The Introduction outlines, in a concise way, the history of the Lvov-WarsawSchool – a most unique Polish school of worldwide renown, which pioneered trends combining philosophy, logic, mathematics and language. The author accepts that the beginnings of the School fall on the year 1895, when its founder Kazimierz Twardowski, a disciple of Franz Brentano, came to Lvov on his mission to organize a scientific circle. Soon, among the characteristic features of the School was its (...) serious approach towards philosophical studies and teaching of philosophy, dealing with philosophy and propagation of it as an intellectual and moral mission, passion for clarity and precision, as well as exchange of thoughts, and cooperation with representatives of other disciplines.The genesis is followed by a chronological presentation of the development of the School in the successive years. The author mentions all the key representatives of the School (among others, Ajdukiewicz, Lesniewski, Łukasiewicz,Tarski), accompanying the names with short descriptions of their achievements. The development of the School after Poland’s regaining independence in 1918 meant part of the members moving from Lvov to Warsaw, thus providing the other segment to the name – WarsawSchool of Logic. The author dwells longer on the activity of the School during the Interwar period – the time of its greatest prosperity, which ended along with the outbreak of World War 2. Attempts made after the War to recreate the spirit of the School are also outlined and the names of followers are listed accordingly. The presentation ends with some concluding remarks on the contribution of the School to contemporary developments in the fields of philosophy, mathematical logic or computer science in Poland. (shrink)
This is a collection of new investigations and discoveries on the history of a great tradition, the Lvov-WarsawSchool of logic , philosophy and mathematics, by the best specialists from all over the world. The papers range from historical considerations to new philosophical, logical and mathematical developments of this impressive School, including applications to Computer Science, Mathematics, Metalogic, Scientific and Analytic Philosophy, Theory of Models and Linguistics.
In this manuscript, published here for the first time, Tarski explores the concept of logical notion. He draws on Klein's Erlanger Programm to locate the logical notions of ordinary geometry as those invariant under all transformations of space. Generalizing, he explicates the concept of logical notion of an arbitrary discipline.
The aim of this paper is to show that the account of objective truth taken for granted by logicians at least since the publication in 1933 of Tarski’s “The Concept of Truth in Formalized Languages” arose out of a tradition of philosophical thinking initiated by Bolzano and Brentano. The paper shows more specifically that certain investigations of states of affairs and other objectual correlates of judging acts, investigations carried out by Austrian and Polish philosophers around the turn of the (...) century, formed part of the background of views that led to standard current accounts of the objectivity of truth. It thus lends support to speculations on the role of Brentano and his heirs in contemporary logical philosophy advanced by Jan Wolenski in his masterpiece of 1989 on the Logic and philosophy in the Lvov-WarsawSchool. (shrink)
The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in particular, Löwenheim (...) and Skolem. Itinerary V surveys the work in logic connected to the Hilbert school, and itinerary V deals specifically with consistency proofs and metamathematics, including the incompleteness theorems. Itinerary VII traces the development of intuitionistic and many-valued logics. Itinerary VIII surveys the development of semantical notions from the early work on axiomatics up to Tarski's work on truth. (shrink)
This paper discusses the history of the confusion and controversies over whether the definition of consequence presented in the 11-page 1936 Tarski consequence-definition paper is based on a monistic fixed-universe framework?like Begriffsschrift and Principia Mathematica. Monistic fixed-universe frameworks, common in pre-WWII logic, keep the range of the individual variables fixed as the class of all individuals. The contrary alternative is that the definition is predicated on a pluralistic multiple-universe framework?like the 1931 Gödel incompleteness paper. A pluralistic multiple-universe framework recognizes (...) multiple universes of discourse serving as different ranges of the individual variables in different interpretations?as in post-WWII model theory. In the early 1960s, many logicians?mistakenly, as we show?held the ?contrary alternative? that Tarski 1936 had already adopted a Gödel-type, pluralistic, multiple-universe framework. We explain that Tarski had not yet shifted out of the monistic, Frege?Russell, fixed-universe paradigm. We further argue that between his Principia-influenced pre-WWII Warsaw period and his model-theoretic post-WWII Berkeley period, Tarski's philosophy underwent many other radical changes. (shrink)
The influence of Kasimir Twardowski on modern Polish philosophy is all-pervasive. As is well known, almost all important 20th century Polish philosophers went through the hard training of his courses in Lvov. Twardowski instilled in his students an enduring concern for clarity and rigour. He taught them to regard philosophy as a collaborative effort, a matter of disciplined discussion and argument. And he encouraged them to work together with scientists from other disciplines — above all with psychologists, and also with (...) mathematicians — so that the Lvov school of philosophy would gradually evolve into the Warsawschool of logic. (shrink)
This book treats ancient logic: the logic that originated in Greece by Aristotle and the Stoics, mainly in the hundred year period beginning about 350 BCE. Ancient logic was never completely ignored by modern logic from its Boolean origin in the middle 1800s: it was prominent in Boole’s writings and it was mentioned by Frege and by Hilbert. Nevertheless, the first century of mathematical logic did not take it seriously enough to study the ancient logic texts. A renaissance in ancient (...) logic studies occurred in the early 1950s with the publication of the landmark Aristotle’s Syllogistic by Jan Łukasiewicz, Oxford UP 1951, 2nd ed. 1957. Despite its title, it treats the logic of the Stoics as well as that of Aristotle. Łukasiewicz was a distinguished mathematical logician. He had created many-valued logic and the parenthesis-free prefix notation known as Polish notation. He co-authored with Alfred Tarski’s an important paper on metatheory of propositional logic and he was one of Tarski’s the three main teachers at the University of Warsaw. Łukasiewicz’s stature was just short of that of the giants: Aristotle, Boole, Frege, Tarski and Gödel. No mathematical logician of his caliber had ever before quoted the actual teachings of ancient logicians. -/- Not only did Łukasiewicz inject fresh hypotheses, new concepts, and imaginative modern perspectives into the field, his enormous prestige and that of the WarsawSchool of Logic reflected on the whole field of ancient logic studies. Suddenly, this previously somewhat dormant and obscure field became active and gained in respectability and importance in the eyes of logicians, mathematicians, linguists, analytic philosophers, and historians. Next to Aristotle himself and perhaps the Stoic logician Chrysippus, Łukasiewicz is the most prominent figure in ancient logic studies. A huge literature traces its origins to Łukasiewicz. -/- This Ancient Logic and Its Modern Interpretations, is based on the 1973 Buffalo Symposium on Modernist Interpretations of Ancient Logic, the first conference devoted entirely to critical assessment of the state of ancient logic studies. (shrink)
Kotarbiński is one of the leading figures in the Lvov-Warsawschool of Polish philosophy. We summarize the development of Kotarbiński’s thought from his early nominalism and ‘pansomatistic reism’ to the later doctrine of ‘temporal phases’. We show that the surface clarity and simplicity of Kotarbiński’s writings mask a number of profound philosophical difficulties, connected above all with the problem of giving an adequate account of the truth of contingent (tensed) predications. The paper will examine in particular the attempts (...) to resolve these difficulties on the part of Leśniewski. It will continue with an account of the relations of Kotarbińskian reism to the ontology of things or entia realia defended by the later Brentano. Kotarbiński’s identification of Brentano as a precursor of reism is, it will be suggested, at least questionable, and the paper will conclude with a more careful attempt to situate the Brentanian and Kotarbińskian ontologies within the spectrum of competing ontological views. (shrink)
Gila Sher interviewed by Chen Bo: -/- I. Academic Background and Earlier Research: 1. Sher’s early years. 2. Intellectual influence: Kant, Quine, and Tarski. 3. Origin and main Ideas of The Bounds of Logic. 4. Branching quantifiers and IF logic. 5. Preparation for the next step. -/- II. Foundational Holism and a Post-Quinean Model of Knowledge: 1. General characterization of foundational holism. 2. Circularity, infinite regress, and philosophical arguments. 3. Comparing foundational holism and foundherentism. 4. A post-Quinean model of (...) knowledge. 5. Intellect and figuring out. 6. Comparing foundational holism with Quine’s holism. 7. Evaluation of Quine’s Philosophy -/- III. Substantive Theory of Truth and Relevant Issues: 1. Outline of Sher’s substantive theory of truth. 2. Criticism of deflationism and treatment of the Liar. 3. Comparing Sher’s substantive theory of truth with Tarski’s theory of truth. -/- IV. A New Philosophy of Logic and Comparison with Other Theories: 1. Foundational account of logic. 2. Standard of logicality, set theory and logic. 3. Psychologism, Hanna’s and Maddy’s conceptions of logic. 4. Quine’s theses about the revisability of logic. -/- V. Epilogue. (shrink)
We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. -/- We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. -/- We then adopt what may (...) be labelled a finitary, evidence-based, `agnostic' perspective and argue that Brouwerian atheism is merely a restricted perspective within the finitary agnostic perspective, whilst Hilbertian theism contradicts the finitary agnostic perspective. -/- We then consider the argument that Tarski's classic definitions permit an intelligence---whether human or mechanistic---to admit finitary, evidence-based, definitions of the satisfaction and truth of the atomic formulas of the first-order Peano Arithmetic PA over the domain N of the natural numbers in two, hitherto unsuspected and essentially different, ways. -/- We show that the two definitions correspond to two distinctly different---not necessarily evidence-based but complementary---assignments of satisfaction and truth to the compound formulas of PA over N. -/- We further show that the PA axioms are true over N, and that the PA rules of inference preserve truth over N, under both the complementary interpretations; and conclude some unsuspected constructive consequences of such complementarity for the foundations of mathematics, logic, philosophy, and the physical sciences. -/- . (shrink)
In the paper, various notions of the logical semiotic sense of linguistic expressions – namely, syntactic and semantic, intensional and extensional – are considered and formalised on the basis of a formal-logical conception of any language L characterised categorially in the spirit of certain Husserl's ideas of pure grammar, Leśniewski-Ajdukiewicz's theory of syntactic/semantic categories and, in accordance with Frege's ontological canons, Bocheński's and some of Suszko's ideas of language adequacy of expressions of L. The adequacy ensures their unambiguous syntactic and (...) semantic senses and mutual, syntactic and semantic correspondence guaranteed by the acceptance of a postulate of categorial compatibility of syntactic and semantic categories of expressions of L. This postulate defines the unification of these three logical senses. There are three principles of compositionality which follow from this postulate: one syntactic and two semantic ones already known to Frege. They are treated as conditions of homomorphism of partial algebra of L into algebraic models of L: syntactic, intensional and extensional. In the paper, they are applied to some expressions with quantifiers. Language adequacy connected with the logical senses described in the logical conception of language L is, obviously, an idealisation. The syntactic and semantic unambiguity of its expressions is not, of course, a feature of natural languages, but every syntactically and semantically ambiguous expression of such languages may be treated as a schema representing all of its interpretations that are unambiguous expressions. (shrink)
The syllogistic figures and moods can be taken to be argument schemata as can the rules of the Stoic propositional logic. Sentence schemata have been used in axiomatizations of logic only since the landmark 1927 von Neumann paper [31]. Modern philosophers know the role of schemata in explications of the semantic conception of truth through Tarski’s 1933 Convention T [42]. Mathematical logicians recognize the role of schemata in first-order number theory where Peano’s second-order Induction Axiom is approximated by Herbrand’s (...) Induction-Axiom Schema [23]. Similarly, in first-order set theory, Zermelo’s second-order Separation Axiom is approximated by Fraenkel’s first-order Separation Schema [17]. In some of several closely related senses, a schema is a complex system having multiple components one of which is a template-text or scheme-template, a syntactic string composed of one or more “blanks” and also possibly significant words and/or symbols. In accordance with a side condition the template-text of a schema is used as a “template” to specify a multitude, often infinite, of linguistic expressions such as phrases, sentences, or argument-texts, called instances of the schema. The side condition is a second component. The collection of instances may but need not be regarded as a third component. The instances are almost always considered to come from a previously identified language (whether formal or natural), which is often considered to be another component. This article reviews the often-conflicting uses of the expressions ‘schema’ and ‘scheme’ in the literature of logic. It discusses the different definitions presupposed by those uses. And it examines the ontological and epistemic presuppositions circumvented or mooted by the use of schemata, as well as the ontological and epistemic presuppositions engendered by their use. In short, this paper is an introduction to the history and philosophy of schemata. (shrink)
Alfred Tarski (1901--1983) is widely regarded as one of the two giants of twentieth-century logic and also as one of the four greatest logicians of all time (Aristotle, Frege and Gödel being the other three). Of the four, Tarski was the most prolific as a logician. The four volumes of his collected papers, which exclude most of his 19 monographs, span over 2500 pages. Aristotle's writings are comparable in volume, but most of the Aristotelian corpus is not about (...) logic, whereas virtually everything written by Tarski concerns logic more or less directly. There is no doubt that Tarski wrote more on logic than any other author; he started publishing on logic in 1921 at the age of 20 and continued until his death at the age of 82. Two of his works appeared posthumously [Hist. Philos. Logic 7 (1986), no. 2, 143--154; MR0868748 (88b:03010); Tarski and Givant, A formalization of set theory without variables, Amer. Math. Soc., Providence, RI, 1987; MR0920815 (89g:03012)]. Tarski's voluminous writings were widely scattered in numerous journals, some quite rare. It has been extremely difficult to study the development of Tarski's thought and to trace the interconnections and interdependence of his various papers. Thanks to the present collection all this has changed, and it is likely that the increased accessibility of Tarski's papers will have the effect of increasing Tarski's already enormous influence. (shrink)
Intuitionistic logic provides an elegant solution to the Sorites Paradox. Its acceptance has been hampered by two factors. First, the lack of an accepted semantics for languages containing vague terms has led even philosophers sympathetic to intuitionism to complain that no explanation has been given of why intuitionistic logic is the correct logic for such languages. Second, switching from classical to intuitionistic logic, while it may help with the Sorites, does not appear to offer any advantages when dealing with the (...) so-called paradoxes of higher-order vagueness. We offer a proposal that makes strides on both issues. We argue that the intuitionist’s characteristic rejection of any third alethic value alongside true and false is best elaborated by taking the normal modal system S4M to be the sentential logic of the operator ‘it is clearly the case that’. S4M opens the way to an account of higher-order vagueness which avoids the paradoxes that have been thought to infect the notion. S4M is one of the modal counterparts of the intuitionistic sentential calculus and we use this fact to explain why IPC is the correct sentential logic to use when reasoning with vague statements. We also show that our key results go through in an intuitionistic version of S4M. Finally, we deploy our analysis to reply to Timothy Williamson’s objections to intuitionistic treatments of vagueness. (shrink)
John Corcoran and George Boger. Aristotelian logic and Euclidean geometry. Bulletin of Symbolic Logic. 20 (2014) 131. -/- By an Aristotelian logic we mean any system of direct and indirect deductions, chains of reasoning linking conclusions to premises—complete syllogisms, to use Aristotle’s phrase—1) intended to show that their conclusions follow logically from their respective premises and 2) resembling those in Aristotle’s Prior Analytics. Such systems presuppose existence of cases where it is not obvious that the conclusion follows from the premises: (...) there must be something deductions can show. Corcoran calls a proposition that follows from given premises a hidden consequence of those premises if it is not obvious that the proposition follows from those premises. By a Euclidean geometry we mean an extended discourse beginning with basic premises—axioms, postulates, definitions—1) treating a universe of geometrical figures and 2) resembling Euclid’s Elements. There were Euclidean geometries before Euclid (fl. 300 BCE), even before Aristotle (384–322 BCE). Bochenski, Lukasiewicz, Patzig and others never new this or if they did they found it inconvenient to mention. Euclid shows no awareness of Aristotle. It is obvious today—as it should have been obvious in Euclid’s time, if anyone knew both—that Aristotle’s logic was insufficient for Euclid’s geometry: few if any geometrical theorems can be deduced from Euclid’s premises by means of Aristotle’s deductions. Aristotle’s writings don’t say whether his logic is sufficient for Euclidean geometry. But, there is not even one fully-presented example. However, Aristotle’s writings do make clear that he endorsed the goal of a sufficient system. Nevertheless, incredible as this is today, many logicians after Aristotle claimed that Aristotelian logics are sufficient for Euclidean geometries. This paper reviews and analyses such claims by Mill, Boole, De Morgan, Russell, Poincaré, and others. It also examines early contrary statements by Hintikka, Mueller, Smith, and others. Special attention is given to the argumentations pro or con and especially to their logical, epistemic, and ontological presuppositions. What methodology is necessary or sufficient to show that a given logic is adequate or inadequate to serve as the underlying logi of a given science. (shrink)
In his essay ‘“Wang’s Paradox”’, Crispin Wright proposes a solution to the Sorites Paradox (in particular, the form of it he calls the ‘Paradox of Sharp Boundaries’) that involves adopting intuitionistic logic when reasoning with vague predicates. He does not give a semantic theory which accounts for the validity of intuitionistic logic (and the invalidity of stronger logics) in that area. The present essay tentatively makes good the deficiency. By applying a theorem of Tarski, it shows that intuitionistic logic (...) is the strongest logic that may be applied, given certain semantic assumptions about vague predicates. The essay ends with an inconclusive discussion of whether those semantic assumptions should be accepted. (shrink)
Abu Nasr Muhammad Al-Farabi (870–950 AD), the second outstanding representative of the Muslim peripatetic after al Kindi (801–873 AD), was born in Turkestan about 870 AD. Al-Farabi’s studies commenced in Farab, then he travelled to Baghdad, where he studied logic with a Christian scholar named Yuhanna b. Hailan. Al-Farabi wrote numerous works dealing with almost every branch of science in the medieval world. In addition to a large number of books on logic and other sciences, he came to be known (...) as the “Second Teacher” (al-Mou’allim al-Thani), Aristotle being the first. One of Al-Farabi’s most important contributions was clarifying the func- tions of logic as follows: 1. He defined logic and compared it with grammar, and discussed the clas- sification and fundamental principles of science in a unique and useful manner. 2. He made the study of logic easier by dividing it into two categories: Takhayyul (idea) and Thubut (proof). 3. He believed that the objective of logic is to correct faults we may find in ourselves and in others, and faults that others find in us. 4. He said that if we do not comprehend logic, we must either have faith in all people, or mistrust all people, or differentiate between them. Such actions would be undertaken without a basis of evidence or experimen- tation. In this paper, I will analyse the functions of logic in Al-Farabi’s works, Enumeration of the Sciences, Book on the Syllogism, Book on Dialectic, Book on Demonstration and Ring Stones of Wisdom, in order to present his contributions in the field of logic. (shrink)
I try to read Aristotle's Poetics and Rhetoric as if they were an integral part of the Organon instead of separate works as they were sorted by Andronicus of Rhodes. The results are quite surprising. First, poetics and rhetoric, considered as sciences of speech, were much more intimately related to Aristotle's analytical logic than it is generally acknowledged by prominent interpreters. I maintain that Dialectics (the Topics) operated as a bridge leading from these two sciences to analytical logic; that the (...) types of speech encompassed by the four respective sciences did not only form a ladder, ascending from the more loose forms of persuasion to the more rigorous ones, but that there was between them a whole net of cross-currents and implications that were too much obvious for Aristotle to remain unaware of them, notwithstanding the fact that he doesn’t describe them anywhere. I maintain, in short, there was an unified science of persuasive speech, whose principles were implicitly intertwined in the fabric of Aristotle's Organon. By means of a comparative study of the works consecrated by Aristotle to poetics, rhetoric, dialectics and analytics, these principles could be unearthed and accurately expressed. I called them the theory of the four discourses. (shrink)
PUTNAM has made highly regarded contributions to mathematics, to philosophy of logic and to philosophy of science, and in this book he brings his ideas in these three areas to bear on the traditional philosophic problem of materialism versus (objective) idealism. The book assumes that contemporary science (mathematical and physical) is largely correct as far as it goes, or at least that it is rational to believe in it. The main thesis of the book is that consistent acceptance of contemporary (...) science requires the acceptance of some sort of Platonistic idealism affirming the existence of abstract, non-temporal, non-material, non-mental entities (numbers, scientific laws, mathematical formulas, etc.). The author is thus in direct opposition to the extreme materialism which had dominated philosophy of science in the first three quarters of this century. The book can be recommended to the scientifically literate, general reader whose acquaintance with these areas is limited to the literature of the 1950’s and before, when it had been assumed that empiricistic materialism was the only philosophy compatible with a scientific outlook. To this group the book presents an eye-opening challenge fulfilling the author’s intention of “shaking up preconceptions and stimulating further discussion”. QUINE’S book is not easy to read, partly because the level of sophistication fluctuates at high frequency between remote extremes and partly because of convoluted English prose style and devilish terminology. Almost all of the minor but troublesome technical errata in the first printing have been corrected [see reviews, e.g., the reviewer, Philos. Sci. 39 (1972), no. 1, 97–99]. In the opinion of the reviewer the book is not suitable for undergraduate instruction, and without external motivation few mathematicians are likely to have the patience to appreciate it. Nevertheless, a careful study of the book will more than repay the effort and one should expect to find frequent references to this book in coming years. (shrink)
Tarski’s Convention T—presenting his notion of adequate definition of truth (sic)—contains two conditions: alpha and beta. Alpha requires that all instances of a certain T Schema be provable. Beta requires in effect the provability of ‘every truth is a sentence’. Beta formally recognizes the fact, repeatedly emphasized by Tarski, that sentences (devoid of free variable occurrences)—as opposed to pre-sentences (having free occurrences of variables)—exhaust the range of significance of is true. In Tarski’s preferred usage, it is part (...) of the meaning of true that attribution of being true to a given thing presupposes the thing is a sentence. Beta’s importance is further highlighted by the fact that alpha can be satisfied using the recursively definable concept of being satisfied by every infinite sequence, which Tarski explicitly rejects. Moreover, in Definition 23, the famous truth-definition, Tarski supplements “being satisfied by every infinite sequence” by adding the condition “being a sentence”. Even where truth is undefinable and treated by Tarski axiomatically, he adds as an explicit axiom a sentence to the effect that every truth is a sentence. Surprisingly, the sentence just before the presentation of Convention T seems to imply that alpha alone might be sufficient. Even more surprising is the sentence just after Convention T saying beta “is not essential”. Why include a condition if it is not essential? Tarski says nothing about this dissonance. Considering the broader context, the Polish original, the German translation from which the English was derived, and other sources, we attempt to determine what Tarski might have intended by the two troubling sentences which, as they stand, are contrary to the spirit, if not the letter, of several other passages in Tarski’s corpus. (shrink)
One innovation in this paper is its identification, analysis, and description of a troubling ambiguity in the word ‘argument’. In one sense ‘argument’ denotes a premise-conclusion argument: a two-part system composed of a set of sentences—the premises—and a single sentence—the conclusion. In another sense it denotes a premise-conclusion-mediation argument—later called an argumentation: a three-part system composed of a set of sentences—the premises—a single sentence—the conclusion—and complex of sentences—the mediation. The latter is often intended to show that the conclusion follows from (...) the premises. The complementarity and interrelation of premise-conclusion arguments and premise-conclusion-mediation arguments resonate throughout the rest of the paper which articulates the conceptual structure found in logic from Aristotle to Tarski. This 1972 paper can be seen as anticipating Corcoran’s signature work: the more widely read 1989 paper, Argumentations and Logic, Argumentation 3, 17–43. MR91b:03006. The 1972 paper was translated into Portuguese. The 1989 paper was translated into Spanish, Portuguese, and Persian. (shrink)
Alfred Tarski was one of the greatest logicians of the twentieth century. His influence comes not merely through his own work but from the legion of students who pursued his projects, both in Poland and Berkeley. This chapter focuses on three key areas of Tarski's research, beginning with his groundbreaking studies of the concept of truth. Tarski's work led to the creation of the area of mathematical logic known as model theory and prefigured semantic approaches in the (...) philosophy of language and philosophical logic, such as Kripke's possible worlds semantics for modal logic. We also examine the paradoxical decomposition of the sphere known as the Banach–Tarski paradox. Finally we examine Tarski's work on decidable and undecidable theories, which he carried out in collaboration with students such as Mostowski, Presburger, Robinson and others. (shrink)
This paper is a contribution to graded model theory, in the context of mathematical fuzzy logic. We study characterizations of classes of graded structures in terms of the syntactic form of their first-order axiomatization. We focus on classes given by universal and universal-existential sentences. In particular, we prove two amalgamation results using the technique of diagrams in the setting of structures valued on a finite MTL-algebra, from which analogues of the Łoś–Tarski and the Chang–Łoś–Suszko preservation theorems follow.
Equality and identity. Bulletin of Symbolic Logic. 19 (2013) 255-6. (Coauthor: Anthony Ramnauth) Also see https://www.academia.edu/s/a6bf02aaab This article uses ‘equals’ [‘is equal to’] and ‘is’ [‘is identical to’, ‘is one and the same as’] as they are used in ordinary exact English. In a logically perfect language the oxymoron ‘the numbers 3 and 2+1 are the same number’ could not be said. Likewise, ‘the number 3 and the number 2+1 are one number’ is just as bad from a logical point (...) of view. In normal English these two sentences are idiomatically taken to express the true proposition that ‘the number 3 is the number 2+1’. Another idiomatic convention that interferes with clarity about equality and identity occurs in discussion of numbers: it is usual to write ‘3 equals 2+1’ when “3 is 2+1” is meant. When ‘3 equals 2+1’ is written there is a suggestion that 3 is not exactly the same number as 2+1 but that they merely have the same value. This becomes clear when we say that two of the sides of a triangle are equal if the two angles they subtend are equal or have the same measure. -/- Acknowledgements: Robert Barnes, Mark Brown, Jack Foran, Ivor Grattan-Guinness, Forest Hansen, David Hitchcock, Spaulding Hoffman, Calvin Jongsma, Justin Legault, Joaquin Miller, Tania Miller, and Wyman Park. -/- ► JOHN CORCORAN AND ANTHONY RAMNAUTH, Equality and identity. Philosophy, University at Buffalo, Buffalo, NY 14260-4150, USA E-mail: corcoran@buffalo.edu The two halves of one line are equal but not identical [one and the same]. Otherwise the line would have only one half! Every line equals infinitely many other lines, but no line is [identical to] any other line—taking ‘identical’ strictly here and below. Knowing that two lines equaling a third are equal is useful; the condition “two lines equaling a third” often holds. In fact any two sides of an equilateral triangle is equal to the remaining side! But could knowing that two lines being [identical to] a third are identical be useful? The antecedent condition “two things identical to a third” never holds, nor does the consequent condition “two things being identical”. If two things were identical to a third, they would be the third and thus not be two things but only one. The plural predicate ‘are equal’ as in ‘All diameters of a given circle are equal’ is useful and natural. ‘Are identical’ as in ‘All centers of a given circle are identical’ is awkward or worse; it suggests that a circle has multiple centers. Substituting equals for equals [replacing one of two equals by the other] makes sense. Substituting identicals for identicals is empty—a thing is identical only to itself; substituting one thing for itself leaves that thing alone, does nothing. There are as many types of equality as magnitudes: angles, lines, planes, solids, times, etc. Each admits unit magnitudes. And each such equality analyzes as identity of magnitude: two lines are equal [in length] if the one’s length is identical to the other’s. Tarski [1] hardly mentioned equality-identity distinctions (pp. 54-63). His discussion begins: -/- Among the logical concepts […], the concept of IDENTITY or EQUALITY […] has the greatest importance. -/- Not until page 62 is there an equality-identity distinction. His only “notion of equality”, if such it is, is geometrical congruence—having the same size and shape—an equivalence relation not admitting any unit. Does anyone but Tarski ever say ‘this triangle is equal to that’ to mean that the first is congruent to that? What would motivate him to say such a thing? This lecture treats the history and philosophy of equality-identity distinctions. [1] ALFRED TARSKI, Introduction to Logic, Dover, New York, 1995. [This is expanded from the printed abstract.] . (shrink)
CORCORAN REVIEWS THE 4 VOLUMES OF TARSKI’S COLLECTED PAPERS Alfred Tarski (1901--1983) is widely regarded as one of the two giants of twentieth-century logic and also as one of the four greatest logicians of all time (Aristotle, Frege and Gödel being the other three). Of the four, Tarski was the most prolific as a logician. The four volumes of his collected papers, which exclude most of his 19 monographs, span over 2500 pages. Aristotle's writings are comparable in (...) volume, but most of the Aristotelian corpus is not about logic, whereas virtually everything written by Tarski concerns logic more or less directly. There is no doubt that Tarski wrote more on logic than any other author; he started publishing on logic in 1921 at the age of 20 and continued until his death at the age of 82. (shrink)
Many commentators on Alfred Tarski have, following Hartry Field, claimed that Tarski's truth-definition was motivated by physicalism—the doctrine that all facts, including semantic facts, must be reducible to physical facts. I claim, instead, that Tarski did not aim to reduce semantic facts to physical ones. Thus, Field's criticism that Tarski's truth-definition fails to fulfill physicalist ambitions does not reveal Tarski to be inconsistent, since Tarski's goal is not to vindicate physicalism. I argue that (...) class='Hi'>Tarski's only published remarks that speak approvingly of physicalism were written in unusual circumstances: Tarski was likely attempting to appease an audience of physicalists that he viewed as hostile to his ideas. In later sections I develop positive accounts of: (1) Tarski's reduction of semantic concepts; (2) Tarski's motivation to develop formal semantics in the particular way he does; and (3) the role physicalism plays in Tarski's thought. (shrink)
Articles by Ian Mueller, Ronald Zirin, Norman Kretzmann, John Corcoran, John Mulhern, Mary Mulhern,Josiah Gould, and others. Topics: Aristotle's Syllogistic, Stoic Logic, Modern Research in Ancient Logic.
The science of logic has occupied an important role in Islamic history. Especially when al-Gazali 505-1111 has come and claimed that who learned Islamic sciences, without learning the Logic we cannot trust in his knowledge. From this time The science of logic has been flourished and quietly began to include in many sciences even Tefsir and Fiqh. After that, Al-razzi 606/1210 has established a big school in Islamic philosophy in general and in logic in particular. al-Khonaji 646/1248 one of (...) his important students. Who moved from Iran to Egypt and became Qadi al-Qudat (Chief Islamic justice). He has improved The science of logic by his books; like Keshf al-Asrar. In the sixth/twelfth one of his books has been spread in Muslim world and became the first step for who wanted to learn Logic. Beside that we have a lot of scholars has made commentaries on this book. In this article we focused on (Metn al-Jumal) by al-Konaji with his spreading in the Sixth. Seventh h.centuries. (shrink)
Halbach has argued that Tarski biconditionals are not ontologically conservative over classical logic, but his argument is undermined by the fact that he cannot include a theory of arithmetic, which functions as a theory of syntax. This article is an improvement on Halbach's argument. By adding the Tarski biconditionals to inclusive negative free logic and the universal closure of minimal arithmetic, which is by itself an ontologically neutral combination, one can prove that at least one thing exists. The (...) result can then be strengthened to the conclusion that infinitely many things exist. Those things are not just all Gödel codes of sentences but rather all natural numbers. Against this background inclusive negative free logic collapses into noninclusive free logic, which collapses into classical logic. The consequences for ontological deflationism with respect to truth are discussed. (shrink)
This interesting and imaginative monograph is based on the author’s PhD dissertation supervised by Saul Kripke. It is dedicated to Timothy Smiley, whose interpretation of PRIOR ANALYTICS informs its approach. As suggested by its title, this short work demonstrates conclusively that Aristotle’s syllogistic is a suitable vehicle for fruitful discussion of contemporary issues in logical theory. Aristotle’s syllogistic is represented by Corcoran’s 1972 reconstruction. The review studies Lear’s treatment of Aristotle’s logic, his appreciation of the Corcoran-Smiley paradigm, and his understanding (...) of modern logical theory. In the process Corcoran and Scanlan present new, previously unpublished results. Corcoran regards this review as an important contribution to contemporary study of PRIOR ANALYTICS: both the book and the review deserve to be better known. (shrink)
„Ruch Filozoficzny” and the freedom of scientific research in Poland (in 1947-1957 years). Presented article refers to the situation in the Polish philosophy, which took place between 40-50 of the twentieth century. Author’s reflections are carried on the example of attempts to reactivate in the realities of war, the polish philosophical journal “Ruch Filozoficzny” founded in 1911 by Kazimierz Twardowski. Political conditions have made the magazine was renewed twice, at each time was the greatest merit of Tadeusz Czeżowski. He was (...) assisted by the other representatives of the Lvov-WarsawSchool, who worked in various academic centers in Poland. The reconstruction of the history of the magazine in the postwar years, will be based on previously unpublished archival material. In its conclusions, the author tries to point out of great importance of independent from the political authorities publishers on development of Polish philosophy. (shrink)
The ‘WarsawSchool of History of Ideas’ is the name given to a ‘revisionist think tank’ which was led by the historian Bronisław Baczko from 1956 to 1968 in Communist Poland. This group reunited scholars like Leszek Kołakowski or Krzysztof Pomian around questions related to political believes, theological conceptions or utopian thought. Expelled from the University, B. Baczko left Poland and seek shelter in Geneva where he became a Professor of history of Ideas and historiography. In his new (...) home, he developed an original vision on Enlightenment and the French Revolution. (shrink)
What is a logical constant? The question is addressed in the tradition of Tarski's definition of logical operations as operations which are invariant under permutation. The paper introduces a general setting in which invariance criteria for logical operations can be compared and argues for invariance under potential isomorphism as the most natural characterization of logical operations.
Tarski "proved" that there cannot possibly be any correct formalization of the notion of truth entirely on the basis of an insufficiently expressive formal system that was incapable of recognizing and rejecting semantically incorrect expressions of language. -/- The only thing required to eliminate incompleteness, undecidability and inconsistency from formal systems is transforming the formal proofs of symbolic logic to use the sound deductive inference model.
►JOHN CORCORAN AND IDRIS SAMAWI HAMID, Two-method errors: having it both ways. Philosophy, University at Buffalo, Buffalo, NY 14260-4150, USA E-mail: corcoran@buffalo.edu Philosophy, Colorado State University, Fort Collins, CO 80523-1781 USA E-mail: ishamid@colostate.edu Where two methods produce similar results, mixing the two sometimes creates errors we call two-method errors, TMEs: in style, syntax, semantics, pragmatics, implicature, logic, or action. This lecture analyzes examples found in technical and in non-technical contexts. One can say “Abe knows whether Ben draws” in two other (...) ways: ‘Abe knows whether or not Ben draws’ or ‘Abe knows whether Ben draws or not’. But a stylistic TME occurs in ‘Abe knows whether or not Ben draws or not’. One can say “Abe knows how Ben looks” using ‘Abe knows what Ben looks like’. But syntactical TMEs are in ‘Abe knows what Ben looks’ and in ‘Abe knows how Ben looks like’. One can deny that Abe knows Ben by prefixing ‘It isn’t that’ or by interpolating ‘doesn’t’. But a pragmatic TME occurs in trying to deny that Abe knows Ben by using ‘It isn’t that Abe doesn’t know Ben’. There are several standard ways of defining truth using sequences. Quine’s discussions in the 1970 first printing of Philosophy of logic [3] and in previous lectures were vitiated by mixing two [1, p. 98]. The logical TME in [3], which eluded Quine’s colleagues, was corrected in the 1978 sixth printing [2]. But Quine never explicitly acknowledged, described, or even mentioned the error. This lecture presents and analyses two-method errors in the logic literature. [1] JOHN CORCORAN, Review of Quine’s 1970 Philosophy of Logic. In Philosophy of Science, vol. 39 (1972), pp. 97–99. [2] JOHN CORCORAN, Review of sixth printing of Quine’s 1970 Philosophy of Logic. In Mathematical Reviews MR0469684 (1979): 57 #9465. [3] WILLARD VAN ORMAN QUINE, Philosophy of logic, Harvard, 1970/1986. (shrink)
Corcoran, John. 2005. Meanings of word: type-occurrence-token. Bulletin of Symbolic Logic 11(2005) 117. -/- Once we are aware of the various senses of ‘word’, we realize that self-referential statements use ambiguous sentences. If a statement is made using the sentence ‘this is a pronoun’, is the speaker referring to an interpreted string, a string-type, a string-occurrence, a string-token, or what? The listeners can wonder “this what?”. -/- John Corcoran, Meanings of word: type-occurrence-token Philosophy, University at Buffalo, Buffalo, NY 14260-4150 E-mail: (...) corcoran@buffalo.edu The four-letter written-English expression ‘word’, which plays important roles in applications and expositions of logic and philosophy of logic, is ambiguous (multisense, or polysemic) in that it has multiple normal meanings (senses, or definitions). Several of its meanings are vague (imprecise, or indefinite) in that they admit of borderline (marginal, or fringe) cases. This paper juxtaposes, distinguishes, and analyses several senses of ‘word’ focusing on a constellation of senses analogous to constellations of senses of other expression words such as ‘expression’, ‘symbol’, ‘character’, ‘letter’, ‘term’, ‘phrase’, ‘formula’, ‘sentence’, ‘derivation’, ‘paragraph’, and ‘discourse’. Consider, e.g., the word ‘letter’. In one sense there are exactly twenty-six letters (letter-types or ideal letters) in the English alphabet and there are exactly four letters in the word ‘letter’. In another sense, there are exactly six letters (letter-repetitions or letter-occurrences) in the word-type ‘letter’. In yet another sense, every new inscription (act of writing or printing) of ‘letter’ brings into existence six new letters (letter-tokens or ink-letters) and one new word that had not previously existed. The number of letter-occurrences (occurrences of a letter-type) in a given word-type is the same as the number of letter-tokens (tokens of a letter-type) in a single token of the given word. Many logicians fail to distinguish “token” from “occurrence” and a few actually confuse the two concepts. Epistemological and ontological problems concerning word-types, word-occurrences, and word-tokens are described in philosophically neutral terms. This paper presents a theoretical framework of concepts and principles concerning logicography, including use of English in logic. The framework is applied to analytical exposition and critical evaluation of classic passages in the works of philosophers and logicians including Boole, Peirce, Frege, Russell, Tarski, Church and Quine. This paper is intended as a philosophical sequel to Corcoran et al. “String Theory”, Journal of Symbolic Logic 39(1974) 625-637. https://www.academia.edu/s/cdfa6c854e?source=link -/- . (shrink)
The idea that logic is in some sense normative for thought and reasoning is a familiar one. Some of the most prominent figures in the history of philosophy including Kant and Frege have been among its defenders. The most natural way of spelling out this idea is to formulate wide-scope deductive requirements on belief which rule out certain states as irrational. But what can account for the truth of such deductive requirements of rationality? By far, the most prominent responses draw (...) in one way or another on the idea that belief aims at the truth. In this paper, I consider two ways of making this line of thought more precise and I argue that they both fail. In particular, I examine a recent attempt by Epistemic Utility Theory to give a veritist account of deductive coherence requirements. I argue that despite its proponents’ best efforts, Epistemic Utility Theory cannot vindicate such requirements. (shrink)
(1) This paper is about how to build an account of the normativity of logic around the claim that logic is constitutive of thinking. I take the claim that logic is constitutive of thinking to mean that representational activity must tend to conform to logic to count as thinking. (2) I develop a natural line of thought about how to develop the constitutive position into an account of logical normativity by drawing on constitutivism in metaethics. (3) I argue that, while (...) this line of thought provides some insights, it is importantly incomplete, as it is unable to explain why we should think. I consider two attempts at rescuing the line of thought. The first, unsuccessful response is that it is self-defeating to ask why we ought to think. The second response is that we need to think. But this response secures normativity only if thinking has some connection to human flourishing. (4) I argue that thinking is necessary for human flourishing. Logic is normative because it is constitutive of this good. (5) I show that the resulting account deals nicely with problems that vex other accounts of logical normativity. (shrink)
It is often said that ‘every logical truth is obvious’ (Quine 1970: 82), that the ‘axioms and rules of logic are true in an obvious way’ (Murawski 2014: 87), or that ‘logic is a theory of the obvious’ (Sher 1999: 207). In this chapter, I set out to test empirically how the idea that logic is obvious is reflected in the scholarly work of logicians and philosophers of logic. My approach is data-driven. That is to say, I propose that systematically (...) searching for patterns of usage in databases of scholarly works, such as JSTOR, can provide new insights into the ways in which the idea that logic is obvious is reflected in logical and philosophical practice, i.e., in the arguments that logicians and philosophers of logic actually make in their published work. (shrink)
We discuss misinformation about “the liar antinomy” with special reference to Tarski’s 1933 truth-definition paper [1]. Lies are speech-acts, not merely sentences or propositions. Roughly, lies are statements of propositions not believed by their speakers. Speakers who state their false beliefs are often not lying. And speakers who state true propositions that they don’t believe are often lying—regardless of whether the non-belief is disbelief. Persons who state propositions on which they have no opinion are lying as much as those (...) who state propositions they believe to be false. Not all lies are statements of false propositions—some lies are true; some have no truth-value. People who only occasionally lie are not liars: roughly, liars repeatedly and habitually lie. Some half-truths are statements intended to mislead even though the speakers “interpret” the sentences used as expressing true propositions. Others are statements of propositions believed by the speakers to be questionable but without revealing their supposed problematic nature. The two “formulations” of “the antinomy of the liar” in [1], pp.157–8 and 161–2, have nothing to do with lying or liars. The first focuses on an “expression” Tarski calls ‘c’, namely the following. -/- c is not a true sentence -/- The second focuses on another “expression”, also called ‘c’, namely the following. -/- for all p, if c is identical with the sentence ‘p’, then not p -/- Without argumentation or even discussion, Tarski implies that these strange “expressions” are English sentences. [1] Alfred Tarski, The concept of truth in formalized languages, pp. 152–278, Logic, Semantics, Metamathematics, papers from 1923 to 1938, ed. John Corcoran, Hackett, Indianapolis 1983. -/- https://www.academia.edu/12525833/Sentence_Proposition_Judgment_Statement_and_Fact_Speaking_about_th e_Written_English_Used_in_Logic. (shrink)
JOHN CORCORAN AND WILIAM FRANK. Surprises in logic. Bulletin of Symbolic Logic. 19 253. Some people, not just beginning students, are at first surprised to learn that the proposition “If zero is odd, then zero is not odd” is not self-contradictory. Some people are surprised to find out that there are logically equivalent false universal propositions that have no counterexamples in common, i. e., that no counterexample for one is a counterexample for the other. Some people would be surprised to (...) find out that in normal first-order logic existential import is quite common: some universals “Everything that is S is P” —actually quite a few—imply their corresponding existentials “Something that is S is P”. Anyway, perhaps contrary to its title, this paper is not a cataloging of surprises in logic but rather about the mistakes that did or might have or might still lead people to think that there are no surprises in logic. The paper cataloging of surprises in logic is on our “to-do” list. -/- ► JOHN CORCORAN AND WILIAM FRANK, Surprises in logic. Philosophy, University at Buffalo, Buffalo, NY 14260-4150, USA E-mail: corcoran@buffalo.edu There are many surprises in logic. Peirce gave us a few. Russell gave Frege one. Löwenheim gave Zermelo one. Gödel gave some to Hilbert. Tarski gave us several. When we get a surprise, we are often delighted, puzzled, or skeptical. Sometimes we feel or say “Nice!”, “Wow, I didn’t know that!”, “Is that so?”, or the like. Every surprise belongs to someone. There are no disembodied surprises. Saying there are surprises in logic means that logicians experience surprises doing logic—not that among logical propositions some are intrinsically or objectively “surprising”. The expression “That isn’t surprising” often denigrates logical results. Logicians often aim for surprises. In fact, [1] argues that logic’s potential for surprises helps motivate its study and, indeed, helps justify logic’s existence as a discipline. Besides big surprises that change logicians’ perspectives, the logician’s daily life brings little surprises, e.g. that Gödel’s induction axiom alone implies Robinson’s axiom. Sometimes wild guesses succeed. Sometimes promising ideas fail. Perhaps one of the least surprising things about logic is that it is full of surprises. Against the above is Wittgenstein’s surprising conclusion : “Hence there can never be surprises in logic”. This paper unearths basic mistakes in [2] that might help to explain how Wittgenstein arrived at his false conclusion and why he never caught it. The mistakes include: unawareness that surprise is personal, confusing logicians having certainty with propositions having logical necessity, confusing definitions with criteria, and thinking that facts demonstrate truths. People demonstrate truths using their deductive know-how and their knowledge of facts: facts per se are epistemically inert. [1] JOHN CORCORAN, Hidden consequence and hidden independence. This Bulletin, vol.16, p. 443. [2] LUDWIG WITTGENSTEIN, Tractatus Logico-Philosophicus, Kegan Paul, London, 1921. -/-. (shrink)
This paper considers Rumfitt’s bilateral classical logic (BCL), which is proposed to counter Dummett’s challenge to classical logic. First, agreeing with several authors, we argue that Rumfitt’s notion of harmony, used to justify logical rules by a purely proof theoretical manner, is not sufficient to justify coordination rules in BCL purely proof-theoretically. For the central part of this paper, we propose a notion of proof-theoretical validity similar to Prawitz for BCL and proves that BCL is sound and complete respect to (...) this notion of validity. The major difficulty in defining validity for BCL is that validity of positive +A appears to depend on negative −A, and vice versa. Thus, the straightforward inductive definition does not work because of this circular dependance. However, Knaster-Tarski’s fixed point theorem can resolve this circularity. Finally, we discuss the philosophical relevance of our work, in particular, the impact of the use of fixed point theorem and the issue of decidability. (shrink)
Heinrich Behmann (1891-1970) obtained his Habilitation under David Hilbert in Göttingen in 1921 with a thesis on the decision problem. In his thesis, he solved - independently of Löwenheim and Skolem's earlier work - the decision problem for monadic second-order logic in a framework that combined elements of the algebra of logic and the newer axiomatic approach to logic then being developed in Göttingen. In a talk given in 1921, he outlined this solution, but also presented important programmatic remarks on (...) the significance of the decision problem and of decision procedures more generally. The text of this talk as well as a partial English translation are included. (shrink)
Etude de l'extension par la negation semi-intuitionniste de la logique positive des propositions appelee logique C, developpee par A. Urquhart afin de definir une semantique relationnelle valable pour la logique des valeurs infinies de Lukasiewicz (Lw). Evitant les axiomes de contraction et de reduction propres a la logique classique de Dummett, l'A. propose une semantique de type Routley-Meyer pour le systeme d'Urquhart (CI) en tant que celle-la ne fournit que des theories consistantes pour la completude de celui-ci.
This review concludes that if the authors know what mathematical logic is they have not shared their knowledge with the readers. This highly praised book is replete with errors and incoherency.
The article aims to determine whether it is possible to build the reliably practiced classical philosophy, understood as a metaphysical research, directed towards the nature of objective reality. The purpose of this kind of philosophizing is knowledge and truth. Moreover, the practice of such philosophizing and its results should meet some of the characteristics of science. The paper establishes a set of conditions that have been imposed on the science of metaphysics by Kazimierz Twardowski. Among the conditions of such philosophizing (...) are anti-dogmatism, criticism, inter-subjectivity of philosophizing and its results, proper epistemic justification of philosophical beliefs, application of the analysis method, rigorous language and reasoning, the use of experience and scientific knowledge. The paper considers these conditions to be correct in most cases and argues that metaphysics can meet them. The existing cases of analytical metaphysics show that metaphysics is possible as a science. Next, the article argues that the late Twardowski failed to substantiate his claim that metaphysical positions which he classified as a world-view philosophy could not be scientifically justified, which could have been possibly done with differentiating ways of understanding what such a scientific justification should be. The article argues that he did not take into account a reductive conception of the metaphysical philosophy, which even though it allows the plurality of metaphysical explanations and does not force anyone to accept one position as the only possible and correct explanation, would have an objective value, if such metaphysics were elaborated indeed. (shrink)
This presentation of Aristotle's natural deduction system supplements earlier presentations and gives more historical evidence. Some fine-tunings resulted from conversations with Timothy Smiley, Charles Kahn, Josiah Gould, John Kearns,John Glanvillle, and William Parry.The criticism of Aristotle's theory of propositions found at the end of this 1974 presentation was retracted in Corcoran's 2009 HPL article "Aristotle's demonstrative logic".
Modern categorical logic as well as the Kripke and topological models of intuitionistic logic suggest that the interpretation of ordinary “propositional” logic should in general be the logic of subsets of a given universe set. Partitions on a set are dual to subsets of a set in the sense of the category-theoretic duality of epimorphisms and monomorphisms—which is reflected in the duality between quotient objects and subobjects throughout algebra. If “propositional” logic is thus seen as the logic of subsets of (...) a universe set, then the question naturally arises of a dual logic of partitions on a universe set. This paper is an introduction to that logic of partitions dual to classical subset logic. The paper goes from basic concepts up through the correctness and completeness theorems for a tableau system of partition logic. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.