Results for 'biological model'

999 found
Order:
  1. Laws, Models, and Theories in Biology: A Unifying Interpretation.Pablo Lorenzano - 2020 - In Lorenzo Baravalle & Luciana Zaterka (eds.), Life and Evolution, History, Philosophy and Theory of the Life Sciences. pp. 163-207.
    Three metascientific concepts that have been object of philosophical analysis are the concepts oflaw, model and theory. The aim ofthis article is to present the explication of these concepts, and of their relationships, made within the framework of Sneedean or Metatheoretical Structuralism (Balzer et al. 1987), and of their application to a case from the realm of biology: Population Dynamics. The analysis carried out will make it possible to support, contrary to what some philosophers of science in general and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  2. Review of Millikan, Ruth Garrett, Language: A Biological Model[REVIEW]Brian Epstein - 2006 - Notre Dame Philosophical Reviews 2006 (5).
    Ruth Mil­likan is one of the most inter­est­ing and influ­en­tial philoso­phers alive. Her work is also hard to pen­e­trate. In this review, I try to present and assess her work on the nature of lan­guage, which is col­lected in this anthol­ogy. I also crit­i­cize her analy­sis of “nat­ural con­ven­tion” as well as her dis­cus­sion of illo­cu­tion­ary acts.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  3. Interactive Models in Synthetic Biology: Exploring Biological and Cognitive Inter-Identities.Leonardo Bich - 2020 - Frontiers in Psychology 11.
    The aim of this article is to investigate the relevance and implications of synthetic models for the study of the interactive dimension of minimal life and cognition, by taking into consideration how the use of artificial systems may contribute to an understanding of the way in which interactions may affect or even contribute to shape biological identities. To do so, this article analyzes experimental work in synthetic biology on different types of interactions between artificial and natural systems, more specifically: (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. A Formal Model of Primitive Aspects of Cognition and Learning in Cell Biology as a Generalizable Case Study of Peircean Logic.Timothy M. Rogers - manuscript
    A formal model of the processes of digestion in a hypothetical cell is developed and discussed as a case study of how the threefold logic of Peircean semiotics works within Rosen’s paradigm of relational ontology. The formal model is used to demonstrate several fundamental differences between a relational description of biological processes and a mechanistic description. The formal model produces a logic of embodied generalization that is mediated and determined by the cell through its interactions with (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. From Silico to Vitro: Computational Models of Complex Biological Systems Reveal Real-World Emergent Phenomena.Orly Stettiner - 2016 - In Vincent C. Müller (ed.), Computing and philosophy: Selected papers from IACAP 2014. Cham: Springer. pp. 133-147.
    Computer simulations constitute a significant scientific tool for promoting scientific understanding of natural phenomena and dynamic processes. Substantial leaps in computational force and software engineering methodologies now allow the design and development of large-scale biological models, which – when combined with advanced graphics tools – may produce realistic biological scenarios, that reveal new scientific explanations and knowledge about real life phenomena. A state-of-the-art simulation system termed Reactive Animation (RA) will serve as a study case to examine the contemporary (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. The Biosemiotic Approach in Biology : Theoretical Bases and Applied Models.Joao Queiroz, Claus Emmeche, Kalevi Kull & Charbel El-Hani - 2011 - In George Terzis & Robert Arp (eds.), Information and Living Systems -- Philosophical and Scientific Perspectives. MIT Press. pp. 91-130.
    Biosemiotics is a growing fi eld that investigates semiotic processes in the living realm in an attempt to combine the fi ndings of the biological sciences and semiotics. Semiotic processes are more or less what biologists have typically referred to as “ signals, ” “ codes, ”and “ information processing ”in biosystems, but these processes are here understood under the more general notion of semiosis, that is, the production, action, and interpretation of signs. Thus, biosemiotics can be seen as (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  7. How-Possibly Explanation in Biology: Lessons from Wilhelm His’s ‘Simple Experiments’ Models.Christopher Pearson - 2018 - Philosophy, Theory, and Practice in Biology 10 (4).
    A common view of how-possibly explanations in biology treats them as explanatorily incomplete. In addition to this interpretation of how-possibly explanation, I argue that there is another interpretation, one which features what I term “explanatory strategies.” This strategy-centered interpretation of how-possibly explanation centers on there being a different explanatory context within which how-possibly explanations are offered. I contend that, in conditions where this strategy context is recognized, how-possibly explanations can be understood as complete explanations. I defend this alternative interpretation by (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  8. Underdetermination and Models in Biology.Petr Jedlička - 2017 - Teorie Vědy / Theory of Science 39 (2):167-186.
    Since the early 20th century underdetermination has been one of the most contentious problems in the philosophy of science. In this article I relate the underdetermination problem to models in biology and defend two main lines of argument: First, the use of models in this discipline lends strong support to the underdetermination thesis. Second, models and theories in biology are not determined strictly by the logic of representation of the studied phenomena, but also by other constraints such as research traditions, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Non-linear Analysis of Models for Biological Pattern Formation: Application to Ocular Dominance Stripes.Michael Lyons & Lionel G. Harrison - 1993 - In Frank Eeckman (ed.), Neural Systems: Analysis and Modeling. Springer. pp. 39-46.
    We present a technique for the analysis of pattern formation by a class of models for the formation of ocular dominance stripes in the striate cortex of some mammals. The method, which employs the adiabatic approximation to derive a set of ordinary differential equations for patterning modes, has been successfully applied to reaction-diffusion models for striped patterns [1]. Models of ocular dominance stripes have been studied [2,3] by computation, or by linearization of the model equations. These techniques do not (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Aristotle's Syllogistic Model of Knowledge and the Biological Sciences: Demonstrating Natural Processes.Mariska Leunissen - 2010 - Apeiron 43 (2-3):31-60.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  11. Understanding Biology in the Age of Artificial Intelligence.Adham El Shazly, Elsa Lawerence, Srijit Seal, Chaitanya Joshi, Matthew Greening, Pietro Lio, Shantung Singh, Andreas Bender & Pietro Sormanni - manuscript
    Modern life sciences research is increasingly relying on artificial intelligence (AI) approaches to model biological systems, primarily centered around the use of machine learning (ML) models. Although ML is undeniably useful for identifying patterns in large, complex data sets, its widespread application in biological sciences represents a significant deviation from traditional methods of scientific inquiry. As such, the interplay between these models and scientific understanding in biology is a topic with important implications for the future of scientific (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Diagrams as locality aids for explanation and model construction in cell biology.Nicholaos Jones & Olaf Wolkenhauer - 2012 - Biology and Philosophy 27 (5):705-721.
    Using as case studies two early diagrams that represent mechanisms of the cell division cycle, we aim to extend prior philosophical analyses of the roles of diagrams in scientific reasoning, and specifically their role in biological reasoning. The diagrams we discuss are, in practice, integral and indispensible elements of reasoning from experimental data about the cell division cycle to mathematical models of the cycle’s molecular mechanisms. In accordance with prior analyses, the diagrams provide functional explanations of the cell cycle (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  13. The phylogeography debate and the epistemology of model-based evolutionary biology.Alfonso Arroyo-Santos, Mark E. Olson & Francisco Vergara-Silva - 2014 - Biology and Philosophy 29 (6):833-850.
    Phylogeography, a relatively new subdicipline of evolutionary biology that attempts to unify the fields of phylogenetics and population biology in an explicit geographical context, has hosted in recent years a highly polarized debate related to the purported benefits and limitations that qualitative versus quantitative methods might contribute or impose on inferential processes in evolutionary biology. Here we present a friendly, non-technical introduction to the conflicting methods underlying the controversy, and exemplify it with a balanced selection of quotes from the primary (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  14. The Structure of Idealization in Biological Theories: The Case of the Wright-Fisher Model.Donato Rodriguez Xavier & Arroyo-Santos Alfonso - 2012 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 43 (1):11-27.
    In this paper we present a new framework of idealization in biology. We characterize idealizations as a network of counterfactual and hypothetical conditionals that can exhibit different “degrees of contingency”. We use this idea to say that, in departing more or less from the actual world, idealizations can serve numerous epistemic, methodological or heuristic purposes within scientific research. We defend that, in part, this structure explains why idealizations, despite being deformations of reality, are so successful in scientific practice. For illustrative (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. The challenges of purely mechanistic models in biology and the minimum need for a 'mechanism-plus-X' framework.Sepehr Ehsani - 2018 - Dissertation, University College London
    Ever since the advent of molecular biology in the 1970s, mechanical models have become the dogma in the field, where a "true" understanding of any subject is equated to a mechanistic description. This has been to the detriment of the biomedical sciences, where, barring some exceptions, notable new feats of understanding have arguably not been achieved in normal and disease biology, including neurodegenerative disease and cancer pathobiology. I argue for a "mechanism-plus-X" paradigm, where mainstay elements of mechanistic models such as (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  16.  59
    The Biological Framework for a Mathematical Universe.Ronald Williams - manuscript
    The mathematical universe hypothesis is a theory that the physical universe is not merely described by mathematics, but is mathematics, specifically a mathematical structure. Our research provides evidence that the mathematical structure of the universe is biological in nature and all systems, processes, and objects within the universe function in harmony with biological patterns. Living organisms are the result of the universe’s biological pattern and are embedded within their physiology the patterns of this biological universe. Therefore (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Using blinking fractals for mathematical modelling of processes of growth in biological systems.Yaroslav Sergeyev - 2011 - Informatica 22 (4):559–576.
    Many biological processes and objects can be described by fractals. The paper uses a new type of objects – blinking fractals – that are not covered by traditional theories considering dynamics of self-similarity processes. It is shown that both traditional and blinking fractals can be successfully studied by a recent approach allowing one to work numerically with infinite and infinitesimal numbers. It is shown that blinking fractals can be applied for modeling complex processes of growth of biological systems (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  18. Stepping Beyond the Newtonian Paradigm in Biology. Towards an Integrable Model of Life: Accelerating Discovery in the Biological Foundations of Science.Plamen L. Simeonov, Edwin Brezina, Ron Cottam, Andreé C. Ehresmann, Arran Gare, Ted Goranson, Jaime Gomez‐Ramirez, Brian D. Josephson, Bruno Marchal, Koichiro Matsuno, Robert S. Root-­Bernstein, Otto E. Rössler, Stanley N. Salthe, Marcin Schroeder, Bill Seaman & Pridi Siregar - 2012 - In Plamen L. Simeonov, Leslie S. Smith & Andreé C. Ehresmann (eds.), Integral Biomathics: Tracing the Road to Reality. Springer. pp. 328-427.
    The INBIOSA project brings together a group of experts across many disciplines who believe that science requires a revolutionary transformative step in order to address many of the vexing challenges presented by the world. It is INBIOSA’s purpose to enable the focused collaboration of an interdisciplinary community of original thinkers. This paper sets out the case for support for this effort. The focus of the transformative research program proposal is biology-centric. We admit that biology to date has been more fact-oriented (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  19. Is it Really so Easy to Model Biological Evolution in Terms of Design-free Cumulative Selection?Peter Punin - manuscript
    Abstract: Without directly taking sides in the design/anti-design debate, this paper defends the following position: the assertion that biological evolution “is” design-free presupposes the possibility to model biological evolution in a design-free way. Certainly, there are design-free models of evolution based on cumulative selection. But “to model” is a verb denoting “modeling” as the process leading to a model. So any modeling – trivially – needs “previous human design.” Nevertheless, contrary to other scientific activities which (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Reducing the Dauer Larva: molecular models of biological phenomena in Caenorhabditis elegans research.Arciszewski Michal - manuscript
    One important aspect of biological explanation is detailed causal modeling of particular phenomena in limited experimental background conditions. Recognising this allows a new avenue for intertheoretic reduction to be seen. Reductions in biology are possible, when one fully recognises that a sufficient condition for a reduction in biology is a molecular model of 1) only the demonstrated causal parameters of a biological model and 2) only within a replicable experimental background. These intertheoretic identifications –which are ubiquitous (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. From Biological Synapses to "Intelligent" Robots.Birgitta Dresp-Langley - 2022 - Electronics 11:1-28.
    This selective review explores biologically inspired learning as a model for intelligent robot control and sensing technology on the basis of specific examples. Hebbian synaptic learning is discussed as a functionally relevant model for machine learning and intelligence, as explained on the basis of examples from the highly plastic biological neural networks of invertebrates and vertebrates. Its potential for adaptive learning and control without supervision, the generation of functional complexity, and control architectures based on self-organization is brought (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  22. A Biologically Informed Hylomorphism.Christopher J. Austin - 2017 - In William M. R. Simpson, Robert C. Koons & Nicholas J. Teh (eds.), Neo-Aristotelian Perspectives on Contemporary Science. Routledge. pp. 185-210.
    Although contemporary metaphysics has recently undergone a neo-Aristotelian revival wherein dispositions, or capacities are now commonplace in empirically grounded ontologies, being routinely utilised in theories of causality and modality, a central Aristotelian concept has yet to be given serious attention – the doctrine of hylomorphism. The reason for this is clear: while the Aristotelian ontological distinction between actuality and potentiality has proven to be a fruitful conceptual framework with which to model the operation of the natural world, the distinction (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  23.  33
    Human stem-cell-derived embryo models: When bioethical normativity meets biological ontology.Adrian Villalba - 2024 - Developmental Biology 508.
    Download  
     
    Export citation  
     
    Bookmark  
  24. Mathematical biology and the existence of biological laws.Mauro Dorato - 2012 - In D. Dieks, S. Hartmann, T. Uebel & M. Weber (eds.), Probabilities, Laws and Structure. Springer.
    An influential position in the philosophy of biology claims that there are no biological laws, since any apparently biological generalization is either too accidental, fact-like or contingent to be named a law, or is simply reducible to physical laws that regulate electrical and chemical interactions taking place between merely physical systems. In the following I will stress a neglected aspect of the debate that emerges directly from the growing importance of mathematical models of biological phenomena. My main (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  25. Standard Aberration: Cancer Biology and the Modeling Account of Normal Function.Seth Goldwasser - 2023 - Biology and Philosophy 38 (1):(4) 1-33.
    Cancer biology features the ascription of normal functions to parts of cancers. At least some ascriptions of function in cancer biology track local normality of parts within the global abnormality of the aberration to which those parts belong. That is, cancer biologists identify as functions activities that, in some sense, parts of cancers are supposed to perform, despite cancers themselves having no purpose. The present paper provides a theory to accommodate these normal function ascriptions—I call it the Modeling Account of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  26. Biological Autonomy.Attila Grandpierre & Menas Kafatos - 2012 - Philosophy Study 2 (9):631-649.
    We argue that genuine biological autonomy, or described at human level as free will, requires taking into account quantum vacuum processes in the context of biological teleology. One faces at least three basic problems of genuine biological autonomy: (1) if biological autonomy is not physical, where does it come from? (2) Is there a room for biological causes? And (3) how to obtain a workable model of biological teleology? It is shown here that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  27. Model Organisms are Not (Theoretical) Models.Arnon Levy & Adrian Currie - 2015 - British Journal for the Philosophy of Science 66 (2):327-348.
    Many biological investigations are organized around a small group of species, often referred to as ‘model organisms’, such as the fruit fly Drosophila melanogaster. The terms ‘model’ and ‘modelling’ also occur in biology in association with mathematical and mechanistic theorizing, as in the Lotka–Volterra model of predator-prey dynamics. What is the relation between theoretical models and model organisms? Are these models in the same sense? We offer an account on which the two practices are shown (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  28. Synthetic Biology and Biofuels.Catherine Kendig - 2012 - In Paul B. Thompson & David M. Kaplan (eds.), Encyclopedia of Food and Agricultural Ethics. New York: Springer Verlag.
    Synthetic biology is a field of research that concentrates on the design, construction, and modification of new biomolecular parts and metabolic pathways using engineering techniques and computational models. By employing knowledge of operational pathways from engineering and mathematics such as circuits, oscillators, and digital logic gates, it uses these to understand, model, rewire, and reprogram biological networks and modules. Standard biological parts with known functions are catalogued in a number of registries (e.g. Massachusetts Institute of Technology Registry (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  29. Are there Model Behaviours for Model Organism Research? Commentary on Nicole Nelson's Model Behavior.Jacqueline A. Sullivan - 2020 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 82:101266.
    One might be inclined to assume, given the mouse donning its cover, that the behavior of interest in Nicole Nelson's book Model Behavior (2018) is that of organisms like mice that are widely used as “stand-ins” for investigating the causes of human behavior. Instead, Nelson's ethnographic study focuses on the strategies adopted by a community of rodent behavioral researchers to identify and respond to epistemic challenges they face in using mice as models to understand the causes of disordered human (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  30. Multiple-Models Juxtaposition and Trade-Offs among Modeling Desiderata.Yoshinari Yoshida - 2021 - Philosophy of Science 88 (1):103-123.
    This article offers a characterization of what I call multiple-models juxtaposition, a strategy for managing trade-offs among modeling desiderata. MMJ displays models of distinct phenomena to...
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  31. Interdisciplinarity in the Making: Models and Methods in Frontier Science.Nancy J. Nersessian - 2022 - Cambridge, MA: MIT.
    A cognitive ethnography of how bioengineering scientists create innovative modeling methods. In this first full-scale, long-term cognitive ethnography by a philosopher of science, Nancy J. Nersessian offers an account of how scientists at the interdisciplinary frontiers of bioengineering create novel problem-solving methods. Bioengineering scientists model complex dynamical biological systems using concepts, methods, materials, and other resources drawn primarily from engineering. They aim to understand these systems sufficiently to control or intervene in them. What Nersessian examines here is how (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  32. Biological Explanation.Angela Potochnik - 2013 - In Kostas Kampourakis (ed.), The Philosophy of Biology: A Companion for Educators. Springer. pp. 49-65.
    One of the central aims of science is explanation: scientists seek to uncover why things happen the way they do. This chapter addresses what kinds of explanations are formulated in biology, how explanatory aims influence other features of the field of biology, and the implications of all of this for biology education. Philosophical treatments of scientific explanation have been both complicated and enriched by attention to explanatory strategies in biology. Most basically, whereas traditional philosophy of science based explanation on derivation (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  33. From Models to Simulations.Franck Varenne - 2018 - London, UK: Routledge.
    This book analyses the impact computerization has had on contemporary science and explains the origins, technical nature and epistemological consequences of the current decisive interplay between technology and science: an intertwining of formalism, computation, data acquisition, data and visualization and how these factors have led to the spread of simulation models since the 1950s. -/- Using historical, comparative and interpretative case studies from a range of disciplines, with a particular emphasis on the case of plant studies, the author shows how (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  34. Models in the Geosciences.Alisa Bokulich & Naomi Oreskes - 2017 - In Magnani Lorenzo & Bertolotti Tommaso Wayne (eds.), Springer Handbook of Model-Based Science. Springer. pp. 891-911.
    The geosciences include a wide spectrum of disciplines ranging from paleontology to climate science, and involve studies of a vast range of spatial and temporal scales, from the deep-time history of microbial life to the future of a system no less immense and complex than the entire Earth. Modeling is thus a central and indispensable tool across the geosciences. Here, we review both the history and current state of model-based inquiry in the geosciences. Research in these fields makes use (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  35. Causation and Causal Selection in the Biopsychosocial Model of Health and Disease.Hane Htut Maung - 2021 - European Journal of Analytic Philosophy 17 (2):5-27.
    In The Biopsychosocial Model of Health and Disease, Derek Bolton and Grant Gillett argue that a defensible updated version of the biopsychosocial model requires a metaphysically adequate account of disease causation that can accommodate biological, psychological, and social factors. This present paper offers a philosophical critique of their account of biopsychosocial causation. I argue that their account relies on claims about the normativity and the semantic content of biological information that are metaphysically contentious. Moreover, I suggest (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  36. Computer models and the evidence of anthropogenic climate change: An epistemology of variety-of-evidence inferences and robustness analysis.Martin Vezer - 2016 - Computer Models and the Evidence of Anthropogenic Climate Change: An Epistemology of Variety-of-Evidence Inferences and Robustness Analysis MA Vezér Studies in History and Philosophy of Science 56:95-102.
    To study climate change, scientists employ computer models, which approximate target systems with various levels of skill. Given the imperfection of climate models, how do scientists use simulations to generate knowledge about the causes of observed climate change? Addressing a similar question in the context of biological modelling, Levins (1966) proposed an account grounded in robustness analysis. Recent philosophical discussions dispute the confirmatory power of robustness, raising the question of how the results of computer modelling studies contribute to the (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  37. Biological Control Variously Materialized: Modeling, Experimentation and Exploration in Multiple Media.Tarja Knuuttila & Andrea Loettgers - 2021 - Perspectives on Science 29 (4):468-492.
    This paper examines two parallel discussions of scientific modeling which have invoked experimentation in addressing the role of models in scientific inquiry. One side discusses the experimental character of models, whereas the other focuses on their exploratory uses. Although both relate modeling to experimentation, they do so differently. The former has considered the similarities and differences between models and experiments, addressing, in particular, the epistemic value of materiality. By contrast, the focus on exploratory modeling has highlighted the various kinds of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  38. Models and Inferences in Science.Emiliano Ippoliti, Fabio Sterpetti & Thomas Nickles (eds.) - 2016 - Cham: Springer.
    The book answers long-standing questions on scientific modeling and inference across multiple perspectives and disciplines, including logic, mathematics, physics and medicine. The different chapters cover a variety of issues, such as the role models play in scientific practice; the way science shapes our concept of models; ways of modeling the pursuit of scientific knowledge; the relationship between our concept of models and our concept of science. The book also discusses models and scientific explanations; models in the semantic view of theories; (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  39. Complexity Biology-based Information Structures can explain Subjectivity, Objective Reduction of Wave Packets, and Non-Computability.Alex Hankey - 2014 - Cosmos and History 10 (1):237-250.
    Background: how mind functions is subject to continuing scientific discussion. A simplistic approach says that, since no convincing way has been found to model subjective experience, mind cannot exist. A second holds that, since mind cannot be described by classical physics, it must be described by quantum physics. Another perspective concerns mind's hypothesized ability to interact with the world of quanta: it should be responsible for reduction of quantum wave packets; physics producing 'Objective Reduction' is postulated to form the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  40. Embryological models in ancient philosophy.Devin Henry - 2005 - Phronesis 50 (1):1 - 42.
    Historically embryogenesis has been among the most philosophically intriguing phenomena. In this paper I focus on one aspect of biological development that was particularly perplexing to the ancients: self-organisation. For many ancients, the fact that an organism determines the important features of its own development required a special model for understanding how this was possible. This was especially true for Aristotle, Alexander, and Simplicius, who all looked to contemporary technology to supply that model. However, they did not (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  41. Modelling as Indirect Representation? The Lotka–Volterra Model Revisited.Tarja Knuuttila & Andrea Loettgers - 2017 - British Journal for the Philosophy of Science 68 (4):1007-1036.
    ABSTRACT Is there something specific about modelling that distinguishes it from many other theoretical endeavours? We consider Michael Weisberg’s thesis that modelling is a form of indirect representation through a close examination of the historical roots of the Lotka–Volterra model. While Weisberg discusses only Volterra’s work, we also study Lotka’s very different design of the Lotka–Volterra model. We will argue that while there are elements of indirect representation in both Volterra’s and Lotka’s modelling approaches, they are largely due (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  42. From Biological to Synthetic Neurorobotics Approaches to Understanding the Structure Essential to Consciousness (Part 2).Jun Tani & Jeff White - 2016 - APA Newsletter on Philosophy and Computers 2 (16):29-41.
    We have been left with a big challenge, to articulate consciousness and also to prove it in an artificial agent against a biological standard. After introducing Boltuc’s h-consciousness in the last paper, we briefly reviewed some salient neurology in order to sketch less of a standard than a series of targets for artificial consciousness, “most-consciousness” and “myth-consciousness.” With these targets on the horizon, we began reviewing the research program pursued by Jun Tani and colleagues in the isolation of the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  43. Mechanist idealisation in systems biology.Dingmar van Eck & Cory Wright - 2020 - Synthese 199 (1-2):1555-1575.
    This paper adds to the philosophical literature on mechanistic explanation by elaborating two related explanatory functions of idealisation in mechanistic models. The first function involves explaining the presence of structural/organizational features of mechanisms by reference to their role as difference-makers for performance requirements. The second involves tracking counterfactual dependency relations between features of mechanisms and features of mechanistic explanandum phenomena. To make these functions salient, we relate our discussion to an exemplar from systems biological research on the mechanism for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  44. From Biological to Synthetic Neurorobotics Approaches to Understanding the Structure Essential to Consciousness, Part 1.Jeffrey White - 2016 - APA Newsletter on Philosophy and Computers 1 (16):13-23.
    Direct neurological and especially imaging-driven investigations into the structures essential to naturally occurring cognitive systems in their development and operation have motivated broadening interest in the potential for artificial consciousness modeled on these systems. This first paper in a series of three begins with a brief review of Boltuc’s (2009) “brain-based” thesis on the prospect of artificial consciousness, focusing on his formulation of h-consciousness. We then explore some of the implications of brain research on the structure of consciousness, finding limitations (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  45. Models, information and meaning.Marc Artiga - 2020 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 82:101284.
    There has recently been an explosion of formal models of signalling, which have been developed to learn about different aspects of meaning. This paper discusses whether that success can also be used to provide an original naturalistic theory of meaning in terms of information or some related notion. In particular, it argues that, although these models can teach us a lot about different aspects of content, at the moment they fail to support the idea that meaning just is some kind (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  46. What are biological sexes?Paul E. Griffiths - manuscript
    Biological sexes (male, female, hermaphrodite) are defined by different gametic strategies for reproduction. Sexes are regions of phenotypic space which implement those gametic reproductive strategies. Individual organisms pass in and out of these regions – sexes - one or more times during their lives. Importantly, sexes are life-history stages rather than applying to organisms over their entire lifespan. This fact has been obscured by concentrating on humans, and ignoring species which regularly change sex, as well as those with non-genetic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Experimental Modeling in Biology: In Vivo Representation and Stand-ins As Modeling Strategies.Marcel Weber - 2014 - Philosophy of Science 81 (5):756-769.
    Experimental modeling in biology involves the use of living organisms (not necessarily so-called "model organisms") in order to model or simulate biological processes. I argue here that experimental modeling is a bona fide form of scientific modeling that plays an epistemic role that is distinct from that of ordinary biological experiments. What distinguishes them from ordinary experiments is that they use what I call "in vivo representations" where one kind of causal process is used to stand (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  48. Model Organisms for Studying Decision-Making: A Phylogenetically Expanded Perspective.Linus Ta-Lun Huang, Leonardo Bich & William Bechtel - 2021 - Philosophy of Science 88 (5):1055-1066.
    This article explores the use of model organisms in studying the cognitive phenomenon of decision-making. Drawing on the framework of biological control to develop a skeletal conception of decision-making, we show that two core features of decision-making mechanisms can be identified by studying model organisms, such as E. coli, jellyfish, C. elegans, lamprey, and so on. First, decision mechanisms are distributed and heterarchically structured. Second, they depend heavily on chemical information processing, such as that involving neuromodulators. We (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Modelling with words: Narrative and natural selection.Dominic K. Dimech - 2017 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 62:20-24.
    I argue that verbal models should be included in a philosophical account of the scientific practice of modelling. Weisberg (2013) has directly opposed this thesis on the grounds that verbal structures, if they are used in science, only merely describe models. I look at examples from Darwin's On the Origin of Species (1859) of verbally constructed narratives that I claim model the general phenomenon of evolution by natural selection. In each of the cases I look at, a particular scenario (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  50. The Environment Ontology: Contextualising biological and biomedical entities.Pier Luigi Buttigieg, Norman Morrison, Barry Smith, Christopher J. Mungall & Suzanna E. Lewis - 2013 - Journal of Biomedical Semantics 4 (43):1-9.
    As biological and biomedical research increasingly reference the environmental context of the biological entities under study, the need for formalisation and standardisation of environment descriptors is growing. The Environment Ontology (ENVO) is a community-led, open project which seeks to provide an ontology for specifying a wide range of environments relevant to multiple life science disciplines and, through an open participation model, to accommodate the terminological requirements of all those needing to annotate data using ontology classes. This paper (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
1 — 50 / 999