Results for 'classical mathematics, constructive mathematics, L. Carnot's mechancis, S. Carnot's thermodynamics, geometry'

955 found
Order:
  1. Alternative mathematics and alternative theoretical physics: The method for linking them together.Antonino Drago - 1996 - Epistemologia 19 (1):33-50.
    I characterize Bishop's constructive mathematics as an alternative to classical mathematics, which makes use of the actual infinity. From the history an accurate investigation of past physical theories I obtianed some ones - mainly Lazare Carnot's mechanics and Sadi Carnot's thermodynamics - which are alternative to the dominant theories - e.g. Newtopn's mechanics. The way to link together mathematics to theoretical physics is generalized and some general considerations, in particualr on the geoemtry in theoretical physics, are (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  2. From the History of Physics to the Discovery of the Foundations of Physics,.Antonino Drago - manuscript
    FROM THE HISTORY OF PHYSICS TO THE DISCOVERY OF THE FOUNDATIONS OF PHYSICS By Antonino Drago, formerly at Naples University “Federico II”, Italy – drago@unina,.it (Size : 391.800 bytes 75,400 words) The book summarizes a half a century author’s work on the foundations of physics. For the forst time is established a level of discourse on theoretical physics which at the same time is philosophical in nature (kinds of infinity, kinds of organization) and formal (kinds of mathematics, kinds of logic). (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. A mathematical theory of truth and an application to the regress problem.S. Heikkilä - forthcoming - Nonlinear Studies 22 (2).
    In this paper a class of languages which are formal enough for mathematical reasoning is introduced. Its languages are called mathematically agreeable. Languages containing a given MA language L, and being sublanguages of L augmented by a monadic predicate, are constructed. A mathematical theory of truth (shortly MTT) is formulated for some of those languages. MTT makes them fully interpreted MA languages which posses their own truth predicates. MTT is shown to conform well with the eight norms formulated for theories (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. The Constitution of Weyl’s Pure Infinitesimal World Geometry.C. D. McCoy - 2022 - Hopos: The Journal of the International Society for the History of Philosophy of Science 12 (1):189–208.
    Hermann Weyl was one of the most important figures involved in the early elaboration of the general theory of relativity and its fundamentally geometrical spacetime picture of the world. Weyl’s development of “pure infinitesimal geometry” out of relativity theory was the basis of his remarkable attempt at unifying gravitation and electromagnetism. Many interpreters have focused primarily on Weyl’s philosophical influences, especially the influence of Husserl’s transcendental phenomenology, as the motivation for these efforts. In this article, I argue both that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Thermodynamics of an Empty Box.G. J. Schmitz, M. te Vrugt, T. Haug-Warberg, L. Ellingsen & P. Needham - 2023 - Entropy 25 (315):1-30.
    A gas in a box is perhaps the most important model system studied in thermodynamics and statistical mechanics. Usually, studies focus on the gas, whereas the box merely serves as an idealized confinement. The present article focuses on the box as the central object and develops a thermodynamic theory by treating the geometric degrees of freedom of the box as the degrees of freedom of a thermodynamic system. Applying standard mathematical methods to the thermody- namics of an empty box allows (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6.  26
    (1 other version)Mathematics and society reunited: The social aspects of Brouwer's intuitionism.Kati Kish Bar-On - 2024 - Studies in History and Philosophy of Science 108:28-37.
    Brouwer's philosophy of mathematics is usually regarded as an intra-subjective, even solipsistic approach, an approach that also underlies his mathematical intuitionism, as he strived to create a mathematics that develops out of something inner and a-linguistic. Thus, points of connection between Brouwer's mathematical views and his views about and the social world seem improbable and are rarely mentioned in the literature. The current paper aims to challenge and change that. The paper employs a socially oriented prism to examine Brouwer's views (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Three Dogmas of First-Order Logic and some Evidence-based Consequences for Constructive Mathematics of differentiating between Hilbertian Theism, Brouwerian Atheism and Finitary Agnosticism.Bhupinder Singh Anand - manuscript
    We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. -/- We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. -/- (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. (1 other version)Artificial evil and the foundation of computer ethics.L. Floridi & J. Sanders - 2000 - Etica E Politica 2 (2).
    Moral reasoning traditionally distinguishes two types of evil: moral and natural. The standard view is that ME is the product of human agency and so includes phenomena such as war, torture and psychological cruelty; that NE is the product of nonhuman agency, and so includes natural disasters such as earthquakes, floods, disease and famine; and finally, that more complex cases are appropriately analysed as a combination of ME and NE. Recently, as a result of developments in autonomous agents in cyberspace, (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  9. Bishop's Mathematics: a Philosophical Perspective.Laura Crosilla - forthcoming - In Handbook of Bishop's Mathematics. CUP.
    Errett Bishop's work in constructive mathematics is overwhelmingly regarded as a turning point for mathematics based on intuitionistic logic. It brought new life to this form of mathematics and prompted the development of new areas of research that witness today's depth and breadth of constructive mathematics. Surprisingly, notwithstanding the extensive mathematical progress since the publication in 1967 of Errett Bishop's Foundations of Constructive Analysis, there has been no corresponding advances in the philosophy of constructive mathematics Bishop (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Model substantiation of strategies of economic behavior in the context of increasing negative impact of environmental factors in the context of sustainable development.R. V. Ivanov, Tatyana Grynko, V. M. Porokhnya, Roman Pavlov & L. S. Golovkova - 2022 - IOP Conference Series: Earth and Environmental Science 1049:012041.
    The concept of sustainable development considers environmental, social and economic issues in general. And the goals of resource conservation and socio-economic development do not contradict each other, but contribute to mutual reinforcement. The purpose of this study is to build and test an economic and mathematical model for the formation of strategies for the behavior of an economic entity with an increase in the impact of negative environmental factors. The proposed strategies and their models are based on the income-expenditure balance (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. (1 other version)Kant's Views on Non-Euclidean Geometry.Michael Cuffaro - 2012 - Proceedings of the Canadian Society for History and Philosophy of Mathematics 25:42-54.
    Kant's arguments for the synthetic a priori status of geometry are generally taken to have been refuted by the development of non-Euclidean geometries. Recently, however, some philosophers have argued that, on the contrary, the development of non-Euclidean geometry has confirmed Kant's views, for since a demonstration of the consistency of non-Euclidean geometry depends on a demonstration of its equi-consistency with Euclidean geometry, one need only show that the axioms of Euclidean geometry have 'intuitive content' in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  12. Logic, mathematics, physics: from a loose thread to the close link: Or what gravity is for both logic and mathematics rather than only for physics.Vasil Penchev - 2023 - Astrophysics, Cosmology and Gravitation Ejournal 2 (52):1-82.
    Gravitation is interpreted to be an “ontomathematical” force or interaction rather than an only physical one. That approach restores Newton’s original design of universal gravitation in the framework of “The Mathematical Principles of Natural Philosophy”, which allows for Einstein’s special and general relativity to be also reinterpreted ontomathematically. The entanglement theory of quantum gravitation is inherently involved also ontomathematically by virtue of the consideration of the qubit Hilbert space after entanglement as the Fourier counterpart of pseudo-Riemannian space. Gravitation can be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13.  97
    Mathematics as Metaphysical and Constructive.Eric Schmid - 2024 - Rue Americaine 13.
    Andr ́e Weil viewed mathematics as deeply intertwined with metaphysics. In his essay ”From Metaphysics to Mathematics,” he illustrates how mathematical ideas often arise from vague, metaphysical analogies and reflections that guide researchers toward new theories. For instance, Weil discusses how analogies between different areas, such as number theory and algebraic functions, have led to significant breakthroughs. These metaphysical underpinnings provide a fertile ground for mathematical creativity, eventually transforming into rigorous mathematical structures. -/- Alexander Grothendieck’s work, particularly in ”R ́ecoltes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Editorial. Special Issue on Integral Biomathics: Can Biology Create a Profoundly New Mathematics and Computation?Plamen L. Simeonov, Koichiro Matsuno & Robert S. Root-Bernstein - 2013 - J. Progress in Biophysics and Molecular Biology 113 (1):1-4.
    The idea behind this special theme journal issue was to continue the work we have started with the INBIOSA initiative (www.inbiosa.eu) and our small inter-disciplinary scientific community. The result of this EU funded project was a white paper (Simeonov et al., 2012a) defining a new direction for future research in theoretical biology we called Integral Biomathics and a volume (Simeonov et al., 2012b) with contributions from two workshops and our first international conference in this field in 2011. The initial impulse (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Strategies for defending the Principle of Identity of Indiscernibles: a critical survey and a new approach.L. G. S. Videira - 2023 - Dissertation, University of Campinas (Unicamp)
    The Principle of Identity of Indiscernibles (PII) is the focus of much controversy in the history of Metaphysics and in contemporary Physics. Many questions rover the debate about its truth or falsehood, for example, to which objects the principle applies? Which properties can be counted as discerning properties? Is the principle necessary? In other words, which version of the principle is the correct and is this version true? This thesis aims to answer this questions in order to show that PII (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Smith contra Slote.Michael L. Frazer - 2011 - Analytic Philosophy 52 (4):319-327.
    Michael Slote’s Moral Sentimentalism is a wonderful model of a particular, under-appreciated philosophical method. It demonstrates that exciting, original work can be created by putting old ideas to new uses, proving once again that the classics of moral and political philosophy offer too rich an array of intellectual resources to leave to historians alone. Whenever one is reclaiming old ideas, however, the most important decision is which ideas to reclaim, and which to leave in the dustbin of history. Slote makes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Physical Methodology for Economic Systems Modeling.I. G. Tuluzov & S. I. Melnyk - 2010 - Electronic Journal of Theoretical Physics (EJTP) 7 (24):57-78.
    The paper discusses the possibility of constructing economic models using the methodology of model construction in classical mechanics. At the same time, unlike the "econophysical" approach, the properties of economic models are derived without involvement of any equivalent physical properties, but with account of the types of symmetry existing in the economic system. It has been shown that at this approach practically all known mechanical variables have their "economic twins". The variational principle is formulated on the basis of formal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. (1 other version)Carnap's metrical conventionalism versus differential topology.Thomas Mormann - 2004 - Proc. 2004 Biennial Meeting of the PSA, vol. I, Contributed Papers 72 (5):814 - 825.
    Geometry was a main source of inspiration for Carnap’s conventionalism. Taking Poincaré as his witness Carnap asserted in his dissertation Der Raum (Carnap 1922) that the metrical structure of space is conventional while the underlying topological structure describes "objective" facts. With only minor modifications he stuck to this account throughout his life. The aim of this paper is to disprove Carnap's contention by invoking some classical theorems of differential topology. By this means his metrical conventionalism turns out to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  19. On a Theory of Truth and on the Regress Problem.S. Heikkilä - manuscript
    A theory of truth is introduced for a first--order language L of set theory. Fully interpreted metalanguages which contain their truth predicates are constructed for L. The presented theory is free from infinite regress, whence it provides a proper framework to study the regress problem. Only ZF set theory, concepts definable in L and classical two-valued logic are used.
    Download  
     
    Export citation  
     
    Bookmark  
  20. Einstein’s 1905 ‘Annus Mirabilis’: Reconciliation of the Basic Research Traditions of Classical Physics.Rinat M. Nugayev - 2019 - Axiomathes 29 (3):207-235.
    To make out in what way Einstein’s manifold 1905 ‘annus mirabilis’ writings hang together one has to take into consideration Einstein’s strive for unity evinced in his persistent attempts to reconcile the basic research traditions of classical physics. Light quanta hypothesis and special theory of relativity turn out to be the contours of a more profound design, mere milestones of implementation of maxwellian electrodynamics, statistical mechanics and thermodynamics reconciliation programme. The conception of luminiferous ether was an insurmountable obstacle for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Introduction to Mathematical Logic, Edition 2021.Vilnis Detlovs & Karlis Podnieks - manuscript
    Textbook for students in mathematical logic. Part 1. Total formalization is possible! Formal theories. First order languages. Axioms of constructive and classical logic. Proving formulas in propositional and predicate logic. Glivenko's theorem and constructive embedding. Axiom independence. Interpretations, models and completeness theorems. Normal forms. Tableaux method. Resolution method. Herbrand's theorem.
    Download  
     
    Export citation  
     
    Bookmark  
  22. ‘Let No-One Ignorant of Geometry…’: Mathematical Parallels for Understanding the Objectivity of Ethics.James Franklin - 2023 - Journal of Value Inquiry 57 (2):365-384.
    It may be a myth that Plato wrote over the entrance to the Academy “Let no-one ignorant of geometry enter here.” But it is a well-chosen motto for his view in the Republic that mathematical training is especially productive of understanding in abstract realms, notably ethics. That view is sound and we should return to it. Ethical theory has been bedevilled by the idea that ethics is fundamentally about actions (right and wrong, rights, duties, virtues, dilemmas and so on). (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Do Goedel's incompleteness theorems set absolute limits on the ability of the brain to express and communicate mental concepts verifiably?Bhupinder Singh Anand - 2004 - Neuroquantology 2:60-100.
    Classical interpretations of Goedels formal reasoning, and of his conclusions, implicitly imply that mathematical languages are essentially incomplete, in the sense that the truth of some arithmetical propositions of any formal mathematical language, under any interpretation, is, both, non-algorithmic, and essentially unverifiable. However, a language of general, scientific, discourse, which intends to mathematically express, and unambiguously communicate, intuitive concepts that correspond to scientific investigations, cannot allow its mathematical propositions to be interpreted ambiguously. Such a language must, therefore, define mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  24. A Two-Part Defense of Institutional Mathematics.Eliott Samuel - 2021 - Stance 14:26-40.
    The classical interpretation of mathematical statements can be seen as comprising two separate but related aspects: a domain and a truth-schema. L. E. J. Brouwer’s intuitionistic project lays the groundwork for an alternative conception of the objects in this domain, as well as an accompanying intuitionistic truth-schema. Drawing on the work of Arend Heyting and Michael Dummett, I present two objections to classical mathematical semantics, with the aim of creating an opening for an alternative interpretation. With this accomplished, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Linguistic Geometry and its Applications.W. B. Vasantha Kandasamy, K. Ilanthenral & Florentin Smarandache - 2022 - Miami, FL, USA: Global Knowledge.
    The notion of linguistic geometry is defined in this book. It is pertinent to keep in the record that linguistic geometry differs from classical geometry. Many basic or fundamental concepts and notions of classical geometry are not true or extendable in the case of linguistic geometry. Hence, for simple illustration, facts like two distinct points in classical geometry always define a line passing through them; this is generally not true in linguistic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. The Creative Universe: The Failure of Mathematical Reductionism in Physics (An Essay).Michael Epperson - 2021 - Institute of Art and Ideas News.
    In their seeking of simplicity, scientists fall into the error of Whitehead's "fallacy of misplaced concreteness." They mistake their abstract concepts describing reality for reality itself--the map for the territory. This leads to dogmatic overstatements, paradoxes, and mysteries such as the deep incompatibility of our two most fundamental physical theories--quantum mechanics and general relativity. To avoid such errors, we should evoke Whitehead's conception of the universe as a universe-in-process, where physical relations perpetually beget new physical relations. Today, the most promising (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Chasing Individuation: Mathematical Description of Physical Systems.Zalamea Federico - 2016 - Dissertation, Paris Diderot University
    This work is a conceptual analysis of certain recent developments in the mathematical foundations of Classical and Quantum Mechanics which have allowed to formulate both theories in a common language. From the algebraic point of view, the set of observables of a physical system, be it classical or quantum, is described by a Jordan-Lie algebra. From the geometric point of view, the space of states of any system is described by a uniform Poisson space with transition probability. Both (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Grassmann’s epistemology: multiplication and constructivism.Paola Cantu - 2010 - In Hans-Joachim Petsche (ed.), From Past to Future: Graßmann's Work in Context. Springer.
    The paper aims to establish if Grassmann’s notion of an extensive form involved an epistemological change in the understanding of geometry and of mathematical knowledge. Firstly, it will examine if an ontological shift in geometry is determined by the vectorial representation of extended magnitudes. Giving up homogeneity, and considering geometry as an application of extension theory, Grassmann developed a different notion of a geometrical object, based on abstract constraints concerning the construction of forms rather than on the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  29. GeoGebra Intervention: How have Students’ Performance and Confidence in Algebra Advanced?Lovely Joyce R. Azucena, Precious Joy L. Gacayan, Mary Angela S. Tabat, Katherine H. Cuanan & Jupeth Pentang - 2022 - Studies in Technology and Education 1 (1):51-61.
    The study’s goal was to provide an educational intervention in Algebra through GeoGebra that would boost students’ confidence, improve their learning, and correct their most minor mastered skills, allowing them to improve their Algebra performance. The research design was quasi-experimental, with 40 nonrandomly chosen participants comprising the GeoGebra and control groups. Mean and standard deviation was employed to describe the algebra performance and confidence of the respondents. At the same time, independent and dependent t-tests were used to determine the students’ (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  30. Carnap's Tolerance and Friedman's Revenge.Noah Friedman-Biglin - 2015 - In Pavel Arazim & Michal Dancak (eds.), Logica Yearbook 2014. College Publications. pp. 109 -- 125.
    In this paper, I defend Rudolf Carnap's Principle of Tolerance from an accusation, due to Michael Friedman, that it is self-defeating by prejudicing any debate towards the logically stronger theory. In particular, Friedman attempts to show that Carnap's reconstruction of the debate between classicists and intuitionists over the foundations of mathematics in his book The Logical Syntax of Language, is biased towards the classical standpoint since the metalanguage he constructs to adjudicate between the rival positions is fully classical. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  31. (1 other version)The Significance of Evidence-based Reasoning for Mathematics, Mathematics Education, Philosophy and the Natural Sciences.Bhupinder Singh Anand - forthcoming
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  32. Improving Mathematics Achievement and Attitude of the Grade 10 Students Using Dynamic Geometry Software (DGS) and Computer Algebra Systems (CAS).Starr Clyde Sebial - 2017 - International Journal of Social Science and Humanities Research 5 (1):374-387.
    It has become a fact that fluency and competency in utilizing the advancement of technology, specifically the computer and the internet is one way that could help in facilitating learning in mathematics. This study investigated the effects of Dynamic Geometry Software (DGS) and Computer Algebra Systems (CAS) in teaching Mathematics. This was conducted in Zamboanga del Sur National High School (ZSNHS) during the third grading period of the school year 2015-2016. The study compared the achievement and attitude towards Mathematics (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  33. Hobbes on the Order of Sciences: A Partial Defense of the Mathematization Thesis.Zvi Biener - 2016 - Southern Journal of Philosophy 54 (3):312-332.
    Accounts of Hobbes’s ‘system’ of sciences oscillate between two extremes. On one extreme, the system is portrayed as wholly axiomtic-deductive, with statecraft being deduced in an unbroken chain from the principles of logic and first philosophy. On the other, it is portrayed as rife with conceptual cracks and fissures, with Hobbes’s statements about its deductive structure amounting to mere window-dressing. This paper argues that a middle way is found by conceiving of Hobbes’s _Elements of Philosophy_ on the model of a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  34.  94
    ONE AND THE MULTIPLE ON THE PHILOSOPHY OF MATHEMATICS - ALEXIS KARPOUZOS.Alexis Karpouzos - 2025 - Comsic Spirit 1:6.
    The relationship between the One and the Multiple in mystic philosophy is a profound and central theme that explores the nature of existence, the cosmos, and the divine. This theme is present in various mystical traditions, including those of the East and West, and it addresses the paradoxical coexistence of the unity and multiplicity of all things. -/- In mystic philosophy, the **One** often represents the ultimate reality, the source from which all things emanate and to which all things return. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  35. Hobbes’s third jurisprudence: legal pragmatism and the dualist menace.Benjamin L. S. Nelson - 2020 - Canadian Journal of Law and Jurisprudence 33 (1).
    This paper explores the possibility that Hobbesian jurisprudence is best understood as a ‘third way’ in legal theory, irreducible to classical natural law or legal positivism. I sketch two potential ‘third theories’ of law -- legal pragmatism and legal dualism -- and argue that, when considered in its broadest sense, Leviathan is best viewed as an example of legal pragmatism. I consider whether this legal pragmatist interpretation can be sustained in the examination of Leviathan’s treatment of civil law, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Towards a Theory of Computation similar to some other scientific theories.Antonino Drago - manuscript
    At first sight the Theory of Computation i) relies on a kind of mathematics based on the notion of potential infinity; ii) its theoretical organization is irreducible to an axiomatic one; rather it is organized in order to solve a problem: “What is a computation?”; iii) it makes essential use of doubly negated propositions of non-classical logic, in particular in the word expressions of the Church-Turing’s thesis; iv) its arguments include ad absurdum proofs. Under such aspects, it is like (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Natural Topology.Frank Waaldijk - 2012 - Brouwer Society.
    We develop a simple framework called ‘natural topology’, which can serve as a theoretical and applicable basis for dealing with real-world phenomena.Natural topology is tailored to make pointwise and pointfree notions go together naturally. As a constructive theory in BISH, it gives a classical mathematician a faithful idea of important concepts and results in intuitionism. -/- Natural topology is well-suited for practical and computational purposes. We give several examples relevant for applied mathematics, such as the decision-support system Hawk-Eye, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Einstein's Scientific Revolution (1898-1915): interdisciplinary Context.Rinat M. Nugayev (ed.) - 2010 - Logos: Innovative Technologies Center.
    What are the reasons of the second scientific revolution that happened at the beginning of the XX century? Why did the new physics supersede the old one? The author tries to answer the subtle questions with a help of the epistemological model of scientific revolutions that takes into account some recent advances in philosophy, sociology and history of science. According to the model, Einstein’s Revolution took place due to resolution of deep contradictions between the basic classical research traditions: Newtonian (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Quantum-information conservation. The problem about “hidden variables”, or the “conservation of energy conservation” in quantum mechanics: A historical lesson for future discoveries.Vasil Penchev - 2020 - Energy Engineering (Energy) eJournal (Elsevier: SSRN) 3 (78):1-27.
    The explicit history of the “hidden variables” problem is well-known and established. The main events of its chronology are traced. An implicit context of that history is suggested. It links the problem with the “conservation of energy conservation” in quantum mechanics. Bohr, Kramers, and Slaters (1924) admitted its violation being due to the “fourth Heisenberg uncertainty”, that of energy in relation to time. Wolfgang Pauli rejected the conjecture and even forecast the existence of a new and unknown then elementary particle, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. On mathematical constructions of time and relativity.Varanasi Ramabrahmam - manuscript
    The mathematical constructions, physical structure and manifestations of physical time are reviewed. The nature of insight and mathematics used to understand and deal with physical time associated with classical, quantum and cosmic processes is contemplated together with a comprehensive understanding of classical time. Scalar time (explicit time or quantitative time), vector time (implicit time or qualitative time), biological time, time of and in conscious awareness are discussed. The mathematical understanding of time in special and general theories of relativity (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics.Vladimir Kanovei, Mikhail G. Katz & Thomas Mormann - 2013 - Foundations of Science 18 (2):259-296.
    We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in functional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In S , all definable sets of reals are (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  42. La Neutro-Geometría y la Anti-Geometría como Alternativas y Generalizaciones de las Geometrías no Euclidianas.Florentin Smarandache - 2022 - Neutrosophic Computing and Machine Learning 20 (1):91-104.
    In this paper we extend Neutro-Algebra and Anti-Algebra to geometric spaces, founding Neutro/Geometry and AntiGeometry. While Non-Euclidean Geometries resulted from the total negation of a specific axiom (Euclid's Fifth Postulate), AntiGeometry results from the total negation of any axiom or even more axioms of any geometric axiomatic system (Euclidean, Hilbert, etc. ) and of any type of geometry such as Geometry (Euclidean, Projective, Finite, Differential, Algebraic, Complex, Discrete, Computational, Molecular, Convex, etc.), and Neutro-Geometry results from the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Secret Law Revisited.Benjamin L. S. Nelson - 2019 - Ratio Juris 32 (4):473-486.
    What follows is an attempt to do some conceptual housekeeping around the notion of secret law as provided by Christopher Kutz (2013). First I consider low-salience (or merely obscure) law, suggesting that it fails to capture the legal and moral facts that are at stake in the case which Kutz used to motivate it. Then I outline a theoretical contrast between mere obscurity and secrecy, in contrast to the 'neutral' account of secrecy provided by Sissela Bok (1989). The upshot of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  44. Thoughts on Artificial Intelligence and the Origin of Life Resulting from General Relativity, with Neo-Darwinist Reference to Human Evolution and Mathematical Reference to Cosmology.Rodney Bartlett - manuscript
    When this article was first planned, writing was going to be exclusively about two things - the origin of life and human evolution. But it turned out to be out of the question for the author to restrict himself to these biological and anthropological topics. A proper understanding of them required answering questions like “What is the nature of the universe – the home of life – and how did it originate?”, “How can time travel be removed from fantasy and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Time and Relativity: The mathematical constructions.Varanasi Ramabrahmam - 2013 - Time and Relativity Theories.
    The mathematical constructions, physical structure and manifestations of physical time are reviewed. The nature of insight and mathematics used to understand and deal with physical time associated with classical, quantum and cosmic processes is contemplated together with a comprehensive understanding of classical time. Scalar time (explicit time or quantitative time), vector time (implicit time or qualitative time), biological time, time of and in conscious awareness are discussed. The mathematical understanding of time in special and general theories of relativity (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  46. Predicativity and constructive mathematics.Laura Crosilla - 2022 - In Gianluigi Oliveri, Claudio Ternullo & Stefano Boscolo (eds.), Objects, Structures, and Logics. Cham (Switzerland): Springer.
    In this article I present a disagreement between classical and constructive approaches to predicativity regarding the predicative status of so-called generalised inductive definitions. I begin by offering some motivation for an enquiry in the predicative foundations of constructive mathematics, by looking at contemporary work at the intersection between mathematics and computer science. I then review the background notions and spell out the above-mentioned disagreement between classical and constructive approaches to predicativity. Finally, I look at possible (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  47. (9 other versions)Stepping Beyond the Newtonian Paradigm in Biology. Towards an Integrable Model of Life: Accelerating Discovery in the Biological Foundations of Science.Plamen L. Simeonov, Edwin Brezina, Ron Cottam, Andreé C. Ehresmann, Arran Gare, Ted Goranson, Jaime Gomez-­‐Ramirez, Brian D. Josephson, Bruno Marchal, Koichiro Matsuno, Robert S. Root-­Bernstein, Otto E. Rössler, Stanley N. Salthe, Marcin Schroeder, Bill Seaman & Pridi Siregar - 2012 - In Plamen L. Simeonov, Leslie S. Smith & Andrée C. Ehresmann (eds.), Integral Biomathics: Tracing the Road to Reality. Springer. pp. 328-427.
    The INBIOSA project brings together a group of experts across many disciplines who believe that science requires a revolutionary transformative step in order to address many of the vexing challenges presented by the world. It is INBIOSA’s purpose to enable the focused collaboration of an interdisciplinary community of original thinkers. This paper sets out the case for support for this effort. The focus of the transformative research program proposal is biology-centric. We admit that biology to date has been more fact-oriented (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. EINSTEIN’S 1905 ‘REVOLUTIONARY’ PAPER ON QUANTA AS A MANIFEST AND DETAILED EXAMPLE OF A ‘PRINCIPLE THEORY’.Drago Antonino - 2014 - Advances in Historical Studies (No.3).
    In the last times some scholars tried to characterize Einstein’s distinction between ‘constructive’ – i.e. deductive - theories and ‘principle’ theories, the latter ones being preferred by Einstein. Here this distinction is qualified by an accurate inspection on past physical theories. Some previous theories are surely non-deductive theories. By a mutual comparison of them a set of features - mainly the arguing according to non-classical logic - are extracted. They manifest a new ideal model of organising a theory. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Constructing Models of Ethical Knowledge: A Scientific Enterprise.L. P. Steffe - 2014 - Constructivist Foundations 9 (2):262-264.
    Open peer commentary on the article “Ethics: A Radical-constructivist Approach” by Andreas Quale. Upshot: The first of my two main goals in this commentary is to establish thinking of ethics as concepts rather than as non-cognitive knowledge. The second is to argue that establishing models of individuals’ ethical concepts is a scientific enterprise that is quite similar to establishing models of individuals’ mathematical concepts. To accomplish these two primary goals, I draw from my experience of working scientifically with von Glasersfeld (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. A NEW PHILOSOPHICAL FOUNDATION OF CONSTRUCTIVE MATHEMATICS.Antonino Drago - manuscript
    The current definition of Constructive mathematics as “mathematics within intuitionist logic” ignores two fundamental issues. First, the kind of organization of the theory at issue. I show that intuitionist logic governs a problem-based organization, whose model is alternative to that of the deductive-axiomatic organization, governed by classical logic. Moreover, this dichotomy is independent of that of the kind of infinity, either potential or actual, to which respectively correspond constructive mathematical and classical mathematical tools. According to this (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 955