This paper defends David Hume's "Of Miracles" from John Earman's (2000) Bayesian attack by showing that Earman misrepresents Hume's argument against believing in miracles and misunderstands Hume's epistemology of probable belief. It argues, moreover, that Hume's account of evidence is fundamentally non-mathematical and thus cannot be properly represented in a Bayesian framework. Hume's account of probability is show to be consistent with a long and laudable tradition of evidential reasoning going back to ancient Roman law.
NOTE: This paper is a reworking of some aspects of an earlier paper – ‘What else justification could be’ and also an early draft of chapter 2 of Between Probability and Certainty. I'm leaving it online as it has a couple of citations and there is some material here which didn't make it into the book (and which I may yet try to develop elsewhere). My concern in this paper is with a certain, pervasive picture of epistemic justification. On (...) this picture, acquiring justification for believing something is essentially a matter of minimising one’s risk of error – so one is justified in believing something just in case it is sufficiently likely, given one’s evidence, to be true. This view is motivated by an admittedly natural thought: If we want to be fallibilists about justification then we shouldn’t demand that something be certain – that we completely eliminate error risk – before we can be justified in believing it. But if justification does not require the complete elimination of error risk, then what could it possibly require if not its minimisation? If justification does not require epistemic certainty then what could it possibly require if not epistemic likelihood? When all is said and done, I’m not sure that I can offer satisfactory answers to these questions – but I will attempt to trace out some possible answers here. The alternative picture that I’ll outline makes use of a notion of normalcy that I take to be irreducible to notions of statistical frequency or predominance. (shrink)
Peter Achinstein has argued at length and on many occasions that the view according to which evidential support is defined in terms of probability-raising faces serious counterexamples and, hence, should be abandoned. Proponents of the positive probabilistic relevance view have remained unconvinced. The debate seems to be in a deadlock. This paper is an attempt to move the debate forward and revisit some of the central claims within this debate. My conclusion here will be that while Achinstein may (...) be right that his counterexamples undermine probabilistic relevance views of what it is for e to be evidence that h, there is still room for a defence of a related probabilistic view about an increase in being supported, according to which, if p > p, then h is more supported given e than it is without e. My argument relies crucially on an insight from recent work on the linguistics of gradable adjectives. (shrink)
Many philosophers argue that Keynes’s concept of the “weight of arguments” is an important aspect of argument appraisal. The weight of an argument is the quantity of relevant evidence cited in the premises. However, this dimension of argumentation does not have a received method for formalisation. Kyburg has suggested a measure of weight that uses the degree of imprecision in his system of “EvidentialProbability” to quantify weight. I develop and defend this approach to measuring weight. I illustrate (...) the usefulness of this measure by employing it to develop an answer to Popper’s Paradox of Ideal Evidence. (shrink)
Many epistemologists are enamored with a defeat condition on knowledge. In this paper we present some implementation problems for defeatism, understood along either internalist or externalist lines. We then propose that one who accepts a knowledge norm of belief, according to which one ought to believe only what one knows, can explain away much of the motivation for defeatism. This is an important result, because on the one hand it respects the plausibility of the intuitions about defeat shared by many (...) in epistemology; but on the other hand, it obviates the need to provide a unified account of defeat which plays well with the most plausible views of how knowledge fits with evidentialprobability. (shrink)
The major competing statistical paradigms share a common remarkable but unremarked thread: in many of their inferential applications, different probability interpretations are combined. How this plays out in different theories of inference depends on the type of question asked. We distinguish four question types: confirmation, evidence, decision, and prediction. We show that Bayesian confirmation theory mixes what are intuitively “subjective” and “objective” interpretations of probability, whereas the likelihood-based account of evidence melds three conceptions of what constitutes an “objective” (...)probability. (shrink)
The article is a plea for ethicists to regard probability as one of their most important concerns. It outlines a series of topics of central importance in ethical theory in which probability is implicated, often in a surprisingly deep way, and lists a number of open problems. Topics covered include: interpretations of probability in ethical contexts; the evaluative and normative significance of risk or uncertainty; uses and abuses of expected utility theory; veils of ignorance; Harsanyi’s aggregation theorem; (...) population size problems; equality; fairness; giving priority to the worse off; continuity; incommensurability; nonexpected utility theory; evaluative measurement; aggregation; causal and evidential decision theory; act consequentialism; rule consequentialism; and deontology. (shrink)
One thousand fair causally isolated coins will be independently flipped tomorrow morning and you know this fact. I argue that the probability, conditional on your knowledge, that any coin will land tails is almost 1 if that coin in fact lands tails, and almost 0 if it in fact lands heads. I also show that the coin flips are not probabilistically independent given your knowledge. These results are uncomfortable for those, like Timothy Williamson, who take these probabilities to play (...) a central role in their theorizing. (shrink)
Is evidential support transitive? The answer is negative when evidential support is understood as confirmation so that X evidentially supports Y if and only if p(Y | X) > p(Y). I call evidential support so understood “support” (for short) and set out three alternative ways of understanding evidential support: support-t (support plus a sufficiently high probability), support-t* (support plus a substantial degree of support), and support-tt* (support plus both a sufficiently high probability and a (...) substantial degree of support). I also set out two screening-off conditions (under which support is transitive): SOC1 and SOC2. It has already been shown that support-t is non-transitive in the general case (where it is not required that SOC1 holds and it is not required that SOC2 holds), in the special case where SOC1 holds, and in the special case where SOC2 holds. I introduce two rather weak adequacy conditions on support measures and argue that on any support measure meeting those conditions it follows that neither support-t* nor support-tt* is transitive in the general case, in the special case where SOC1 holds, or in the special case where SOC2 holds. I then relate some of the results to Douven’s evidential support theory of conditionals along with a few rival theories. (shrink)
Epistemic closure under known implication is the principle that knowledge of "p" and knowledge of "p implies q", together, imply knowledge of "q". This principle is intuitive, yet several putative counterexamples have been formulated against it. This paper addresses the question, why is epistemic closure both intuitive and prone to counterexamples? In particular, the paper examines whether probability theory can offer an answer to this question based on four strategies. The first probability-based strategy rests on the accumulation of (...) risks. The problem with this strategy is that risk accumulation cannot accommodate certain counterexamples to epistemic closure. The second strategy is based on the idea of evidential support, that is, a piece of evidence supports a proposition whenever it increases the probability of the proposition. This strategy makes progress and can accommodate certain putative counterexamples to closure. However, this strategy also gives rise to a number of counterintuitive results. Finally, there are two broadly probabilistic strategies, one based on the idea of resilient probability and the other on the idea of assumptions that are taken for granted. These strategies are promising but are prone to some of the shortcomings of the second strategy. All in all, I conclude that each strategy fails. Probability theory, then, is unlikely to offer the account we need. (shrink)
The problem of evil is the most prominent argument against the existence of God. Skeptical theists contend that it is not a good argument. Their reasons for this contention vary widely, involving such notions as CORNEA, epistemic appearances, 'gratuitous' evils, 'levering' evidence, and the representativeness of goods. We aim to dispel some confusions about these notions, in particular by clarifying their roles within a probabilistic epistemology. In addition, we develop new responses to the problem of evil from both the phenomenal (...) conception of evidence and the knowledge-first view of evidence. (shrink)
Enjoying great popularity in decision theory, epistemology, and philosophy of science, Bayesianism as understood here is fundamentally concerned with epistemically ideal rationality. It assumes a tight connection between evidentialprobability and ideally rational credence, and usually interprets evidentialprobability in terms of such credence. Timothy Williamson challenges Bayesianism by arguing that evidential probabilities cannot be adequately interpreted as the credences of an ideal agent. From this and his assumption that evidential probabilities cannot be interpreted (...) as the actual credences of human agents either, he concludes that no interpretation of evidential probabilities in terms of credence is adequate. I argue to the contrary. My overarching aim is to show on behalf of Bayesians how one can still interpret evidential probabilities in terms of ideally rational credence and how one can maintain a tight connection between evidential probabilities and ideally rational credence even if the former cannot be interpreted in terms of the latter. By achieving this aim I illuminate the limits and prospects of Bayesianism. (shrink)
According to the knowledge view of evidence notoriously defended by Timothy Williamson (2000), for any subject, her evidence consists of all and only her propositional knowledge (E=K). Many have found (E=K) implausible. However, few have offered arguments against Williamson’s positive case for (E=K). In this paper, I propose an argument against Williamson’s positive case in favour of (E=K). Central to my argument is the possibility of the knowledge of necessary truths. I also draw some more general conclusions concerning theorizing about (...) evidence. (shrink)
In robustness analysis, hypotheses are supported to the extent that a result proves robust, and a result is robust to the extent that we detect it in diverse ways. But what precise sense of diversity is at work here? In this paper, I show that the formal explications of evidential diversity most often appealed to in work on robustness – which all draw in one way or another on probabilistic independence – fail to shed light on the notion of (...) diversity relevant to robustness analysis. I close by briefly outlining a promising alternative approach inspired by Horwich’s (1982) eliminative account of evidential diversity. (shrink)
Probability can be used to measure degree of belief in two ways: objectively and subjectively. The objective measure is a measure of the rational degree of belief in a proposition given a set of evidential propositions. The subjective measure is the measure of a particular subject’s dispositions to decide between options. In both measures, certainty is a degree of belief 1. I will show, however, that there can be cases where one belief is stronger than another yet both (...) beliefs are plausibly measurable as objectively and subjectively certain. In ordinary language, we can say that while both beliefs are certain, one belief is more certain than the other. I will then propose second, non probabilistic dimension of measurement, which tracks this variation in certainty in such cases where the probability is 1. A general principle of rationality is that one’s subjective degree of belief should match the rational degree of belief given the evidence available. In this paper I hope to show that it is also a rational principle that the maximum stake size at which one should remain certain should match the rational weight of certainty given the evidence available. Neither objective nor subjective measures of certainty conform to the axioms of probability, but instead are measured in utility. This has the consequence that, although it is often rational to be certain to some degree, there is no such thing as absolute certainty. (shrink)
David Builes presents a paradox concerning how confident you should be that any given member of an infinite collection of fair coins landed heads, conditional on the information that they were all flipped and only finitely many of them landed heads. We argue that if you should have any conditional credence at all, it should be 1/2.
A common objection to probabilistic theories of causation is that there are prima facie causes that lower the probability of their effects. Among the many replies to this objection, little attention has been given to Mellor's (1995) indirect strategy to deny that probability-lowering factors are bona fide causes. According to Mellor, such factors do not satisfy the evidential, explanatory, and instrumental connotations of causation. The paper argues that the evidential connotation only entails an epistemically relativized form (...) of causal attribution, not causation itself, and that there are clear cases of explanation and instrumental reasoning that must appeal to negatively relevant factors. In the end, it suggests a more liberal interpretation of causation that restores its connotations. Una objeción común a las teorías probabilísticas de la causalidad es que aparentemente existen causas que disminuyen la probabilidad de sus efectos. Entre las muchas respuestas a esta objeción, se le ha dado poca atención a la estrategia indirecta de D. H. Mellor (1995) para negar que un factor que disminuya la probabilidad de un efecto sea una causa legítima. Según Mellor, tales factores no satisfacen las connotaciones evidenciales, explicativas e instrumentales de la causalidad. El artículo argumenta que la connotación evidencial sólo implica una forma epistémicamente relativizada de atribución causal y no la causalidad misma, y que hay casos claros de explicación y razonamiento instrumental que deben apelar a factores negativamente relevantes. Se sugiere una interpretación más liberal de la causalidad que reinstaura sus connotaciones. (shrink)
In this paper, I argue that Islamic theism is best explained by the hypothesis of Divine Commission, whereby Muhammad is viewed as being divinely commissioned to serve the overall salvific purposes of God. To this end, I present three observation reports relating to Islamic theism and evaluate HDC against an alternative hypothesis, the hypothesis of Non-Commission whereby Muhammad is not viewed as being divinely commissioned. I argue that the probability of the observation reports is greater on the assumption that (...) HDC is true than on the assumption that NC is true. Accordingly, this gives us reason to prefer HDC as a better explanation of Islamic theism. (shrink)
The objective Bayesian view of proof (or logical probability, or evidential support) is explained and defended: that the relation of evidence to hypothesis (in legal trials, science etc) is a strictly logical one, comparable to deductive logic. This view is distinguished from the thesis, which had some popularity in law in the 1980s, that legal evidence ought to be evaluated using numerical probabilities and formulas. While numbers are not always useful, a central role is played in uncertain reasoning (...) by the ‘proportional syllogism’, or argument from frequencies, such as ‘nearly all aeroplane flights arrive safely, so my flight is very likely to arrive safely’. Such arguments raise the ‘problem of the reference class’, arising from the fact that an individual case may be a member of many different classes in which frequencies differ. For example, if 15 per cent of swans are black and 60 per cent of fauna in the zoo is black, what should I think about the likelihood of a swan in the zoo being black? The nature of the problem is explained, and legal cases where it arises are given. It is explained how recent work in data mining on the relevance of features for prediction provides a solution to the reference class problem. (shrink)
Abstract The Preface Paradox, first introduced by David Makinson (1961), presents a plausible scenario where an agent is evidentially certain of each of a set of propositions without being evidentially certain of the conjunction of the set of propositions. Given reasonable assumptions about the nature of evidential certainty, this appears to be a straightforward contradiction. We solve the paradox by appeal to stake size sensitivity, which is the claim that evidentialprobability is sensitive to stake size. The (...) argument is that because the informational content in the conjunction is greater than the sum of the informational content of the conjuncts, the stake size in the conjunction is higher than the sum of the stake sizes in the conjuncts. We present a theory of evidentialprobability that identifies knowledge with value and allows for coherent stake sensitive beliefs. An agent’s beliefs are represented two dimensionally as a bid – ask spread, which gives a bid price and an ask price for bets at each stake size. The bid ask spread gets wider when there is less valuable evidence relative to the stake size, and narrower when there is more valuable evidence according to a simple formula. The bid-ask spread can represent the uncertainty in the first order probabilistic judgement. According to the theory it can be coherent to be evidentially certain at low stakes, but less than certain at high stakes, and therefore there is no contradiction in the Preface. The theory not only solves the paradox, but also gives a good model of decisions under risk that overcomes many of the problems associated with classic expected utility theory. (shrink)
The value of knowledge can vary in that knowledge of important facts is more valuable than knowledge of trivialities. This variation in the value of knowledge is mirrored by a variation in evidential standards. Matters of greater importance require greater evidential support. But all knowledge, however trivial, needs to be evidentially certain. So on one hand we have a variable evidential standard that depends on the value of the knowledge, and on the other, we have the invariant (...) standard of evidential certainty. This paradox in the concept of knowledge runs deep in the history of philosophy. We approach this paradox by proposing a bet settlement theory of knowledge. Degrees of belief can be measured by the expected value of a bet divided by stake size, with the highest degree of belief being probability 1, or certainty. Evidence sufficient to settle the bet makes the expectation equal to the stake size and therefore has evidentialprobability 1. This gives us the invariant evidential certainty standard for knowledge. The value of knowledge relative to a bet is given by the stake size. We propose that evidentialprobability can vary with stake size, so that evidential certainty at low stakes does not entail evidential certainty at high stakes. This solves the paradox by allowing that certainty is necessary for knowledge at any stakes, but that the evidential standards for knowledge vary according to what is at stake. We give a Stake Size Variation Principle that calculates evidentialprobability from the value of evidence and the stakes. Stake size variant degrees of belief are probabilistically coherent and explain a greater range of preferences than orthodox expected utility theory, namely the Ellsberg and Allais preferences. The resulting theory of knowledge gives an empirically adequate, rationally grounded, unified account of evidence, value and probability. (shrink)
This paper argues that we should assign certainty a central place in epistemology. While epistemic certainty played an important role in the history of epistemology, recent epistemology has tended to dismiss certainty as an unattainable ideal, focusing its attention on knowledge instead. I argue that this is a mistake. Attending to certainty attributions in the wild suggests that much of our everyday knowledge qualifies, in appropriate contexts, as certain. After developing a semantics for certainty ascriptions, I put certainty to explanatory (...) work. Specifically, I argue that by taking certainty as our central epistemic notion, we can shed light on a variety of important topics, including evidence and evidentialprobability, epistemic modals, and the normative constraints on credence and assertion. (shrink)
Say that two goals are normatively coincident just in case one cannot aim for one goal without automatically aiming for the other. While knowledge and justification are distinct epistemic goals, with distinct achievement conditions, this paper begins from the suggestion that they are nevertheless normatively coincident—aiming for knowledge and aiming for justification are one and the same activity. A number of surprising consequences follow from this—both specific consequences about how we can ascribe knowledge and justification in lottery cases and more (...) general consequences about the nature of justification and the relationship between justification and evidentialprobability. Many of these consequences turn out to be at variance with conventional, prevailing views. (shrink)
The epistemology of risk examines how risks bear on epistemic properties. A common framework for examining the epistemology of risk holds that strength of evidential support is best modelled as numerical probability given the available evidence. In this essay I develop and motivate a rival ‘relevant alternatives’ framework for theorising about the epistemology of risk. I describe three loci for thinking about the epistemology of risk. The first locus concerns consequences of relying on a belief for action, where (...) those consequences are significant if the belief is false. The second locus concerns whether beliefs themselves—regardless of action—can be risky, costly, or harmful. The third locus concerns epistemic risks we confront as social epistemic agents. I aim to motivate the relevant alternatives framework as a fruitful approach to the epistemology of risk. I first articulate a ‘relevant alternatives’ model of the relationship between stakes, evidence, and action. I then employ the relevant alternatives framework to undermine the motivation for moral encroachment. Finally, I argue the relevant alternatives framework illuminates epistemic phenomena such as gaslighting, conspiracy theories, and crying wolf, and I draw on the framework to diagnose the undue skepticism endemic to rape accusations. (shrink)
In finite probability theory, events are subsets S⊆U of the outcome set. Subsets can be represented by 1-dimensional column vectors. By extending the representation of events to two dimensional matrices, we can introduce "superposition events." Probabilities are introduced for classical events, superposition events, and their mixtures by using density matrices. Then probabilities for experiments or `measurements' of all these events can be determined in a manner exactly like in quantum mechanics (QM) using density matrices. Moreover the transformation of the (...) density matrices induced by the experiments or `measurements' is the Lüders mixture operation as in QM. And finally by moving the machinery into the n-dimensional vector space over ℤ₂, different basis sets become different outcome sets. That `non-commutative' extension of finite probability theory yields the pedagogical model of quantum mechanics over ℤ₂ that can model many characteristic non-classical results of QM. (shrink)
This paper motivates and develops a novel semantic framework for deontic modals. The framework is designed to shed light on two things: the relationship between deontic modals and substantive theories of practical rationality and the interaction of deontic modals with conditionals, epistemic modals and probability operators. I argue that, in order to model inferential connections between deontic modals and probability operators, we need more structure than is provided by classical intensional theories. In particular, we need probabilistic structure that (...) interacts directly with the compositional semantics of deontic modals. However, I reject theories that provide this probabilistic structure by claiming that the semantics of deontic modals is linked to the Bayesian notion of expectation. I offer a probabilistic premise semantics that explains all the data that create trouble for the rival theories. (shrink)
In this study we investigate the influence of reason-relation readings of indicative conditionals and ‘and’/‘but’/‘therefore’ sentences on various cognitive assessments. According to the Frege-Grice tradition, a dissociation is expected. Specifically, differences in the reason-relation reading of these sentences should affect participants’ evaluations of their acceptability but not of their truth value. In two experiments we tested this assumption by introducing a relevance manipulation into the truth-table task as well as in other tasks assessing the participants’ acceptability and probability evaluations. (...) Across the two experiments a strong dissociation was found. The reason-relation reading of all four sentences strongly affected their probability and acceptability evaluations, but hardly affected their respective truth evaluations. Implications of this result for recent work on indicative conditionals are discussed. (shrink)
This book explores a question central to philosophy--namely, what does it take for a belief to be justified or rational? According to a widespread view, whether one has justification for believing a proposition is determined by how probable that proposition is, given one's evidence. In this book this view is rejected and replaced with another: in order for one to have justification for believing a proposition, one's evidence must normically support it--roughly, one's evidence must make the falsity of that proposition (...) abnormal in the sense of calling for special, independent explanation. This conception of justification bears upon a range of topics in epistemology and beyond. Ultimately, this way of looking at justification guides us to a new, unfamiliar picture of how we should respond to our evidence and manage our own fallibility. This picture is developed here. (shrink)
We provide a 'verisimilitudinarian' analysis of the well-known Linda paradox or conjunction fallacy, i.e., the fact that most people judge the probability of the conjunctive statement "Linda is a bank teller and is active in the feminist movement" (B & F) as more probable than the isolated statement "Linda is a bank teller" (B), contrary to an uncontroversial principle of probability theory. The basic idea is that experimental participants may judge B & F a better hypothesis about Linda (...) as compared to B because they evaluate B & F as more verisimilar than B. In fact, the hypothesis "feminist bank teller", while less likely to be true than "bank teller", may well be a better approximation to the truth about Linda. (shrink)
DOI: 10.1080/00031305.2018.1564697 When the editors of Basic and Applied Social Psychology effectively banned the use of null hypothesis significance testing (NHST) from articles published in their journal, it set off a fire-storm of discussions both supporting the decision and defending the utility of NHST in scientific research. At the heart of NHST is the p-value which is the probability of obtaining an effect equal to or more extreme than the one observed in the sample data, given the null hypothesis (...) and other model assumptions. Although this is conceptually different from the probability of the null hypothesis being true, given the sample, p-values nonetheless can provide evidential information, toward making an inference about a parameter. Applying a 10,000-case simulation described in this article, the authors found that p-values’ inferential signals to either reject or not reject a null hypothesis about the mean (α = 0.05) were consistent for almost 70% of the cases with the parameter’s true location for the sampled-from population. Success increases if a hybrid decision criterion, minimum effect size plus p-value (MESP), is used. Here, rejecting the null also requires the difference of the observed statistic from the exact null to be meaningfully large or practically significant, in the researcher’s judgment and experience. The simulation compares performances of several methods: from p-value and/or effect size-based, to confidence-interval based, under various conditions of true location of the mean, test power, and comparative sizes of the meaningful distance and population variability. For any inference procedure that outputs a binary indicator, like flagging whether a p-value is significant, the output of one single experiment is not sufficient evidence for a definitive conclusion. Yet, if a tool like MESP generates a relatively reliable signal and is used knowledgeably as part of a research process, it can provide useful information. (shrink)
The paper argues that knowledge is not closed under logical inference. The argument proceeds from the openness of evidential support and the dependence of empirical knowledge on evidence, to the conclusion that knowledge is open. Without attempting to provide a full-fledged theory of evidence, we show that on the modest assumption that evidence cannot support both a proposition and its negation, or, alternatively, that information that reduces the probability of a proposition cannot constitute evidence for its truth, the (...) relation of evidential support is not closed under known entailment. Therefore the evidence-for relation is deductively open regardless of whether evidence is probabilistic or not. Given even a weak dependence of empirical knowledge on evidence, we argue that empirical knowledge is also open. On this basis, we also respond to the strongest argument in support of knowledge closure. Finally, we present a number of significant benefits of our position, namely, offering a unified explanation for a range of epistemological puzzles. (shrink)
This chapter discusses the two most prominent recent evidential arguments from evil, due, respectively, to William Rowe and Paul Draper. I argue that neither of these evidential arguments from evil is successful, i.e. such that it ought to persuade anyone who believes in God to give up that belief. In my view, theists can rationally maintain that each of these evidential arguments from evil contains at least one false premise.
The notion of comparative probability defined in Bayesian subjectivist theory stems from an intuitive idea that, for a given pair of events, one event may be considered “more probable” than the other. Yet it is conceivable that there are cases where it is indeterminate as to which event is more probable, due to, e.g., lack of robust statistical information. We take that these cases involve indeterminate comparative probabilities. This paper provides a Savage-style decision-theoretic foundation for indeterminate comparative probabilities.
Some of the most interesting recent work in formal epistemology has focused on developing accuracy-based approaches to justifying Bayesian norms. These approaches are interesting not only because they offer new ways to justify these norms, but because they potentially offer a way to justify all of these norms by appeal to a single, attractive epistemic goal: having accurate beliefs. Recently, Easwaran & Fitelson (2012) have raised worries regarding whether such “all-accuracy” or “purely alethic” approaches can accommodate and justify evidential (...) Bayesian norms. In response, proponents of purely alethic approaches, such as Pettigrew (2013b) and Joyce (2016), have argued that scoring rule arguments provide us with compatible and purely alethic justifications for the traditional Bayesian norms, including evidential norms. In this paper I raise several challenges to this claim. First, I argue that many of the justifications these scoring rule arguments provide are not compatible. Second, I raise worries for the claim that these scoring rule arguments provide purely alethic justifications. Third, I turn to assess the more general question of whether purely alethic justifications for evidential norms are even possible, and argue that, without making some contentious assumptions, they are not. Fourth, I raise some further worries for the possibility of providing purely alethic justifications for content-sensitive evidential norms, like the Principal Principle. (shrink)
A probability distribution is regular if no possible event is assigned probability zero. While some hold that probabilities should always be regular, three counter-arguments have been posed based on examples where, if regularity holds, then perfectly similar events must have different probabilities. Howson (2017) and Benci et al. (2016) have raised technical objections to these symmetry arguments, but we see here that their objections fail. Howson says that Williamson’s (2007) “isomorphic” events are not in fact isomorphic, but Howson (...) is speaking of set-theoretic representations of events in a probability model. While those sets are not isomorphic, Williamson’s physical events are, in the relevant sense. Benci et al. claim that all three arguments rest on a conflation of different models, but they do not. They are founded on the premise that similar events should have the same probability in the same model, or in one case, on the assumption that a single rotation-invariant distribution is possible. Having failed to refute the symmetry arguments on such technical grounds, one could deny their implicit premises, which is a heavy cost, or adopt varying degrees of instrumentalism or pluralism about regularity, but that would not serve the project of accurately modelling chances. (shrink)
Igor Douven establishes several new intransitivity results concerning evidential support. I add to Douven’s very instructive discussion by establishing two further intransitivity results and a transitivity result.
When probability discounting (or probability weighting), one multiplies the value of an outcome by one's subjective probability that the outcome will obtain in decision-making. The broader import of defending probability discounting is to help justify cost-benefit analyses in contexts such as climate change. This chapter defends probability discounting under risk both negatively, from arguments by Simon Caney (2008, 2009), and with a new positive argument. First, in responding to Caney, I argue that small costs and (...) benefits need to be evaluated, and that viewing practices at the social level is too coarse-grained. Second, I argue for probability discounting, using a distinction between causal responsibility and moral responsibility. Moral responsibility can be cashed out in terms of blameworthiness and praiseworthiness, while causal responsibility obtains in full for any effect which is part of a causal chain linked to one's act. With this distinction in hand, unlike causal responsibility, moral responsibility can be seen as coming in degrees. My argument is, given that we can limit our deliberation and consideration to that which we are morally responsible for and that our moral responsibility for outcomes is limited by our subjective probabilities, our subjective probabilities can ground probability discounting. (shrink)
This paper is a response to Tyler Wunder’s ‘The modality of theism and probabilistic natural theology: a tension in Alvin Plantinga's philosophy’ (this journal). In his article, Wunder argues that if the proponent of the Evolutionary Argument Against Naturalism (EAAN) holds theism to be non-contingent and frames the argument in terms of objective probability, that the EAAN is either unsound or theism is necessarily false. I argue that a modest revision of the EAAN renders Wunder’s objection irrelevant, and that (...) this revision actually widens the scope of the argument. (shrink)
A definition of causation as probability-raising is threatened by two kinds of counterexample: first, when a cause lowers the probability of its effect; and second, when the probability of an effect is raised by a non-cause. In this paper, I present an account that deals successfully with problem cases of both these kinds. In doing so, I also explore some novel implications of incorporating into the metaphysical investigation considerations of causal psychology.
We generalize the Kolmogorov axioms for probability calculus to obtain conditions defining, for any given logic, a class of probability functions relative to that logic, coinciding with the standard probability functions in the special case of classical logic but allowing consideration of other classes of "essentially Kolmogorovian" probability functions relative to other logics. We take a broad view of the Bayesian approach as dictating inter alia that from the perspective of a given logic, rational degrees of (...) belief are those representable by probability functions from the class appropriate to that logic. Classical Bayesianism, which fixes the logic as classical logic, is only one version of this general approach. Another, which we call Intuitionistic Bayesianism, selects intuitionistic logic as the preferred logic and the associated class of probability functions as the right class of candidate representions of epistemic states (rational allocations of degrees of belief). Various objections to classical Bayesianism are, we argue, best met by passing to intuitionistic Bayesianism—in which the probability functions are taken relative to intuitionistic logic—rather than by adopting a radically non-Kolmogorovian, for example, nonadditive, conception of (or substitute for) probability functions, in spite of the popularity of the latter response among those who have raised these objections. The interest of intuitionistic Bayesianism is further enhanced by the availability of a Dutch Book argument justifying the selection of intuitionistic probability functions as guides to rational betting behavior when due consideration is paid to the fact that bets are settled only when/if the outcome bet on becomes known. (shrink)
There is a plethora of confirmation measures in the literature. Zalabardo considers four such measures: PD, PR, LD, and LR. He argues for LR and against each of PD, PR, and LD. First, he argues that PR is the better of the two probability measures. Next, he argues that LR is the better of the two likelihood measures. Finally, he argues that LR is superior to PR. I set aside LD and focus on the trio of PD, PR, and (...) LR. The question I address is whether Zalabardo succeeds in showing that LR is superior to each of PD and PR. I argue that the answer is negative. I also argue, though, that measures such as PD and PR, on one hand, and measures such as LR, on the other hand, are naturally understood as explications of distinct senses of confirmation. (shrink)
How were reliable predictions made before Pascal and Fermat's discovery of the mathematics of probability in 1654? What methods in law, science, commerce, philosophy, and logic helped us to get at the truth in cases where certainty was not attainable? The book examines how judges, witch inquisitors, and juries evaluated evidence; how scientists weighed reasons for and against scientific theories; and how merchants counted shipwrecks to determine insurance rates. Also included are the problem of induction before Hume, design arguments (...) for the existence of God, and theories on how to evaluate scientific and historical hypotheses. It is explained how Pascal and Fermat's work on chance arose out of legal thought on aleatory contracts. The book interprets pre-Pascalian unquantified probability in a generally objective Bayesian or logical probabilist sense. (shrink)
Evidentialism and Reliabilism are two of the main contemporary theories of epistemic justification. Some authors have thought that the theories are not incompatible with each other, and that a hybrid theory which incorporates elements of both should be taken into account. More recently, other authors have argued that the resulting theory is well- placed to deal with fine-grained doxastic attitudes (credences). In this paper I review the reasons for adopting this kind of hybrid theory, paying attention to the case of (...) credences and the notion of probability involved in their treatment. I argue that the notion of probability in question can only be an epistemic (or evidential) kind of probability. I conclude that the resulting theory will be incompatible with Reliabilism in one important respect: it cannot deliver on the reductivist promise of Reliabilism. I also argue that attention to the justification of basic beliefs reveals limitations in the Evidentialist framework as well. The theory that results from the right combination of Evidentialism and Reliabilism, therefore, is neither Evidentialist nor Reliabilist. (shrink)
The very existence of society depends on the ability of its members to influence formatively the beliefs, desires, and actions of their fellows. In every sphere of social life, powerful human agents (whether individuals or institutions) tend to use coercion as a favorite shortcut to achieving their aims without taking into consideration the non-violent alternatives or the negative (unintended) consequences of their actions. This propensity for coercion is manifested in the doxastic sphere by attempts to shape people’s beliefs (and doubts) (...) while ignoring the essential characteristics of these doxastic states. I argue that evidential persuasion is a better route to influence people’s beliefs than doxastic coercion. Doxastic coercion perverts the belief-forming mechanism and undermines the epistemic and moral faculties both of coercers and coercees. It succeeds sporadically and on short-term. Moreover, its pseudo doxastic effects tend to disappear once the use of force ceases. In contrast to doxastic coercion, evidential persuasion produces lasting correct beliefs in accordance with proper standards of evidence. It helps people to reach the highest possible standards of rationality and morality. Evidential persuasion is based on the principles of symmetry and reciprocity in that it asks all persuaders to use for changing the beliefs of others only those means they used in forming their own beliefs respecting the freedom of will and assuming the standard of rationality. The arguments in favor of evidential persuasion have a firm theoretical basis that includes a conceptual clarification of the essential traits of beliefs. Belief is treated as a hypercomplex system governed by Leibniz’s law of continuity and the principle of self-organization. It appears to be a mixture consisting of a personal propositional attitude and physical objects and processes. The conceptual framework also includes a typology of believers according to the standards of evidence they assume. In this context, I present a weak version of Clifford’ ethical imperative. In the section dedicated to the prerequisites for changing beliefs, I show how doxastic agents can infuse premeditated or planned changes in the flow of endogenous changes in order to shape certain beliefs in certain desired forms. The possibility of changing some beliefs in a planned manner is correlated with a feedback doxastic (macro-mechanism) that produces a reaction when it is triggered by a stimulus. In relation with the two routes to influence beliefs, a response mechanism is worth taking into consideration – a mechanism governed to a significant extent by human conscience and human will, that appears to be complex, acquired, relatively detached from visceral or autonomic information processing, and highly variable in reactions. Knowing increasingly better this doxastic mechanism, we increase our chances to use evidential persuasion as an effective (although not time-efficient) method to mold people’s beliefs. (shrink)
Modern scientific cosmology pushes the boundaries of knowledge and the knowable. This is prompting questions on the nature of scientific knowledge. A central issue is what defines a 'good' model. When addressing global properties of the Universe or its initial state this becomes a particularly pressing issue. How to assess the probability of the Universe as a whole is empirically ambiguous, since we can examine only part of a single realisation of the system under investigation: at some point, data (...) will run out. We review the basics of applying Bayesian statistical explanation to the Universe as a whole. We argue that a conventional Bayesian approach to model inference generally fails in such circumstances, and cannot resolve, e.g., the so-called 'measure problem' in inflationary cosmology. Implicit and non-empirical valuations inevitably enter model assessment in these cases. This undermines the possibility to perform Bayesian model comparison. One must therefore either stay silent, or pursue a more general form of systematic and rational model assessment. We outline a generalised axiological Bayesian model inference framework, based on mathematical lattices. This extends inference based on empirical data (evidence) to additionally consider the properties of model structure (elegance) and model possibility space (beneficence). We propose this as a natural and theoretically well-motivated framework for introducing an explicit, rational approach to theoretical model prejudice and inference beyond data. (shrink)
Leibniz’s account of probability has come into better focus over the past decades. However, less attention has been paid to a certain domain of application of that account, that is, the application of it to the moral or ethical domain—the sphere of action, choice and practice. This is significant, as Leibniz had some things to say about applying probability theory to the moral domain, and thought the matter quite relevant. Leibniz’s work in this area is conducted at a (...) high level of abstraction. It establishes a proof of concept, rather than concrete guidelines for how to apply calculations to specific cases. Still, this highly abstract material does allow us to begin to construct a framework for thinking about Leibniz’s approach to the ethical side of probability. (shrink)
Dutch Book arguments have been presented for static belief systems and for belief change by conditionalization. An argument is given here that a rule for belief change which under certain conditions violates probability kinematics will leave the agent open to a Dutch Book.
Policy-makers sometimes aim to improve well-being as a policy goal, but to do this they need some way to measure well-being. Instead of relying on potentially problematic theories of well-being to justify their choice of well-being measure, Daniel Hausman proposes that policy-makers can sometimes rely on preference-based measures as evidence for well-being. I claim that Hausman’s evidential account does not justify the use of any one measure more than it justifies the use of any other measure. This leaves us (...) at a loss as to which policy should be chosen in the non-trivial cases for which there is substantial disagreement between the different measures in their assessment of policy. (shrink)
In the following we will investigate whether von Mises’ frequency interpretation of probability can be modified to make it philosophically acceptable. We will reject certain elements of von Mises’ theory, but retain others. In the interpretation we propose we do not use von Mises’ often criticized ‘infinite collectives’ but we retain two essential claims of his interpretation, stating that probability can only be defined for events that can be repeated in similar conditions, and that exhibit frequency stabilization. The (...) central idea of the present article is that the mentioned ‘conditions’ should be well-defined and ‘partitioned’. More precisely, we will divide probabilistic systems into object, initializing, and probing subsystem, and show that such partitioning allows to solve problems. Moreover we will argue that a key idea of the Copenhagen interpretation of quantum mechanics (the determinant role of the observing system) can be seen as deriving from an analytic definition of probability as frequency. Thus a secondary aim of the article is to illustrate the virtues of analytic definition of concepts, consisting of making explicit what is implicit. (shrink)
Bayesian confirmation theory is rife with confirmation measures. Zalabardo focuses on the probability difference measure, the probability ratio measure, the likelihood difference measure, and the likelihood ratio measure. He argues that the likelihood ratio measure is adequate, but each of the other three measures is not. He argues for this by setting out three adequacy conditions on confirmation measures and arguing in effect that all of them are met by the likelihood ratio measure but not by any of (...) the other three measures. Glass and McCartney, hereafter “G&M,” accept the conclusion of Zalabardo’s argument along with each of the premises in it. They nonetheless try to improve on Zalabardo’s argument by replacing his third adequacy condition with a weaker condition. They do this because of a worry to the effect that Zalabardo’s third adequacy condition runs counter to the idea behind his first adequacy condition. G&M have in mind confirmation in the sense of increase in probability: the degree to which E confirms H is a matter of the degree to which E increases H’s probability. I call this sense of confirmation “IP.” I set out four ways of precisifying IP. I call them “IP1,” “IP2,” “IP3,” and “IP4.” Each of them is based on the assumption that the degree to which E increases H’s probability is a matter of the distance between p and a certain other probability involving H. I then evaluate G&M’s argument in light of them. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.