Results for 'completeness proofs'

934 found
Order:
  1. A Henkin-style completeness proof for the modal logic S5.Bruno Bentzen - 2021 - In Pietro Baroni, Christoph Benzmüller & Yì N. Wáng (eds.), Logic and Argumentation: Fourth International Conference, CLAR 2021, Hangzhou, China, October 20–22. Springer. pp. 459-467.
    This paper presents a recent formalization of a Henkin-style completeness proof for the propositional modal logic S5 using the Lean theorem prover. The proof formalized is close to that of Hughes and Cresswell, but the system, based on a different choice of axioms, is better described as a Mendelson system augmented with axiom schemes for K, T, S4, and B, and the necessitation rule as a rule of inference. The language has the false and implication as the only primitive (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  2. A proof of the impossibility of completing infinitely many tasks.Jeremy Gwiazda - 2012 - Pacific Philosophical Quarterly 93 (1):1-7.
    In this article, I argue that it is impossible to complete infinitely many tasks in a finite time. A key premise in my argument is that the only way to get to 0 tasks remaining is from 1 task remaining, when tasks are done 1-by-1. I suggest that the only way to deny this premise is by begging the question, that is, by assuming that supertasks are possible. I go on to present one reason why this conclusion (that supertasks are (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  3. Proofs, necessity and causality.Srećko Kovač - 2019 - In Enrique Alonso, Antonia Huertas & Andrei Moldovan (eds.), Aventuras en el Mundo de la Lógica: Ensayos en Honor a María Manzano. College Publications. pp. 239-263.
    There is a long tradition of logic, from Aristotle to Gödel, of understanding a proof from the concepts of necessity and causality. Gödel's attempts to define provability in terms of necessity led him to the distinction of formal and absolute (abstract) provability. Turing's definition of mechanical procedure by means of a Turing machine (TM) and Gödel's definition of a formal system as a mechanical procedure for producing formulas prompt us to understand formal provability as a mechanical causality. We propose a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Verified completeness in Henkin-style for intuitionistic propositional logic.Huayu Guo, Dongheng Chen & Bruno Bentzen - 2023 - In Bruno Bentzen, Beishui Liao, Davide Liga, Reka Markovich, Bin Wei, Minghui Xiong & Tianwen Xu (eds.), Logics for AI and Law: Joint Proceedings of the Third International Workshop on Logics for New-Generation Artificial Intelligence and the International Workshop on Logic, AI and Law, September 8-9 and 11-12, 2023, Hangzhou. College Publications. pp. 36-48.
    This paper presents a formalization of the classical proof of completeness in Henkin-style developed by Troelstra and van Dalen for intuitionistic logic with respect to Kripke models. The completeness proof incorporates their insights in a fresh and elegant manner that is better suited for mechanization. We discuss details of our implementation in the Lean theorem prover with emphasis on the prime extension lemma and construction of the canonical model. Our implementation is restricted to a system of intuitionistic propositional (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Truth and Proof without Models: A Development and Justification of the Truth-valuational Approach (2nd edition).Hanoch Ben-Yami - manuscript
    I explain why model theory is unsatisfactory as a semantic theory and has drawbacks as a tool for proofs on logic systems. I then motivate and develop an alternative, the truth-valuational substitutional approach (TVS), and prove with it the soundness and completeness of the first order Predicate Calculus with identity and of Modal Propositional Calculus. Modal logic is developed without recourse to possible worlds. Along the way I answer a variety of difficulties that have been raised against TVS (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Proofs for a price: Tomorrow’s ultra-rigorous mathematical culture.Silvia De Toffoli - 2024 - Bulletin (New Series) of the American Mathematical Society 61 (3):395–410.
    Computational tools might tempt us to renounce complete cer- tainty. By forgoing of rigorous proof, we could get (very) probable results for a fraction of the cost. But is it really true that proofs (as we know and love them) can lead us to certainty? Maybe not. Proofs do not wear their correct- ness on their sleeve, and we are not infallible in checking them. This suggests that we need help to check our results. When our fellow mathematicians (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Automating Agential Reasoning: Proof-Calculi and Syntactic Decidability for STIT Logics.Tim Lyon & Kees van Berkel - 2019 - In M. Baldoni, M. Dastani, B. Liao, Y. Sakurai & R. Zalila Wenkstern (eds.), PRIMA 2019: Principles and Practice of Multi-Agent Systems. Springer. pp. 202-218.
    This work provides proof-search algorithms and automated counter-model extraction for a class of STIT logics. With this, we answer an open problem concerning syntactic decision procedures and cut-free calculi for STIT logics. A new class of cut-free complete labelled sequent calculi G3LdmL^m_n, for multi-agent STIT with at most n-many choices, is introduced. We refine the calculi G3LdmL^m_n through the use of propagation rules and demonstrate the admissibility of their structural rules, resulting in auxiliary calculi Ldm^m_nL. In the single-agent case, we (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  8. (1 other version)Strong Completeness and Limited Canonicity for PDL.Gerard Renardel de Lavalette, Barteld Kooi & Rineke Verbrugge - 2008 - Journal of Logic, Language and Information 17 (1):69-87.
    Propositional dynamic logic is complete but not compact. As a consequence, strong completeness requires an infinitary proof system. In this paper, we present a short proof for strong completeness of $$\mathsf{PDL}$$ relative to an infinitary proof system containing the rule from [α; β n ]φ for all $$n \in {\mathbb{N}}$$, conclude $$[\alpha;\beta^*] \varphi$$. The proof uses a universal canonical model, and it is generalized to other modal logics with infinitary proof rules, such as epistemic knowledge with common knowledge. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  9. Stoic Sequent Logic and Proof Theory.Susanne Bobzien - 2019 - History and Philosophy of Logic 40 (3):234-265.
    This paper contends that Stoic logic (i.e. Stoic analysis) deserves more attention from contemporary logicians. It sets out how, compared with contemporary propositional calculi, Stoic analysis is closest to methods of backward proof search for Gentzen-inspired substructural sequent logics, as they have been developed in logic programming and structural proof theory, and produces its proof search calculus in tree form. It shows how multiple similarities to Gentzen sequent systems combine with intriguing dissimilarities that may enrich contemporary discussion. Much of Stoic (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  10. Metainferences from a Proof-Theoretic Perspective, and a Hierarchy of Validity Predicates.Rea Golan - 2022 - Journal of Philosophical Logic 51 (6):1295–1325.
    I explore, from a proof-theoretic perspective, the hierarchy of classical and paraconsistent logics introduced by Barrio, Pailos and Szmuc in (Journal o f Philosophical Logic,49, 93-120, 2021). First, I provide sequent rules and axioms for all the logics in the hierarchy, for all inferential levels, and establish soundness and completeness results. Second, I show how to extend those systems with a corresponding hierarchy of validity predicates, each one of which is meant to capture “validity” at a different inferential level. (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  11. Functional completeness and primitive positive decomposition of relations on finite domains.Sergiy Koshkin - 2024 - Logic Journal of the IGPL 32.
    We give a new and elementary construction of primitive positive decomposition of higher arity relations into binary relations on finite domains. Such decompositions come up in applications to constraint satisfaction problems, clone theory and relational databases. The construction exploits functional completeness of 2-input functions in many-valued logic by interpreting relations as graphs of partially defined multivalued ‘functions’. The ‘functions’ are then composed from ordinary functions in the usual sense. The construction is computationally effective and relies on well-developed methods of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Completeness and Doxastic Plurality for Topological Operators of Knowledge and Belief.Thomas Mormann - 2023 - Erkenntnis: 1 - 34, ONLINE.
    The first aim of this paper is to prove a topological completeness theorem for a weak version of Stalnaker’s logic KB of knowledge and belief. The weak version of KB is characterized by the assumption that the axioms and rules of KB have to be satisfied with the exception of the axiom (NI) of negative introspection. The proof of a topological completeness theorem for weak KB is based on the fact that nuclei (as defined in the framework of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  13. Review: Aristotle’s Syllogistic Underlying Logic: His Model with His Proofs of Soundness and Completeness[REVIEW]C. G. King - 2023 - History and Philosophy of Logic (4):1–3.
    This book presents a (new) attempt to apply the notion of an underlying logic to Aristotle’s Organon and certain passages of the Metaphysics. The author situates his approach as part of a ‘deductio...
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  14. Proof Theory and Semantics for a Theory of Definite Descriptions.Nils Kürbis - 2021 - In Anupam Das & Sara Negri (eds.), TABLEAUX 2021, LNAI 12842.
    This paper presents a sequent calculus and a dual domain semantics for a theory of definite descriptions in which these expressions are formalised in the context of complete sentences by a binary quantifier I. I forms a formula from two formulas. Ix[F, G] means ‘The F is G’. This approach has the advantage of incorporating scope distinctions directly into the notation. Cut elimination is proved for a system of classical positive free logic with I and it is shown to be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Fusion, fission, and Ackermann’s truth constant in relevant logics: A proof-theoretic investigation.Fabio De Martin Polo - forthcoming - In Andrew Tedder, Shawn Standefer & Igor Sedlar (eds.), New Directions in Relevant Logic. Springer.
    The aim of this paper is to provide a proof-theoretic characterization of relevant logics including fusion and fission connectives, as well as Ackermann’s truth constant. We achieve this by employing the well-established methodology of labelled sequent calculi. After having introduced several systems, we will conduct a detailed proof-theoretic analysis, show a cut-admissibility theorem, and establish soundness and completeness. The paper ends with a discussion that contextualizes our current work within the broader landscape of the proof theory of relevant logics.
    Download  
     
    Export citation  
     
    Bookmark  
  16. Hypersequents and the proof theory of intuitionistic fuzzy logic.Matthias Baaz & Richard Zach - 2000 - In Clote Peter G. & Schwichtenberg Helmut (eds.), Computer Science Logic. 14th International Workshop, CSL 2000. Springer. pp. 187– 201.
    Takeuti and Titani have introduced and investigated a logic they called intuitionistic fuzzy logic. This logic is characterized as the first-order Gödel logic based on the truth value set [0,1]. The logic is known to be axiomatizable, but no deduction system amenable to proof-theoretic, and hence, computational treatment, has been known. Such a system is presented here, based on previous work on hypersequent calculi for propositional Gödel logics by Avron. It is shown that the system is sound and complete, and (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  17. Completions, Constructions, and Corollaries.Thomas Mormann - 2009 - In H. Pulte, G. Hanna & H.-J. Jahnke (eds.), Explanation and Proof in Mathematics: Philosophical and Educational Perspectives. Springer.
    According to Kant, pure intuition is an indispensable ingredient of mathematical proofs. Kant‘s thesis has been considered as obsolete since the advent of modern relational logic at the end of 19th century. Against this logicist orthodoxy Cassirer’s “critical idealism” insisted that formal logic alone could not make sense of the conceptual co-evolution of mathematical and scientific concepts. For Cassirer, idealizations, or, more precisely, idealizing completions, played a fundamental role in the formation of the mathematical and empirical concepts. The aim (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. The Quantum Strategy of Completeness: On the Self-Foundation of Mathematics.Vasil Penchev - 2020 - Cultural Anthropology eJournal (Elsevier: SSRN) 5 (136):1-12.
    Gentzen’s approach by transfinite induction and that of intuitionist Heyting arithmetic to completeness and the self-foundation of mathematics are compared and opposed to the Gödel incompleteness results as to Peano arithmetic. Quantum mechanics involves infinity by Hilbert space, but it is finitist as any experimental science. The absence of hidden variables in it interpretable as its completeness should resurrect Hilbert’s finitism at the cost of relevant modification of the latter already hinted by intuitionism and Gentzen’s approaches for (...). This paper investigates both conditions and philosophical background necessary for that modification. The main conclusion is that the concept of infinity as underlying contemporary mathematics cannot be reduced to a single Peano arithmetic, but to at least two ones independent of each other. Intuitionism, quantum mechanics, and Gentzen’s approaches to completeness an even Hilbert’s finitism can be unified from that viewpoint. Mathematics may found itself by a way of finitism complemented by choice. The concept of information as the quantity of choices underlies that viewpoint. Quantum mechanics interpretable in terms of information and quantum information is inseparable from mathematics and its foundation. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Dialectical and heuristic arguments: presumptions and burden of proof.Fabrizio Macagno - 2010 - In C. Tindale & C. Reed (eds.), Dialectics, Dialogue and Argumentation: An Examination of Douglas Walton's Theories of Reasoning and Argument. College Publications. pp. 45-57.
    Presumption is a complex concept in law, affecting the dialogue setting. However, it is not clear how presumptions work in everyday argumentation, in which the concept of “plausible argumentation” seems to encompass all kinds of inferences. By analyzing the legal notion of presumption, it appears that this type of reasoning combines argument schemes with reasoning from ignorance. Presumptive reasoning can be considered a particular form of reasoning, which needs positive or negative evidence to carry a probative weight on the conclusion. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  20. From the four-color theorem to a generalizing “four-letter theorem”: A sketch for “human proof” and the philosophical interpretation.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 12 (21):1-10.
    The “four-color” theorem seems to be generalizable as follows. The four-letter alphabet is sufficient to encode unambiguously any set of well-orderings including a geographical map or the “map” of any logic and thus that of all logics or the DNA plan of any alive being. Then the corresponding maximally generalizing conjecture would state: anything in the universe or mind can be encoded unambiguously by four letters. That admits to be formulated as a “four-letter theorem”, and thus one can search for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. A calculus for Belnap's logic in which each proof consists of two trees.Stefan Wintein & Reinhard Muskens - 2012 - Logique Et Analyse 220:643-656.
    In this paper we introduce a Gentzen calculus for (a functionally complete variant of) Belnap's logic in which establishing the provability of a sequent in general requires \emph{two} proof trees, one establishing that whenever all premises are true some conclusion is true and one that guarantees the falsity of at least one premise if all conclusions are false. The calculus can also be put to use in proving that one statement \emph{necessarily approximates} another, where necessary approximation is a natural dual (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  22. From Bi-facial Truth to Bi-facial Proofs.Stefan Wintein & Reinhard A. Muskens - 2015 - Studia Logica 103 (3):545-558.
    In their recent paper Bi-facial truth: a case for generalized truth values Zaitsev and Shramko [7] distinguish between an ontological and an epistemic interpretation of classical truth values. By taking the Cartesian product of the two disjoint sets of values thus obtained, they arrive at four generalized truth values and consider two “semi-classical negations” on them. The resulting semantics is used to define three novel logics which are closely related to Belnap’s well-known four valued logic. A syntactic characterization of these (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  23. Fermat’s last theorem proved in Hilbert arithmetic. I. From the proof by induction to the viewpoint of Hilbert arithmetic.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 13 (7):1-57.
    In a previous paper, an elementary and thoroughly arithmetical proof of Fermat’s last theorem by induction has been demonstrated if the case for “n = 3” is granted as proved only arithmetically (which is a fact a long time ago), furthermore in a way accessible to Fermat himself though without being absolutely and precisely correct. The present paper elucidates the contemporary mathematical background, from which an inductive proof of FLT can be inferred since its proof for the case for “n (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Kant on Proving Aristotle’s Logic as Complete.Huaping Lu-Adler - 2016 - Kantian Review 21 (1):1-26.
    Kant claims that Aristotles logic as complete, explain the historical and philosophical considerations that commit him to proving the completeness claim and sketch the proof based on materials from his logic corpus. The proof will turn out to be an integral part of Kant’s larger reform of formal logic in response to a foundational crisis facing it.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  25. Deepening the Automated Search for Gödel's Proofs.Adam Conkey - unknown
    Gödel's incompleteness theorems establish the stunning result that mathematics cannot be fully formalized and, further, that any formal system containing a modicum of number or set theory cannot establish its own consistency. Wilfried Sieg and Clinton Field, in their paper Automated Search for Gödel's Proofs, presented automated proofs of Gödel's theorems at an abstract axiomatic level; they used an appropriate expansion of the strategic considerations that guide the search of the automated theorem prover AProS. The representability conditions that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. What Was It That Didn’t Turn the World? The Idea of the Stationary Earth, Ibn Sīnā, and the Proofs That Followed.Sami Baga - 2020 - In The 1st International Prof. Dr. Fuat Sezgin Symposium on History Of Science in Islam Proceedings Book. İstanbul: IU Press. pp. 131-138.
    The Earth is positioned at the center of the universe in the Ptolemaic model of the universe. The center of the Earth is at the same time the center of the universe in this model. This system, which was constructed according to Aristotelian physics, was accepted as the prevailing theory up to the adoption of the heliocentric universal model in the 16th century. The Earth was at the same time assumed to be completely stationary in the geocentric theory. Movement around (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Der Stachel der Selbsttätigkeit und das Ausschöpfen der Freiheit. Zur Vollständigkeit der fünf Weltansichten beim späten Fichte.Michael Lewin - 2020 - Fichte-Studien 48:204-219.
    In the later Fichte the reflection splits the world into a fivefoldness of its possible view. To get through all the a priori arranged levels from sensuality to the Doctrine of Science means to use up all the possibilities of the views of the world. I will examine whether Fichte can offer us a direct proof of completeness of the standpoints or at least show indirectly that there must be exactly five of them. Which answer would he give us (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Simulating (partial) Halt Deciders Defeat the Halting Problem Proofs.P. Olcott - manuscript
    A simulating halt decider correctly predicts whether or not its correctly simulated input can possibly reach its own final state and halt. It does this by correctly recognizing several non-halting behavior patterns in a finite number of steps of correct simulation. Inputs that do terminate are simply simulated until they complete.
    Download  
     
    Export citation  
     
    Bookmark  
  29. Causality and attribution in an Aristotelian Theory.Srećko Kovač - 2015 - In Arnold Koslow & Arthur Buchsbaum (eds.), The Road to Universal Logic: Festschrift for 50th Birthday of Jean-Yves Béziauvol. 1, Cham, Heidelberg, etc.: Springer-Birkhäuser. Springer-Birkhäuser. pp. 327-340.
    Aristotelian causal theories incorporate some philosophically important features of the concept of cause, including necessity and essential character. The proposed formalization is restricted to one-place predicates and a finite domain of attributes (without individuals). Semantics is based on a labeled tree structure, with truth defined by means of tree paths. A relatively simple causal prefixing mechanism is defined, by means of which causes of propositions and reasoning with causes are made explicit. The distinction of causal and factual explanation are elaborated, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  30. The Basic Algebra of Game Equivalences.Valentin Goranko - 2003 - Studia Logica 75 (2):221-238.
    We give a complete axiomatization of the identities of the basic game algebra valid with respect to the abstract game board semantics. We also show that the additional conditions of termination and determinacy of game boards do not introduce new valid identities.En route we introduce a simple translation of game terms into plain modal logic and thus translate, while preserving validity both ways, game identities into modal formulae.The completeness proof is based on reduction of game terms to a certain (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  31. Models for modal syllogisms.Fred Johnson - 1989 - Notre Dame Journal of Formal Logic 30 (2):271-284.
    A semantics is presented for Storrs McCall's separate axiomatizations of Aristotle's accepted and rejected polysyllogisms. The polysyllogisms under discussion are made up of either assertoric or apodeictic propositions. The semantics is given by associating a property with a pair of sets: one set consists of things having the property essentially and the other of things having it accidentally. A completeness proof and a semantic decision procedure are given.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  32. The Logic of the Evidential Conditional.Eric Raidl, Andrea Iacona & Vincenzo Crupi - 2022 - Review of Symbolic Logic 15 (3):758-770.
    In some recent works, Crupi and Iacona have outlined an analysis of ‘if’ based on Chrysippus’ idea that a conditional holds whenever the negation of its consequent is incompatible with its antecedent. This paper presents a sound and complete system of conditional logic that accommodates their analysis. The soundness and completeness proofs that will be provided rely on a general method elaborated by Raidl, which applies to a wide range of systems of conditional logic.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  33. An Axiomatic System for Concessive Conditionals.Eric Raidl, Andrea Iacona & Vincenzo Crupi - 2023 - Studia Logica 112 (1):343-363.
    According to the analysis of concessive conditionals suggested by Crupi and Iacona, a concessive conditional $$p{{\,\mathrm{\hookrightarrow }\,}}q$$ p ↪ q is adequately formalized as a conjunction of conditionals. This paper presents a sound and complete axiomatic system for concessive conditionals so understood. The soundness and completeness proofs that will be provided rely on a method that has been employed by Raidl, Iacona, and Crupi to prove the soundness and completeness of an analogous system for evidential conditionals.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  34. Cathoristic Logic.Richard Evans - manuscript
    Cathoristic logic is a multi-modal logic where negation is replaced by a novel operator allowing the expression of incompatible sentences. We present the syntax and semantics of the logic including complete proof rules, and establish a number of results such as compactness, a semantic characterisa- tion of elementary equivalence, the existence of a quadratic-time decision pro- cedure, and Brandom’s incompatibility semantics property. We demonstrate the usefulness of the logic as a language for knowledge representation.
    Download  
     
    Export citation  
     
    Bookmark  
  35. Hilbert’s Finitism: Historical, Philosophical, and Metamathematical Perspectives.Richard Zach - 2001 - Dissertation, University of California, Berkeley
    In the 1920s, David Hilbert proposed a research program with the aim of providing mathematics with a secure foundation. This was to be accomplished by first formalizing logic and mathematics in their entirety, and then showing---using only so-called finitistic principles---that these formalizations are free of contradictions. ;In the area of logic, the Hilbert school accomplished major advances both in introducing new systems of logic, and in developing central metalogical notions, such as completeness and decidability. The analysis of unpublished material (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  36. Automating Reasoning with Standpoint Logic via Nested Sequents.Tim Lyon & Lucía Gómez Álvarez - 2018 - In Michael Thielscher, Francesca Toni & Frank Wolter (eds.), Proceedings of the Sixteenth International Conference on Principles of Knowledge Representation and Reasoning (KR2018). pp. 257-266.
    Standpoint logic is a recently proposed formalism in the context of knowledge integration, which advocates a multi-perspective approach permitting reasoning with a selection of diverse and possibly conflicting standpoints rather than forcing their unification. In this paper, we introduce nested sequent calculi for propositional standpoint logics---proof systems that manipulate trees whose nodes are multisets of formulae---and show how to automate standpoint reasoning by means of non-deterministic proof-search algorithms. To obtain worst-case complexity-optimal proof-search, we introduce a novel technique in the context (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. How to prove the consistency of arithmetic.Jaakko Hintikka & Besim Karakadilar - 2006 - Acta Philosophica Fennica 78:1.
    It is argued that the goal of Hilbert's program was to prove the model-theoretical consistency of different axiom systems. This Hilbert proposed to do by proving the deductive consistency of the relevant systems. In the extended independence-friendly logic there is a complete proof method for the contradictory negations of independence-friendly sentences, so the existence of a single proposition that is not disprovable from arithmetic axioms can be shown formally in the extended independence-friendly logic. It can also be proved by means (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  38. Base-extension Semantics for Modal Logic.Eckhardt Timo & Pym David - forthcoming - Logic Journal of the IGPL.
    In proof-theoretic semantics, meaning is based on inference. It may be seen as the mathematical expression of the inferentialist interpretation of logic. Much recent work has focused on base-extension semantics, in which the validity of formulas is given by an inductive definition generated by provability in a ‘base’ of atomic rules. Base-extension semantics for classical and intuitionistic propositional logic have been explored by several authors. In this paper, we develop base-extension semantics for the classical propositional modal systems K, KT , (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. A Completenesss Theorem for a 3-Valued Semantics for a First-order Language.Christopher Gauker - manuscript
    This document presents a Gentzen-style deductive calculus and proves that it is complete with respect to a 3-valued semantics for a language with quantifiers. The semantics resembles the strong Kleene semantics with respect to conjunction, disjunction and negation. The completeness proof for the sentential fragment fills in the details of a proof sketched in Arnon Avron (2003). The extension to quantifiers is original but uses standard techniques.
    Download  
     
    Export citation  
     
    Bookmark  
  40.  9
    Complementary Logics for Classical Propositional Languages.Achille C. Varzi - 1992 - Kriterion - Journal of Philosophy 1 (4):20-24.
    In previous work, I introduced a complete axiomatization of classical non-tautologies based essentially on Łukasiewicz’s rejection method. The present paper provides a new, Hilbert-type axiomatization (along with related systems to axiomatize classical contradictions, non-contradictions, contingencies and non-contingencies respectively). This new system is mathematically less elegant, but the format of the inferential rules and the structure of the completeness proof possess some intrinsic interest and suggests instructive comparisons with the logic of tautologies.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  41. A Note on Harmony.Nissim Francez & Roy Dyckhoff - 2012 - Journal of Philosophical Logic 41 (3):613-628.
    In the proof-theoretic semantics approach to meaning, harmony , requiring a balance between introduction-rules (I-rules) and elimination rules (E-rules) within a meaning conferring natural-deduction proof-system, is a central notion. In this paper, we consider two notions of harmony that were proposed in the literature: 1. GE-harmony , requiring a certain form of the E-rules, given the form of the I-rules. 2. Local intrinsic harmony : imposes the existence of certain transformations of derivations, known as reduction and expansion . We propose (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  42. Some Concerns Regarding Ternary-relation Semantics and Truth-theoretic Semantics in General.Ross T. Brady - 2017 - IfCoLog Journal of Logics and Their Applications 4 (3):755--781.
    This paper deals with a collection of concerns that, over a period of time, led the author away from the Routley–Meyer semantics, and towards proof- theoretic approaches to relevant logics, and indeed to the weak relevant logic MC of meaning containment.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  43. Star models and the semantics of infectiousness.Matthew W. G. McClure - 2020 - Undergraduate Philosophy Journal of Australasia 2 (2):35–57.
    The first degree entailment (FDE) family is a group of logics, a many-valued semantics for each system of which is obtained from classical logic by adding to the classical truth-values true and false any subset of {both, neither, indeterminate}, where indeterminate is an infectious value (any formula containing a subformula with the value indeterminate itself has the value indeterminate). In this paper, we see how to extend a version of star semantics for the logics whose many-valued semantics lack indeterminate to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Observações sobre a estrutura da significação em Metafísica Γ 4.Vivianne Moreira - 2015 - Journal of Ancient Philosophy 9 (1):22-40.
    This article is intended to examine the structure and scope of the argumentation drawn in Metaphysics Γ 4, 1006a18-b34. As we shall see, though this passage does not bring a complete proof of the Principle of Non-Contradiction, it corresponds to its first step, which consists in determining the conditions of meaning necessary for discourse. That passage encloses in nuce the reasons which underlie Aristotelian conviction con- cerning the conventional nature of names and also brings to light the way this conven- (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  45. Epistemic Multilateral Logic.Luca Incurvati & Julian J. Schlöder - 2022 - Review of Symbolic Logic 15 (2):505-536.
    We present epistemic multilateral logic, a general logical framework for reasoning involving epistemic modality. Standard bilateral systems use propositional formulae marked with signs for assertion and rejection. Epistemic multilateral logic extends standard bilateral systems with a sign for the speech act of weak assertion (Incurvati and Schlöder 2019) and an operator for epistemic modality. We prove that epistemic multilateral logic is sound and complete with respect to the modal logic S5 modulo an appropriate translation. The logical framework developed provides the (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  46. On the Correspondence between Nested Calculi and Semantic Systems for Intuitionistic Logics.Tim Lyon - 2021 - Journal of Logic and Computation 31 (1):213-265.
    This paper studies the relationship between labelled and nested calculi for propositional intuitionistic logic, first-order intuitionistic logic with non-constant domains and first-order intuitionistic logic with constant domains. It is shown that Fitting’s nested calculi naturally arise from their corresponding labelled calculi—for each of the aforementioned logics—via the elimination of structural rules in labelled derivations. The translational correspondence between the two types of systems is leveraged to show that the nested calculi inherit proof-theoretic properties from their associated labelled calculi, such as (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  47. Computational reverse mathematics and foundational analysis.Benedict Eastaugh - manuscript
    Reverse mathematics studies which subsystems of second order arithmetic are equivalent to key theorems of ordinary, non-set-theoretic mathematics. The main philosophical application of reverse mathematics proposed thus far is foundational analysis, which explores the limits of different foundations for mathematics in a formally precise manner. This paper gives a detailed account of the motivations and methodology of foundational analysis, which have heretofore been largely left implicit in the practice. It then shows how this account can be fruitfully applied in the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. On the notion of validity for the bilateral classical logic.Ukyo Suzuki & Yoriyuki Yamagata - manuscript
    This paper considers Rumfitt’s bilateral classical logic (BCL), which is proposed to counter Dummett’s challenge to classical logic. First, agreeing with several authors, we argue that Rumfitt’s notion of harmony, used to justify logical rules by a purely proof theoretical manner, is not sufficient to justify coordination rules in BCL purely proof-theoretically. For the central part of this paper, we propose a notion of proof-theoretical validity similar to Prawitz for BCL and proves that BCL is sound and complete respect to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Variable Binding Term Operators.John Corcoran, William Hatcher & John Herring - 1972 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 18 (12):177-182.
    Chapin reviewed this 1972 ZEITSCHRIFT paper that proves the completeness theorem for the logic of variable-binding-term operators created by Corcoran and his student John Herring in the 1971 LOGIQUE ET ANALYSE paper in which the theorem was conjectured. This leveraging proof extends completeness of ordinary first-order logic to the extension with vbtos. Newton da Costa independently proved the same theorem about the same time using a Henkin-type proof. This 1972 paper builds on the 1971 “Notes on a Semantic (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  50. The Truth Table Formulation of Propositional Logic.Tristan Grøtvedt Haze - forthcoming - Teorema: International Journal of Philosophy.
    Developing a suggestion of Wittgenstein, I provide an account of truth tables as formulas of a formal language. I define the syntax and semantics of TPL (the language of Tabular Propositional Logic), and develop its proof theory. Single formulas of TPL, and finite groups of formulas with the same top row and TF matrix (depiction of possible valuations), are able to serve as their own proofs with respect to metalogical properties of interest. The situation is different, however, for groups (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 934