. The growing interest in software also influences the argument in this paper, which sets out from the assumption that Alan M. Turing's concept of the universal machine, the first theoretical description of a computer program, is a kind of bachelor machine. Previous writings based on a similar hypothesis have focused either on a comparison (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Cosmos is a (fatalistic) state machine: Objective theory (cosmos, objective reality, scientific image) vs. Subjective theory (consciousness, subjective reality, manifest image).Xiaoyang Yu - manuscript
    As soon as you believe an imagination to be nonfictional, this imagination becomes your ontological theory of the reality. Your ontological theory (of the reality) can describe a system as the reality. However, actually this system is only a theory/conceptual-space/imagination/visual-imagery of yours, not the actual reality (i.e., the thing-in-itself). An ontological theory (of the reality) actually only describes your (subjective/mental) imagination/visual-imagery/conceptual-space. An ontological theory of the reality, is being described as a situation model (SM). There is no way to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. A Turing Machine for Exponential Function.P. M. F. Lemos - manuscript
    This is a Turing Machine which computes the exponential function f(x,y) = xˆy. Instructions format and operation of this machine are intended to best reflect the basic conditions outlined by Alan Turing in his On Computable Numbers, with an Application to the Entscheidungsproblem (1936), using the simplest single-tape and single-symbol version, in essence due to Kleene (1952) and Carnielli & Epstein (2008). This machine is composed by four basic task machines: one which checks if exponent (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Is there any real substance to the claims for a 'new computationalism'?Alberto Hernandez-Espinosa, Hernandez-Quiroz Francisco & Zenil Hector - forthcoming - In Hernandez-Espinosa Alberto, Francisco Hernandez-Quiroz & Hector Zenil (eds.), CiE Computability in Europe 2017. Springer Verlag.
    'Computationalism' is a relatively vague term used to describe attempts to apply Turing's model of computation to phenomena outside its original purview: in modelling the human mind, in physics, mathematics, etc. Early versions of computationalism faced strong objections from many (and varied) quarters, from philosophers to practitioners of the aforementioned disciplines. Here we will not address the fundamental question of whether computational models are appropriate for describing some or all of the wide range of processes that they have (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Observability of Turing Machines: a refinement of the theory of computation.Yaroslav Sergeyev & Alfredo Garro - 2010 - Informatica 21 (3):425–454.
    The Turing machine is one of the simple abstract computational devices that can be used to investigate the limits of computability. In this paper, they are considered from several points of view that emphasize the importance and the relativity of mathematical languages used to describe the Turing machines. A deep investigation is performed on the interrelations between mechanical computations and their mathematical descriptions emerging when a human (the researcher) starts to describe a Turing machine (the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  17. Philosophy and Science, the Darwinian-Evolved Computational Brain, a Non-Recursive Super-Turing Machine & Our Inner-World-Producing Organ.Hermann G. W. Burchard - 2016 - Open Journal of Philosophy 6 (1):13-28.
    Recent advances in neuroscience lead to a wider realm for philosophy to include the science of the Darwinian-evolved computational brain, our inner world producing organ, a non-recursive super- Turing machine combining 100B synapsing-neuron DNA-computers based on the genetic code. The whole system is a logos machine offering a world map for global context, essential for our intentional grasp of opportunities. We start from the observable contrast between the chaotic universe vs. our orderly inner world, the noumenal cosmos. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  18. Representation and Reality by Language: How to make a home quantum computer?Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (34):1-14.
    A set theory model of reality, representation and language based on the relation of completeness and incompleteness is explored. The problem of completeness of mathematics is linked to its counterpart in quantum mechanics. That model includes two Peano arithmetics or Turing machines independent of each other. The complex Hilbert space underlying quantum mechanics as the base of its mathematical formalism is interpreted as a generalization of Peano arithmetic: It is a doubled infinite set of doubled Peano arithmetics (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Nature as a Network of Morphological Infocomputational Processes for Cognitive Agents.Gordana Dodig Crnkovic - 2017 - Eur. Phys. J. Special Topics 226 (2):181-195.
    This paper presents a view of nature as a network of infocomputational agents organized in a dynamical hierarchy of levels. It provides a framework for unification of currently disparate understandings of natural, formal, technical, behavioral and social phenomena based on information as a structure, differences in one system that cause the differences in another system, and computation as its dynamics, i.e. physical process of morphological change in the informational structure. We address some of the frequent misunderstandings regarding the natural/morphological computational (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  20. Single-tape and multi-tape Turing machines through the lens of the Grossone methodology.Yaroslav Sergeyev & Alfredo Garro - 2013 - Journal of Supercomputing 65 (2):645-663.
    The paper investigates how the mathematical languages used to describe and to observe automatic computations influence the accuracy of the obtained results. In particular, we focus our attention on Single and Multi-tape Turing machines which are described and observed through the lens of a new mathematical language which is strongly based on three methodological ideas borrowed from Physics and applied to Mathematics, namely: the distinction between the object (we speak here about a mathematical object) of an observation and the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21. Wolpert, Chaitin und Wittgenstein über Unmöglichkeit, Unvollständigkeit, das Lügner-Paradoxon, Theismus, die Grenzen der Berechnung, ein nicht-quantenmechanisches Unsicherheitsprinzip und das Universum als Computer – der ultimative Satz in Turing Machine Theory (überarbeitet 2019).Michael Richard Starks - 2020 - In Willkommen in der Hölle auf Erden: Babys, Klimawandel, Bitcoin, Kartelle, China, Demokratie, Vielfalt, Dysgenie, Gleichheit, Hacker, Menschenrechte, Islam, Liberalismus, Wohlstand, Internet, Chaos, Hunger, Krankheit, Gewalt, Künstliche Intelligenz, Krieg. Reality Press. pp. 186-190.
    Ich habe viele kürzliche Diskussionen über die Grenzen der Berechnung und das Universum als Computer gelesen, in der Hoffnung, einige Kommentare über die erstaunliche Arbeit des Polymath Physikers und Entscheidungstheoretikers David Wolpert zu finden, aber habe kein einziges Zitat gefunden und so präsentiere ich diese sehr kurze Zusammenfassung. Wolpert bewies einige verblüffende Unmöglichkeit oder Unvollständigkeit Theoreme (1992 bis 2008-siehe arxiv dot org) über die Grenzen der Schlussfolgerung (Berechnung), die so allgemein sind, dass sie unabhängig von dem Gerät, das die Berechnung, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Can machines think? The controversy that led to the Turing test.Bernardo Gonçalves - 2023 - AI and Society 38 (6):2499-2509.
    Turing’s much debated test has turned 70 and is still fairly controversial. His 1950 paper is seen as a complex and multilayered text, and key questions about it remain largely unanswered. Why did Turing select learning from experience as the best approach to achieve machine intelligence? Why did he spend several years working with chess playing as a task to illustrate and test for machine intelligence only to trade it out for conversational question-answering in 1950? Why (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  23. David Wolpert on impossibility, incompleteness, the liar paradox, the limits of computation, a non-quantum mechanical uncertainty principle and the universe as computer—the ultimate theorem in Turing Machine Theory.Michael Starks - manuscript
    I have read many recent discussions of the limits of computation and the universe as computer, hoping to find some comments on the amazing work of polymath physicist and decision theorist David Wolpert but have not found a single citation and so I present this very brief summary. Wolpert proved some stunning impossibility or incompleteness theorems (1992 to 2008-see arxiv.org) on the limits to inference (computation) that are so general they are independent of the device doing the computation, and even (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Wolpert, Chaitin and Wittgenstein on impossibility, incompleteness, the liar paradox, theism, the limits of computation, a non-quantum mechanical uncertainty principle and the universe as computer—the ultimate theorem in Turing Machine Theory (revised 2019).Michael Starks - 2019 - In Suicidal Utopian Delusions in the 21st Century -- Philosophy, Human Nature and the Collapse of Civilization-- Articles and Reviews 2006-2019 4th Edition Michael Starks. Las Vegas, NV USA: Reality Press. pp. 294-299.
    I have read many recent discussions of the limits of computation and the universe as computer, hoping to find some comments on the amazing work of polymath physicist and decision theorist David Wolpert but have not found a single citation and so I present this very brief summary. Wolpert proved some stunning impossibility or incompleteness theorems (1992 to 2008-see arxiv dot org) on the limits to inference (computation) that are so general they are independent of the device doing the computation, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Wolpert, Chaitin et Wittgenstein sur l’impossibilité, l’incomplétude, le paradoxe menteur, le théisme, les limites du calcul, un principe d’incertitude mécanique non quantique et l’univers comme ordinateur, le théorème ultime dans Turing Machine Theory (révisé 2019).Michael Richard Starks - 2020 - In Bienvenue en Enfer sur Terre : Bébés, Changement climatique, Bitcoin, Cartels, Chine, Démocratie, Diversité, Dysgénique, Égalité, Pirates informatiques, Droits de l'homme, Islam, Libéralisme, Prospérité, Le Web, Chaos, Famine, Maladie, Violence, Intellige. Las Vegas, NV , USA: Reality Press. pp. 185-189.
    J’ai lu de nombreuses discussions récentes sur les limites du calcul et de l’univers en tant qu’ordinateur, dans l’espoir de trouver quelques commentaires sur le travail étonnant du physicien polymathe et théoricien de la décision David Wolpert, mais n’ont pas trouvé une seule citation et je présente donc ce résumé très bref. Wolpert s’est avéré quelques théoricaux d’impossibilité ou d’incomplétude renversants (1992 à 2008-voir arxiv dot org) sur les limites de l’inférence (computation) qui sont si généraux qu’ils sont indépendants de (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. असंभव, अपूर्णता, अपूर्णता, झूठा विरोधाभास, सिद्धांतवाद, गणना की सीमा, एक गैर-क्वांटम यांत्रिक अनिश्चितता सिद्धांत और कंप्यूटर के रूप में ब्रह्मांड पर Wolpert, Chaitin और Wittgenstein ट्यूरिंग मशीन थ्योरी में अंतिम प्रमेय --Wolpert, Chaitin and Wittgenstein on impossibility, incompleteness, the liar paradox, theism, the limits of computation, a non-quantum mechanical uncertainty principle and the universe as computer—the ultimate theorem in Turing Machine Theory (संशोधित 2019).Michael Richard Starks - 2020 - In पृथ्वी पर नर्क में आपका स्वागत है: शिशुओं, जलवायु परिवर्तन, बिटकॉइन, कार्टेल, चीन, लोकतंत्र, विविधता, समानता, हैकर्स, मानव अधिकार, इस्लाम, उदारवाद, समृद्धि, वेब, अराजकता, भुखमरी, बीमारी, हिंसा, कृत्रिम बुद्धिमत्ता, युद्ध. Ls Vegas, NV USA: Reality Press. pp. 215-220.
    मैं कंप्यूटर के रूप में गणना और ब्रह्मांड की सीमा के कई हाल ही में चर्चा पढ़ लिया है, polymath भौतिक विज्ञानी और निर्णय सिद्धांतकार डेविड Wolpert के अद्भुत काम पर कुछ टिप्पणी खोजने की उम्मीद है, लेकिन एक भी प्रशस्ति पत्र नहीं मिला है और इसलिए मैं यह बहुत संक्षिप्त मौजूद सारांश. Wolpert कुछ आश्चर्यजनक असंभव या अधूरापन प्रमेयों साबित कर दिया (1992 से 2008-देखें arxiv dot org) अनुमान के लिए सीमा पर (कम्प्यूटेशन) कि इतने सामान्य वे गणना कर (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Turing on the integration of human and machine intelligence.S. G. Sterrett - 2014
    Abstract Philosophical discussion of Alan Turing’s writings on intelligence has mostly revolved around a single point made in a paper published in the journal Mind in 1950. This is unfortunate, for Turing’s reflections on machine (artificial) intelligence, human intelligence, and the relation between them were more extensive and sophisticated. They are seen to be extremely well-considered and sound in retrospect. Recently, IBM developed a question-answering computer (Watson) that could compete against humans on the game show Jeopardy! There (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  28. Algebraic structures of neutrosophic triplets, neutrosophic duplets, or neutrosophic multisets. Volume I.Florentin Smarandache, Xiaohong Zhang & Mumtaz Ali - 2018 - Basel, Switzerland: MDPI. Edited by Florentin Smarandache, Xiaohong Zhang & Mumtaz Ali.
    The topics approached in the 52 papers included in this book are: neutrosophic sets; neutrosophic logic; generalized neutrosophic set; neutrosophic rough set; multigranulation neutrosophic rough set (MNRS); neutrosophic cubic sets; triangular fuzzy neutrosophic sets (TFNSs); probabilistic single-valued (interval) neutrosophic hesitant fuzzy set; neutro-homomorphism; neutrosophic computation; quantum computation; neutrosophic association rule; data mining; big data; oracle Turing machines; recursive enumerability; oracle computation; interval number; dependent degree; possibility degree; power aggregation operators; multi-criteria group decision-making (MCGDM); expert set; soft sets; LA-semihypergroups; single (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Turing’s imitation game: still an impossible challenge for all machines and some judges.Luciano Floridi, Mariarosaria Taddeo & Matteo Turilli - 2009 - Minds and Machines 19 (1):145–150.
    An Evaluation of the 2008 Loebner Contest.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  30. Turing on the Integration of Human and Machine Intelligence.Susan Sterrett - 2017 - In Alisa Bokulich & Juliet Floyd (eds.), Philosophical Explorations of the Legacy of Alan Turing. Springer Verlag. pp. 323-338.
    Philosophical discussion of Alan Turing’s writings on intelligence has mostly revolved around a single point made in a paper published in the journal Mind in 1950. This is unfortunate, for Turing’s reflections on machine (artificial) intelligence, human intelligence, and the relation between them were more extensive and sophisticated. They are seen to be extremely well-considered and sound in retrospect. Recently, IBM developed a question-answering computer (Watson) that could compete against humans on the game show Jeopardy! There are (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  31. Descriptive Complexity, Computational Tractability, and the Logical and Cognitive Foundations of Mathematics.Markus Pantsar - 2020 - Minds and Machines 31 (1):75-98.
    In computational complexity theory, decision problems are divided into complexity classes based on the amount of computational resources it takes for algorithms to solve them. In theoretical computer science, it is commonly accepted that only functions for solving problems in the complexity class P, solvable by a deterministic Turing machine in polynomial time, are considered to be tractable. In cognitive science and philosophy, this tractability result has been used to argue that only functions in P can feasibly work (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  32. Machine Advisors: Integrating Large Language Models into Democratic Assemblies.Petr Špecián - manuscript
    Large language models (LLMs) represent the currently most relevant incarnation of artificial intelligence with respect to the future fate of democratic governance. Considering their potential, this paper seeks to answer a pressing question: Could LLMs outperform humans as expert advisors to democratic assemblies? While bearing the promise of enhanced expertise availability and accessibility, they also present challenges of hallucinations, misalignment, or value imposition. Weighing LLMs’ benefits and drawbacks compared to their human counterparts, I argue for their careful integration to augment (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Machine Learning-Based Diabetes Prediction: Feature Analysis and Model Assessment.Fares Wael Al-Gharabawi & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (9):10-17.
    This study employs machine learning to predict diabetes using a Kaggle dataset with 13 features. Our three-layer model achieves an accuracy of 98.73% and an average error of 0.01%. Feature analysis identifies Age, Gender, Polyuria, Polydipsia, Visual blurring, sudden weight loss, partial paresis, delayed healing, irritability, Muscle stiffness, Alopecia, Genital thrush, Weakness, and Obesity as influential predictors. These findings have clinical significance for early diabetes risk assessment. While our research addresses gaps in the field, further work is needed (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  34. “Fuzzy time”, a Solution of Unexpected Hanging Paradox (a Fuzzy interpretation of Quantum Mechanics).Farzad Didehvar - manuscript
    Although Fuzzy logic and Fuzzy Mathematics is a widespread subject and there is a vast literature about it, yet the use of Fuzzy issues like Fuzzy sets and Fuzzy numbers was relatively rare in time concept. This could be seen in the Fuzzy time series. In addition, some attempts are done in fuzzing Turing Machines but seemingly there is no need to fuzzy time. Throughout this article, we try to change this picture and show why it is helpful to (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  35. Understanding from Machine Learning Models.Emily Sullivan - 2022 - British Journal for the Philosophy of Science 73 (1):109-133.
    Simple idealized models seem to provide more understanding than opaque, complex, and hyper-realistic models. However, an increasing number of scientists are going in the opposite direction by utilizing opaque machine learning models to make predictions and draw inferences, suggesting that scientists are opting for models that have less potential for understanding. Are scientists trading understanding for some other epistemic or pragmatic good when they choose a machine learning model? Or are the assumptions behind why minimal models provide (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  36. Turing’s imitation game: still an impossible challenge for all machines and some judges––an evaluation of the 2008 Loebner contest. [REVIEW]Luciano Floridi & Mariarosaria Taddeo - 2009 - Minds and Machines 19 (1):145-150.
    An evaluation of the 2008 Loebner contest.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  37. Computers, Dynamical Systems, Phenomena, and the Mind.Marco Giunti - 1992 - Dissertation, Indiana University
    This work addresses a broad range of questions which belong to four fields: computation theory, general philosophy of science, philosophy of cognitive science, and philosophy of mind. Dynamical system theory provides the framework for a unified treatment of these questions. ;The main goal of this dissertation is to propose a new view of the aims and methods of cognitive science--the dynamical approach . According to this view, the object of cognitive science is a particular set of dynamical systems, which I (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  38. The mind as the software of the brain.Ned Block - 1995 - In Daniel N. Osherson, Lila Gleitman, Stephen M. Kosslyn, S. Smith & Saadya Sternberg (eds.), An Invitation to Cognitive Science, Second Edition, Volume 3. Cambridge MA: MIT Press. pp. 377-425.
    In this section, we will start with an influential attempt to define `intelligence', and then we will move to a consideration of how human intelligence is to be investigated on the machine model. The last part of the section will discuss the relation between the mental and the biological.
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  39. Is Classical Mathematics Appropriate for Theory of Computation?Farzad Didehvar - manuscript
    Throughout this paper, we are trying to show how and why our Mathematical frame-work seems inappropriate to solve problems in Theory of Computation. More exactly, the concept of turning back in time in paradoxes causes inconsistency in modeling of the concept of Time in some semantic situations. As we see in the first chapter, by introducing a version of “Unexpected Hanging Paradox”,first we attempt to open a new explanation for some paradoxes. In the second step, by applying this paradox, it (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  40. There is no general AI.Jobst Landgrebe & Barry Smith - 2020 - arXiv.
    The goal of creating Artificial General Intelligence (AGI) – or in other words of creating Turing machines (modern computers) that can behave in a way that mimics human intelligence – has occupied AI researchers ever since the idea of AI was first proposed. One common theme in these discussions is the thesis that the ability of a machine to conduct convincing dialogues with human beings can serve as at least a sufficient criterion of AGI. We argue that this (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. The Kochen - Specker theorem in quantum mechanics: a philosophical comment (part 1).Vasil Penchev - 2013 - Philosophical Alternatives 22 (1):67-77.
    Non-commuting quantities and hidden parameters – Wave-corpuscular dualism and hidden parameters – Local or nonlocal hidden parameters – Phase space in quantum mechanics – Weyl, Wigner, and Moyal – Von Neumann’s theorem about the absence of hidden parameters in quantum mechanics and Hermann – Bell’s objection – Quantum-mechanical and mathematical incommeasurability – Kochen – Specker’s idea about their equivalence – The notion of partial algebra – Embeddability of a qubit into a bit – Quantum computer is not Turing (...) – Is continuality universal? – Diffeomorphism and velocity – Einstein’s general principle of relativity – „Mach’s principle“ – The Skolemian relativity of the discrete and the continuous – The counterexample in § 6 of their paper – About the classical tautology which is untrue being replaced by the statements about commeasurable quantum-mechanical quantities – Logical hidden parameters – The undecidability of the hypothesis about hidden parameters – Wigner’s work and и Weyl’s previous one – Lie groups, representations, and psi-function – From a qualitative to a quantitative expression of relativity − psi-function, or the discrete by the random – Bartlett’s approach − psi-function as the characteristic function of random quantity – Discrete and/ or continual description – Quantity and its “digitalized projection“ – The idea of „velocity−probability“ – The notion of probability and the light speed postulate – Generalized probability and its physical interpretation – A quantum description of macro-world – The period of the as-sociated de Broglie wave and the length of now – Causality equivalently replaced by chance – The philosophy of quantum information and religion – Einstein’s thesis about “the consubstantiality of inertia ant weight“ – Again about the interpretation of complex velocity – The speed of time – Newton’s law of inertia and Lagrange’s formulation of mechanics – Force and effect – The theory of tachyons and general relativity – Riesz’s representation theorem – The notion of covariant world line – Encoding a world line by psi-function – Spacetime and qubit − psi-function by qubits – About the physical interpretation of both the complex axes of a qubit – The interpretation of the self-adjoint operators components – The world line of an arbitrary quantity – The invariance of the physical laws towards quantum object and apparatus – Hilbert space and that of Minkowski – The relationship between the coefficients of -function and the qubits – World line = psi-function + self-adjoint operator – Reality and description – Does a „curved“ Hilbert space exist? – The axiom of choice, or when is possible a flattening of Hilbert space? – But why not to flatten also pseudo-Riemannian space? – The commutator of conjugate quantities – Relative mass – The strokes of self-movement and its philosophical interpretation – The self-perfection of the universe – The generalization of quantity in quantum physics – An analogy of the Feynman formalism – Feynman and many-world interpretation – The psi-function of various objects – Countable and uncountable basis – Generalized continuum and arithmetization – Field and entanglement – Function as coding – The idea of „curved“ Descartes product – The environment of a function – Another view to the notion of velocity-probability – Reality and description – Hilbert space as a model both of object and description – The notion of holistic logic – Physical quantity as the information about it – Cross-temporal correlations – The forecasting of future – Description in separable and inseparable Hilbert space – „Forces“ or „miracles“ – Velocity or time – The notion of non-finite set – Dasein or Dazeit – The trajectory of the whole – Ontological and onto-theological difference – An analogy of the Feynman and many-world interpretation − psi-function as physical quantity – Things in the world and instances in time – The generation of the physi-cal by mathematical – The generalized notion of observer – Subjective or objective probability – Energy as the change of probability per the unite of time – The generalized principle of least action from a new view-point – The exception of two dimensions and Fermat’s last theorem. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Early and Later Putnam on Functionalism.Rajakishore Nath - 2005 - Sandhan: Journal of Centre for Studies in Civilizations 5 (2):53-64.
    In this paper, I shall review the reasons that let Putnam to propose functionalism and the reasons that subsequently led him to abandon it. I would like to discuss Putnam's views belonging to early Putnam and later Putnam. First, let us focus on early Putnam. Early Putnam tries to show the possibility of robot consciousness. As a functionalist, Putnam shows that the human being is an autonomous: that is, human mind is a computing machine. Later, he changes his position (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Wittgenstein and the Aesthetic Robot's Handicap.Julian Friedland - 2005 - Philosophical Investigations 28 (2):177-192.
    Ask most any cognitive scientist working today if a digital computational system could develop aesthetic sensibility and you will likely receive the optimistic reply that this remains an open empirical question. However, I attempt to show, while drawing upon the later Wittgenstein, that the correct answer is in fact available. And it is a negative a priori. It would seem, for example, that recent computational successes in generative AI and textual attribution, most notably those of Donald Foster (famed finder of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  44. “Fuzzy time”, from paradox to paradox (Does it solve the contradiction between Quantum Mechanics & General Relativity?).Farzad Didehvar - manuscript
    Although Fuzzy logic and Fuzzy Mathematics is a widespread subject and there is a vast literature about it, yet the use of Fuzzy issues like Fuzzy sets and Fuzzy numbers was relatively rare in time concept. This could be seen in the Fuzzy time series. In addition, some attempts are done in fuzzing Turing Machines but seemingly there is no need to fuzzy time. Throughout this article, we try to change this picture and show why it is helpful to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Could a machine think? Alan M. Turing vs. John R. Searle.Günther Mario - unknown
    “Could a machine think?” asks John R. Searle in his paper Minds, Brains, and Programs. He answers that “only a machine could think1, and only very special kinds of machines, namely brains.”2 The subject of this paper is the analysis of the aforementioned question through presentation of the symbol manipulation approach to intelligence and Searle's well-known criticism to this approach, namely the Chinese room argument. The examination of these issues leads to the systems reply of the Chinese room (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Algebraic structures of neutrosophic triplets, neutrosophic duplets, or neutrosophic multisets. Volume II.Florentin Smarandache, Xiaohong Zhang & Mumtaz Ali - 2019 - Basel, Switzerland: MDPI.
    The topics approached in this collection of papers are: neutrosophic sets; neutrosophic logic; generalized neutrosophic set; neutrosophic rough set; multigranulation neutrosophic rough set (MNRS); neutrosophic cubic sets; triangular fuzzy neutrosophic sets (TFNSs); probabilistic single-valued (interval) neutrosophic hesitant fuzzy set; neutro-homomorphism; neutrosophic computation; quantum computation; neutrosophic association rule; data mining; big data; oracle Turing machines; recursive enumerability; oracle computation; interval number; dependent degree; possibility degree; power aggregation operators; multi-criteria group decision-making (MCGDM); expert set; soft sets; LA-semihypergroups; single valued trapezoidal neutrosophic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. L'interaction humain-machine à la lumière de Turing et Wittgenstein.Charles Bodon - 2023 - Revue Implications Philosophiques.
    Nous proposons une étude de la constitution du sens dans l'interaction humain-machine à partir des définitions que donnent Turing et Wittgenstein à propos de la pensée, la compréhension, et de la décision. Nous voulons montrer par l'analyse comparative des proximités et différences conceptuelles entre les deux auteurs que le sens commun entre humains et machines se co-constitue dans et à partir de l'action, et que c'est précisément dans cette co-constitution que réside la valeur sociale de leur interaction. Il (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. My mind is not the universe: the map is not the territory.Xiaoyang Yu - manuscript
    In order to describe my findings/conclusions systematically, a new semantic system (i.e., a new language) has to be intentionally defined by the present article. Humans are limited in what they know by the technical limitation of their cortical language network. A reality is a situation model (SM). For example, the conventionally-called “physical reality” around my conventionally-called “physical body” is actually a “geometric” SM of my brain. The universe is an autonomous objective parallel computing automaton which evolves by itself automatically/unintentionally (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Connectionist models of mind: scales and the limits of machine imitation.Pavel Baryshnikov - 2020 - Philosophical Problems of IT and Cyberspace 2 (19):42-58.
    This paper is devoted to some generalizations of explanatory potential of connectionist approaches to theoretical problems of the philosophy of mind. Are considered both strong, and weaknesses of neural network models. Connectionism has close methodological ties with modern neurosciences and neurophilosophy. And this fact strengthens its positions, in terms of empirical naturalistic approaches. However, at the same time this direction inherits weaknesses of computational approach, and in this case all system of anticomputational critical arguments becomes applicable to the connectionst models (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Leibniz's "Possible Worlds".Yuesheng Liu - 2018 - Journal of Human Cognition 2 (1):42-51.
    The rigor and precision of Leibniz's "possible world" evolved into the concept of Turing machine, and with the birth of the first computer and the physical realization of Turing machine, human cognitive and intelligent activities were optimistically considered by cognitive scientists to be convertible into computational programs for simulation by machines. Cognitive science then formed the research agenda of "cognitive computationalism", and our Chinese scholars have responded to this general view that "the essence of cognition is (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 999