Results for 'astrophysics, general relativity, spacetime, space-time, lost metrics,'

998 found
Order:
  1. Transforms for the early Kerr metric.Stephen Athel Abbott - manuscript
    The concept and usage of the word 'metric' within General Relativity is briefly described. The early work of Roy Kerr led to his original 1963 algebraic, rotating metric. This discovery and his subsequent recollection in 2008 are summarised as the motivation for this article. Computer algebra has confirmed that nominal transformations of this early metric can generate further natural algebraic metrics. The algebra is not abstract, nor advanced, and these metrics have been overlooked for many years. The 1916 metric (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Have we Lost Spacetime on the Way? Narrowing the Gap between General Relativity and Quantum Gravity.Baptiste Le Bihan & Niels Siegbert Linnemann - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 65 (C):112-121.
    Important features of space and time are taken to be missing in quantum gravity, allegedly requiring an explanation of the emergence of spacetime from non-spatio-temporal theories. In this paper, we argue that the explanatory gap between general relativity and non-spatio- temporal quantum gravity theories might significantly be reduced with two moves. First, we point out that spacetime is already partially missing in the context of general relativity when understood from a dynamical perspective. Second, we argue that most (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  3. Space-Time Intervals Underlie Human Conscious Experience, Gravity, and a Theory of Everything.Richard Sieb - 2018 - Neuroquantology 16 (7):49-64.
    Space-time intervals are the fundamental components of conscious experience, gravity, and a Theory of Everything. Space-time intervals are relationships that arise naturally between events. They have a general covariance (independence of coordinate systems, scale invariance), a physical constancy, that encompasses all frames of reference. There are three basic types of space-time intervals (light-like, time-like, space-like) which interact to create space-time and its properties. Human conscious experience is a four-dimensional space-time continuum created through the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. The ontology of General Relativity.Gustavo E. Romero - forthcoming - In M. Novello & S. E. Perez Bergliaffa (eds.), General Relativity and Gravitation. Cambridge University Press.
    I discuss the ontological assumptions and implications of General Relativity. I maintain that General Relativity is a theory about gravitational fields, not about space-time. The latter is a more basic ontological category, that emerges from physical relations among all existents. I also argue that there are no physical singularities in space-time. Singular space-time models do not belong to the ontology of the world: they are not things but concepts, i.e. defective solutions of Einstein’s field equations. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  5. Space, time, and irreversibility.Gustavo E. Romero - 2017 - MÈTODE Science Studies Journal 7:201-209.
    Scientific philosophy is that which is informed by science. It uses exact tools such as logic and mathematics and provides a framework for scientific activity to solve more general questions about nature, the language we use to describe it, and the knowledge we obtain thanks to it. Many of the scientific philosophy theories can be proven and evaluated using scientific evidence. In this paper, I focus on showing how several classical philosophy topics, such as the nature of space (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Supporting abstract relational space-time as fundamental without doctrinism against emergence.Sascha Vongehr - manuscript
    The present paper aims to contribute to the substantivalism versus relationalism debate and to defend general relativity (GR) against pseudoscientific attacks in a novel, especially inclusive way. This work was initially motivated by the desire to establish the incompatibility of any ether theories with accelerated cosmic expansion and inflation (motto: where would a hypothetical medium supposedly come from so fast?). The failure of this program is of interest for emergent GR concepts in high energy particle physics. However, it becomes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Interpretation of Singularities in General Relativity and the Information Loss Paradox (version 2).Cristi Stoica - manuscript
    When matter is falling into a black hole, the associated information becomes unavailable to the black hole's exterior. If the black hole disappears by Hawking evaporation, the information seems to be lost in the singularity, leading to Hawking's information paradox: the unitary evolution seems to be broken, because a pure separate quantum state can evolve into a mixed one.



    This article proposes a new interpretation of the black hole singularities, which restores the information conservation. For the Schwarzschild black hole, it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Interpretation of Singularities in General Relativity and the Information Loss Paradox.Cristi Stoica - manuscript
    When matter is falling into a black hole, the associated information becomes unavailable to the black hole's exterior. If the black hole disappears by Hawking evaporation, the information seems to be lost in the singularity, leading to Hawking's information paradox: the unitary evolution seems to be broken, because a pure separate quantum state can evolve into a mixed one.



    This article proposes a new interpretation of the black hole singularities, which restores the information conservation. For the Schwarzschild black hole, it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Heuristics of the General Relativity.Nicolae Sfetcu - manuscript
    The general theory of relativity was developed using as a nucleus a principle of symmetry: the principle of general covariance. Initially, Einstein saw the principle of general covariance as an extension of the principle of relativity in classical mechanics, and in SR. For Einstein, the principle of general covariance was a crucial postulate in the development of GR. The freedom of the GR diffeomorphism (the invariance of the form of the laws under transformations of the coordinates (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. A Model of Wavefunction Collapse in Discrete Space-Time.Shan Gao - 2006 - International Journal of Theoretical Physics 45 (10):1965-1979.
    We give a new argument supporting a gravitational role in quantum collapse. It is demonstrated that the discreteness of space-time, which results from the proper combination of quantum theory and general relativity, may inevitably result in the dynamical collapse of thewave function. Moreover, the minimum size of discrete space-time yields a plausible collapse criterion consistent with experiments. By assuming that the source to collapse the wave function is the inherent random motion of particles described by the wave (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  11. Wave detected by LIGO is not gravitational wave.Alfonso Leon Guillen Gomez - manuscript
    General Relativity defines gravity like the metric of a Lorentzian manifold. Einstein formulated spacetime as quality structural of gravity, i.e, circular definition between gravity and spacetime, also Einstein denoted "Space and time are modes by which we think, not conditions under which we live" and “We denote everything but the gravitational field as matter”, therefore, spacetime is nothing and gravity in first approximation an effect of coordinates, and definitely a geometric effect. The mathematical model generates quantitative predictions coincident (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Relativity Theory may not have the last Word on the Nature of Time: Quantum Theory and Probabilism.Nicholas Maxwell - 2016 - In Giancarlo Ghirardi & Shyam Wuppuluri (eds.), Space, Time and the Limits of Human Understanding. Cham: Imprint: Springer. pp. 109-124.
    Two radically different views about time are possible. According to the first, the universe is three dimensional. It has a past and a future, but that does not mean it is spread out in time as it is spread out in the three dimensions of space. This view requires that there is an unambiguous, absolute, cosmic-wide "now" at each instant. According to the second view about time, the universe is four dimensional. It is spread out in both space (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Relativity and Three Four‐dimensionalisms.Cody Gilmore, Damiano Costa & Claudio Calosi - 2016 - Philosophy Compass 11 (2):102-120.
    Relativity theory is often said to support something called ‘the four-dimensional view of reality’. But there are at least three different views that sometimes go by this name. One is ‘spacetime unitism’, according to which there is a spacetime manifold, and if there are such things as points of space or instants of time, these are just spacetime regions of different sorts: thus space and time are not separate manifolds. A second is the B-theory of time, according to (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  14. Contradictions inherent in special relativity: Space varies.Kim Joosoak - manuscript
    Special relativity has changed the fundamental view on space and time since Einstein introduced it in 1905. It substitutes four dimensional spacetime for the absolute space and time of Newtonian mechanics. It is believed that the validities of Lorentz invariants are fully confirmed empirically for the last one hundred years and therefore its status are canonical underlying all physical principles. However, spacetime metric is a geometric approach on nature when we interpret the natural phenomenon. A geometric flaw on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. On the Embodiment of Space and Time: Triadic logic, quantum indeterminacy and the metaphysics of relativity.Timothy M. Rogers - manuscript
    Triadic (systemical) logic can provide an interpretive paradigm for understanding how quantum indeterminacy is a consequence of the formal nature of light in relativity theory. This interpretive paradigm is coherent and constitutionally open to ethical and theological interests. -/- In this statement: -/- (1) Triadic logic refers to a formal pattern that describes systemic (collaborative) processes involving signs that mediate between interiority (individuation) and exteriority (generalized worldview or Umwelt). It is also called systemical logic or the logic of relatives. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. From Einstein's Physics to Neurophilosophy: On the notions of space, time and field as cognoscitive conditions under Kantian-Husserlian approach in the General Relativity Theory.Ruth Castillo - forthcoming - Bitácora-E.
    The current technoscientific progress has led to a sectorization in the philosophy of science. Today the philosophy of science isn't is informal interested in studying old problems about the general characteristics of scientific practice. The interest of the philosopher of science is the study of concepts, problems and riddles of particular disciplines. Then, within this progress of philosophy of science, neuroscientific research stands out, because it invades issues traditionally addressed by the humanities, such as the nature of consciousness, action, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Spacetime Quietism in Quantum Gravity.Sam Baron & Baptiste Le Bihan - 2022 - In Antonio Vassallo (ed.), The Foundations of Spacetime Physics: Philosophical Perspectives. New York, NY: Routledge. pp. 155-175.
    The existence and fundamentality of spacetime has been questioned in quantum gravity where spacetime is frequently described as emerging from a more fundamental non-spatiotemporal ontology. This is supposed to lead to various philosophical issues such as the problem of empirical coherence. Yet those issues assume beforehand that we actually understand and agree on the nature of spacetime. Reviewing popular conceptions of spacetime, we find that there is substantial disagreement on this matter, and little hope of resolving it. However, we argue (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  18. Reinterpreting Relativity: Using the Equivalence Principle to Explain Away Cosmological Anomalies.Marcus Arvan - manuscript
    According to the standard interpretation of Einstein’s field equations, gravity consists of mass-energy curving spacetime, and an additional physical force or entity—denoted by Λ (the ‘cosmological constant’)—is responsible for the Universe’s metric-expansion. Although General Relativity’s direct predictions have been systematically confirmed, the dominant cosmological model thought to follow from it—the ΛCDM (Lambda cold dark matter) model of the Universe’s history and composition—faces considerable challenges, including various observational anomalies and experimental failures to detect dark matter, dark energy, or inflation-field candidates. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Mathematical Nature of Gravity, Which General Relativity Says is Space-Time : Topology Unites With the Matrix, E=mc2, Advanced Waves, Wick Rotation, Dark Matter & Higher Dimensions.Rodney Bartlett - manuscript
    General Relativity says gravity is a push caused by space-time's curvature. Combining General Relativity with E=mc2 results in distances being totally deleted from space-time/gravity by future technology, and in expansion or contraction of the universe as a whole being eliminated. The road to these conclusions has branches shining light on supersymmetry and superconductivity. This push of gravitational waves may be directed from intergalactic space towards galaxy centres, helping to hold galaxies together and also creating supermassive (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Hot Spacetime (Queen and Philosophy).Kristina Šekrst - 2022 - In Jared Kemling (ed.), Queen and Philosophy: Guaranteed to Blow Your Mind. Pop Culture and Philosophy. pp. 149-158. Translated by Randall E. Auxier.
    The purpose of this paper is twofold. First, we will observe how May’s background in astrophysics influenced Queen's lyrics, such as 'Don't Stop Me Now' or 'Dead on Time'. Our goal is to see how physical and philosophical concepts of matter and time intersect with the common understanding of such phenomena, and how they differ from them. Second, we will focus on usually not that well-known song ‘39, which shows the entire point of the special theory of relativity through a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Perverted Space-Time Geodesy in Einstein’s Views on Geometry.Mario Bacelar Valente - 2018 - Philosophia Scientiae 22:137-162.
    A perverted space-time geodesy results from the idea of variable rods and clocks, whose length and rates are taken to be affected by the gravitational field. By contrast, what we might call a concrete geodesy relies on the idea of invariable unit-measuring rods and clocks. Indeed, this is a basic assumption of general relativity. Variable rods and clocks lead to a perverted geodesy, in the sense that a curved space-time may be seen as a result of a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Solved what spacetime is?Alfonso Guillen Gomez - manuscript
    In this essay the author overcomes the theoretical contradiction between General Relativity that defines the gravitational field as a geometric aspect of spacetime, either as potential or curvature, and Quantum Gravity that defines it as a fundamental force of interaction, with the change in the conception of spacetime of structural geometric property from the gravitational field, to the conception of spacetime structural geometric property of matter in motion. Spacetime is not a continent of matter (Substantialism) but rather is contained (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Identity, space-time, and cosmology.Jan Faye - 2008 - In Dennis Dieks (ed.), The Ontology of Space-Time II. Amsterdam: Elsevier. pp. 39-57.
    Modern cosmology treats space and time, or rather space-time, as concrete particulars. The General Theory of Relativity combines the distribution of matter and energy with the curvature of space-time. Here space-time appears as a concrete entity which affects matter and energy and is affected by the things in it. I question the idea that space-time is a concrete existing entity which both substantivalism and reductive relationism maintain. Instead I propose an alternative view, which may (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  24. Space-Time Dimension Problem as a Stumbling Block of Inflationary Cosmology.Rinat M. Nugayev - 2013 - In Vadim V. Kazutinsky, Elena A. Mamchur, Alexandre D. Panov & V. D. Erekaev (eds.), Metauniverse,Space,Time. Institute of Philosophy of RAS. pp. 52-73.
    It is taken for granted that the explanation of the Universe’s space-time dimension belongs to the host of the arguments that exhibit the superiority of modern (inflationary) cosmology over the standard model. In the present paper some doubts are expressed . They are based upon the fact superstring theory is too formal to represent genuine unification of general relativity and quantum field theory. Neveretheless, the fact cannot exclude the opportunity that in future the superstring theory can become more (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. “Fuzzy time”, from paradox to paradox (Does it solve the contradiction between Quantum Mechanics & General Relativity?).Farzad Didehvar - manuscript
    Although Fuzzy logic and Fuzzy Mathematics is a widespread subject and there is a vast literature about it, yet the use of Fuzzy issues like Fuzzy sets and Fuzzy numbers was relatively rare in time concept. This could be seen in the Fuzzy time series. In addition, some attempts are done in fuzzing Turing Machines but seemingly there is no need to fuzzy time. Throughout this article, we try to change this picture and show why it is helpful to consider (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. What is spacetime?Alfonso León Guillén Gómez - manuscript
    Based on the Russian school of Logunov and others, with the contribution of Tom van Flandern, and his previous works on space-time, gravitational waves and speed of the gravity, the author discusses the theory of the time-space fluid that results from the supposed gravitational waves that would have detected LIGO, and reaffirms the space-time as a structural geometric property of the dynamic matter (radiation, matter and quantum vacuum), now with the strong argument that without escape, in an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Space-Time Intervals Underlie Human Conscious Experience, Gravity, and Everything.Richard Sieb - 2019 - Neuroquantology 17 (5):87-89.
    This short commentary discusses the importance of space-time intervals in scientific study. Space-time intervals underlie special relativity, general relativity, and quantum field theory. In doing so, space-time intervals underlie human conscious experience, gravity, and a theory of everything. Space-time intervals also explain many puzzling scientific phenomena: quantum phenomena, dark matter, dark energy, the origin and evolution of the universe, and the life force. The importance of space-time intervals cannot be overestimated. Two articles published in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Adversus Singularitates: The Ontology of Space–Time Singularities.Gustavo E. Romero - 2013 - Foundations of Science 18 (2):297-306.
    I argue that there are no physical singularities in space–time. Singular space–time models do not belong to the ontology of the world, because of a simple reason: they are concepts, defective solutions of Einstein’s field equations. I discuss the actual implication of the so-called singularity theorems. In remarking the confusion and fog that emerge from the reification of singularities I hope to contribute to a better understanding of the possibilities and limits of the theory of general relativity.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  29. Philosophical problems of space-time theories.Gustavo E. Romero - 2012 - In Gravitation and Cosmology.
    I present a discussion of some open issues in the philosophy of space-time theories. Emphasis is put on the ontological nature of space and time, the relation between determinism and predictability, the origin of irreversible processes in an expanding Universe, and the compatibility of relativity and quantum mechanics. In particular, I argue for a Parmenidean view of time and change, I make clear the difference between ontological determinism and predictability, propose that the origin of the asymmetry observed in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. A Connection between Minkowski and Galilean Space‐times in Quantum Mechanics.Douglas Kutach - 2010 - International Studies in the Philosophy of Science 24 (1):15 – 29.
    Relativistic quantum theories are equipped with a background Minkowski spacetime and non-relativistic quantum theories with a Galilean space-time. Traditional investigations have distinguished their distinct space-time structures and have examined ways in which relativistic theories become sufficiently like Galilean theories in a low velocity approximation or limit. A different way to look at their relationship is to see that both kinds of theories are special cases of a certain five-dimensional generalization involving no limiting procedures or approximations. When one compares (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. How Physics and Metaphysics Interact in Spacetime.Alireza Mansouri - 2015 - Persian Journal on Metaphysics 6 (18):61-76.
    This paper examines how science and metaphysics interact in our theories about space and time. It is argued that scientific development affects philosophical thoughts about space and time. We first review the traditional arguments of substantivalists and relationists about space and time, especially those contained in the correspondence between Leibniz and Clarke. Then we show the mutual influence of science and metaphysics in the modern scientific era: for example, in neo-Newtonian structure, field theory, and special and (...) theories of relativity. In the end, we claim that the substantivalist's position seems more defensible considering new scientific theories, such as Einstein's theory of general relativity. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Is Mass at Rest One and the Same? A Philosophical Comment: on the Quantum Information Theory of Mass in General Relativity and the Standard Model.Vasil Penchev - 2014 - Journal of SibFU. Humanities and Social Sciences 7 (4):704-720.
    The way, in which quantum information can unify quantum mechanics (and therefore the standard model) and general relativity, is investigated. Quantum information is defined as the generalization of the concept of information as to the choice among infinite sets of alternatives. Relevantly, the axiom of choice is necessary in general. The unit of quantum information, a qubit is interpreted as a relevant elementary choice among an infinite set of alternatives generalizing that of a bit. The invariance to the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. [Early First Draft] Must Minkowski Spacetime be Categorized as Pseudoscience? (Revisiting the legitimacy of Mansouri-Sexl test theory).Shiva Meucci - manuscript
    Here we discuss and hope to solve a problem rooted in the necessity of the study of historical science, the slow deviation of physics education over the past century, and how the loss of crucial contextual tool has debilitated discussion of a very important yet specialized physics sub-topic: the isotropy of the one-way speed of light. Most notably, the information that appears to be most commonly missing is not simply the knowledge of the historical fact that Poincare and Lorentz presented (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. The Kochen - Specker theorem in quantum mechanics: a philosophical comment (part 1).Vasil Penchev - 2013 - Philosophical Alternatives 22 (1):67-77.
    Non-commuting quantities and hidden parameters – Wave-corpuscular dualism and hidden parameters – Local or nonlocal hidden parameters – Phase space in quantum mechanics – Weyl, Wigner, and Moyal – Von Neumann’s theorem about the absence of hidden parameters in quantum mechanics and Hermann – Bell’s objection – Quantum-mechanical and mathematical incommeasurability – Kochen – Specker’s idea about their equivalence – The notion of partial algebra – Embeddability of a qubit into a bit – Quantum computer is not Turing machine (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Thoughts on Artificial Intelligence and the Origin of Life Resulting from General Relativity, with Neo-Darwinist Reference to Human Evolution and Mathematical Reference to Cosmology.Rodney Bartlett - manuscript
    When this article was first planned, writing was going to be exclusively about two things - the origin of life and human evolution. But it turned out to be out of the question for the author to restrict himself to these biological and anthropological topics. A proper understanding of them required answering questions like “What is the nature of the universe – the home of life – and how did it originate?”, “How can time travel be removed from fantasy and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36.  50
    Cosmological Black Holes and the Direction of Time.Gustavo E. Romero, Federico G. López Armengol & Daniela Pérez - 2018 - Foundations of Science 23 (2):415-426.
    Macroscopic irreversible processes emerge from fundamental physical laws of reversible character. The source of the local irreversibility seems to be not in the laws themselves but in the initial and boundary conditions of the equations that represent the laws. In this work we propose that the screening of currents by black hole event horizons determines, locally, a preferred direction for the flux of electromagnetic energy. We study the growth of black hole event horizons due to the cosmological expansion and accretion (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. On the construction of the properties of discrete space.Sydney Ernest Grimm - manuscript
    The proposed existence of relative time and the curvature of space – both combined into the concept of spacetime – influences the search for an adequate theoretical model that can describe the structure of space in an accurate way. The aim of building space is to develop a quantum theory of gravitation. This paper investigate the theoretical problems that have their origin in the concepts that are at the basis of phenomenological physics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  38. The relativistic theory of gravitation beyond general relativity.Alfonso Guillen Gomez - manuscript
    It presents the basics of the “Relativistic theory of gravitation”, with the inclusion of original texts, from various papers, published between 1987 and 2009, by theirs authors: S. S Gershtein, A. A. Logunov, Yu. M. Loskutov and M. A. Mestvirishvili, additionally, together with the introductions, summaries and conclusions of the author of this paper. The “Relativistic theory of gravitation” is a gauge theory, compatible with the theories of quantum physics of the electromagnetic, weak and strong forces, which defines gravity as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. The relativistic theory of gravitation beyond general relativity.Guillen Gomez Alfonso Leon - manuscript
    It presents the basics of the “Relativistic theory of gravitation”, with the inclusion of original texts, from various papers, published between 1987 and 2009, by theirs authors: S. S Gershtein, A. A. Logunov, Yu. M. Loskutov and M. A. Mestvirishvili, additionally, together with the introductions, summaries and conclusions of the author of this paper. The “Relativistic theory of gravitation” is a gauge theory, compatible with the theories of quantum physics of the electromagnetic, weak and strong forces, which defines gravity as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Do the Laws of Physics Forbid the Operation of Time Machines?John Earman, Chris Smeenk & Christian Wüthrich - 2009 - Synthese 169 (1):91 - 124.
    We address the question of whether it is possible to operate a time machine by manipulating matter and energy so as to manufacture closed timelike curves. This question has received a great deal of attention in the physics literature, with attempts to prove no- go theorems based on classical general relativity and various hybrid theories serving as steps along the way towards quantum gravity. Despite the effort put into these no-go theorems, there is no widely accepted definition of a (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  41. Absolute Time and Space... Existence beyond Bigbang.Harjeet Singh - 2020 - Delhi, India:
    The new understanding of basic dimensions Absolute Time and Space will open the possibility of exploring beyond our current known Universe. These absolute dimensions might supersede our current Spacetime dimension and related theories. Interpretations based on these dimensions could effectively bridge the gap between theories of microscopic and telescopic worlds and it will eventually give us a better picture of our Universe. This book will take us one step closer towards the understanding of our Entire Existence. As we can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Ontology of Gravitational Singularities.Nicolae Sfetcu - manuscript
    General relativity allows singularities, and we need to understand the ontology of singularities if we want to understand the nature of space and time in the present universe. Although some physicists believe that singularities indicate a failure of general relativity, others believe that singularities open a new horizon in cosmology, with real physical phenomena that can help deepen our understanding of the world. From the definitions of singularities, most known are the possibility that some spacetimes contain incomplete (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Fondamenti geometrici e problemi filosofici dello spazio-tempo.Luciano Boi - 2012 - Isonomía. Revista de Teoría y Filosofía Del Derecho:1-37.
    The answer to some of the longstanding issues in the 20th century theoretical physics, such as those of the incompatibility between general relativity and quantum mechanics, the broken symmetries of the electroweak force acting at the subatomic scale and the missing mass of Higgs particle, and also those of the cosmic singularity and the black matter and energy, appear to be closely related to the problem of the quantum texture of space-time and the fluctuations of its underlying geometry. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  44. Holes in Spacetime: Some Neglected Essentials.Trevor Teitel - 2019 - Journal of Philosophy 116 (7):353-389.
    The hole argument purports to show that all spacetime theories of a certain form are indeterministic, including the General Theory of Relativity. The argument has given rise to an industry of searching for a metaphysics of spacetime that delivers the right modal implications to rescue determinism. In this paper, I first argue that certain prominent extant replies to the hole argument—namely, those that appeal to an essentialist doctrine about spacetime—fail to deliver the requisite modal implications. As part of my (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  45. Time travel and time machines.Chris Smeenk & Christian Wuthrich - 2011 - In Craig Callender (ed.), The Oxford Handbook of Philosophy of Time. Oxford: Oxford University Press. pp. 577-630.
    This paper is an enquiry into the logical, metaphysical, and physical possibility of time travel understood in the sense of the existence of closed worldlines that can be traced out by physical objects. We argue that none of the purported paradoxes rule out time travel either on grounds of logic or metaphysics. More relevantly, modern spacetime theories such as general relativity seem to permit models that feature closed worldlines. We discuss, in the context of Gödel's infamous argument for the (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  46. In General Relativity, gravity is effect of coordinates with change of geometry of spacetime.Alfonso Leon Guillen Gomez - manuscript
    Einstein structured the theoretical frame of his work on gravity under the Special Relativity and Minkowski´s spacetime using three guide principles: The strong principle of equivalence establishes that acceleration and gravity are equivalents. Mach´s principle explains the inertia of the bodies and particles as completely determined by the total mass existent in the universe. And, general covariance searches to extend the principle of relativity from inertial motion to accelerated motion. Mach´s principle was abandoned quickly, general covariance resulted mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Special and General Relativity based on the Physical Meaning of the Spacetime Interval.Alan Macdonald - manuscript
    We outline a simple development of special and general relativity based on the physical meaning of the spacetime interval. The Lorentz transformation is not used.
    Download  
     
    Export citation  
     
    Bookmark  
  48. Are the waves detected by LIGO the waves according to Einstein, Pirani, Bondi, Trautmann, Kopeikin or what are they?Alfonso Guillen Gomez - manuscript
    From the geometric formulation of gravity, according to the Einstein-Grosmann-Hilbert equations, of November 1915, as the geodesic movement in the semirimennian manifold of positive curvature, spacetime, where due to absence of symmetries, the conservation of energy-impulse is not possible taking together the material processes and that of the gravitational geometric field, however, given those symmetries in the flat Minkowski spacetime, using the De Sitter model, Einstein linearizing gravitation, of course, really in the absence of gravity, in 1916, purged of some (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. String Theory, Loop Quantum Gravity and Eternalism.Baptiste Le Bihan - 2020 - European Journal for Philosophy of Science 10:17.
    Eternalism, the view that what we regard locally as being located in the past, the present and the future equally exists, is the best ontological account of temporal existence in line with special and general relativity. However, special and general relativity are not fundamental theories and several research programs aim at finding a more fundamental theory of quantum gravity weaving together all we know from relativistic physics and quantum physics. Interestingly, some of these approaches assert that time is (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  50. Time in Classical and Relativistic Physics.Gordon Belot - 2013 - In Adrian Bardon & Heather Dyke (eds.), A Companion to the Philosophy of Time. Chichester, UK: Blackwell. pp. 185-200.
    This is a short, nontechnical introduction to features of time in classical and relativistic physics and their representation in the four-dimensional geometry of spacetime. Topics discussed include: the relativity of simultaneity in special and general relativity; the ‘twin paradox’ and differential aging effects in special and general relativity; and time travel in general relativity.
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 998