Results for 'history of mathematics'

1000+ found
Order:
  1. Models, Mathematics and Deleuze's Philosophy: Some Remarks on Simon Duffy's Deleuze and the History of Mathematics: In Defence of the New.James Williams - 2017 - Deleuze and Guatarri Studies 11 (3):475-481.
    Download  
     
    Export citation  
     
    Bookmark  
  2.  17
    The History of Medicine.Rochelle Forrester - unknown
    This paper was written to study the order of medical advances throughout history. It investigates changing human beliefs concerning the causes of diseases, how modern surgery developed and improved methods of diagnosis and the use of medical statistics. Human beliefs about the causes of disease followed a logical progression from supernatural causes, such as the wrath of the Gods, to natural causes, involving imbalances within the human body. The invention of the microscope led to the discovery of microorganisms which (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. The Fundamental Cognitive Approaches of Mathematics.Salvador Daniel Escobedo Casillas - manuscript
    We propose a way to explain the diversification of branches of mathematics, distinguishing the different approaches by which mathematical objects can be studied. In our philosophy of mathematics, there is a base object, which is the abstract multiplicity that comes from our empirical experience. However, due to our human condition, the analysis of such multiplicity is covered by other empirical cognitive attitudes (approaches), diversifying the ways in which it can be conceived, and consequently giving rise to different mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4.  40
    Reconstructing the Unity of Mathematics Circa 1900.David J. Stump - 1997 - Perspectives on Science 5 (3):383-417.
    Standard histories of mathematics and of analytic philosophy contend that work on the foundations of mathematics was motivated by a crisis such as the discovery of paradoxes in set theory or the discovery of non-Euclidean geometries. Recent scholarship, however, casts doubt on the standard histories, opening the way for consideration of an alternative motive for the study of the foundations of mathematics—unification. Work on foundations has shown that diverse mathematical practices could be integrated into a single framework (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5.  81
    The Foundations of Mathematics From a Historical Viewpoint.Antonino Drago - 2015 - Epistemologia 38 (1):133-151.
    A new hypothesis on the basic features characterising the Foundations of Mathematics is suggested. By means of them the entire historical development of Mathematics before the 20th Century is summarised through a table. Also the several programs, launched around the year 1900, on the Foundations of Mathematics are characterised by a corresponding table. The major difficulty that these programs met was to recognize an alternative to the basic feature of the deductive organization of a theory - more (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  6. Physically Similar Systems: A History of the Concept.Susan G. Sterrett - 2017 - In Lorenzo Magnani & Tommaso Wayne Bertolotti (eds.), Springer Handbook of Model-Based Science. Dordrecht Heidelberg London New York: Springer. pp. 377-412.
    The concept of similar systems arose in physics, and appears to have originated with Newton in the seventeenth century. This chapter provides a critical history of the concept of physically similar systems, the twentieth century concept into which it developed. The concept was used in the nineteenth century in various fields of engineering, theoretical physics and theoretical and experimental hydrodynamics. In 1914, it was articulated in terms of ideas developed in the eighteenth century and used in nineteenth century (...) and mechanics: equations, functions and dimensional analysis. The terminology physically similar systems was proposed for this new characterization of similar systems by the physicist Edgar Buckingham. Related work by Vaschy, Bertrand, and Riabouchinsky had appeared by then. The concept is very powerful in studying physical phenomena both theoretically and experimentally. As it is not currently part of the core curricula of STEM disciplines or philosophy of science, it is not as well known as it ought to be. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  7. Avoiding Reification: Heuristic Effectiveness of Mathematics and the Prediction of the Omega Minus Particle.Michele Ginammi - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 53:20-27.
    According to Steiner (1998), in contemporary physics new important discoveries are often obtained by means of strategies which rely on purely formal mathematical considerations. In such discoveries, mathematics seems to have a peculiar and controversial role, which apparently cannot be accounted for by means of standard methodological criteria. M. Gell-Mann and Y. Ne׳eman׳s prediction of the Ω− particle is usually considered a typical example of application of this kind of strategy. According to Bangu (2008), this prediction is apparently based (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. History of Science as a Facilitator for the Study of Physics: A Repertoire of Quantum Theory.Roberto Angeloni - 2018 - Newcastle upon Tyne District, Newcastle upon Tyne, UK: Cambridge Scholars Publishing.
    This proposal serves to enhance scientific and technological literacy, by promoting STEM (Science, Technology, Engineering, and Mathematics) education with particular reference to contemporary physics. The study is presented in the form of a repertoire, and it gives the reader a glimpse of the conceptual structure and development of quantum theory along a rational line of thought, whose understanding might be the key to introducing young generations of students to physics.
    Download  
     
    Export citation  
     
    Bookmark  
  9. History of the NeoClassical Interpretation of Quantum and Relativistic Physics.Shiva Meucci - 2018 - Cosmos and History 14 (2):157-177.
    The need for revolution in modern physics is a well known and often broached subject, however, the precision and success of current models narrows the possible changes to such a great degree that there appears to be no major change possible. We provide herein, the first step toward a possible solution to this paradox via reinterpretation of the conceptual-theoretical framework while still preserving the modern art and tools in an unaltered form. This redivision of concepts and redistribution of the data (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Incomplete Understanding of Complex Numbers Girolamo Cardano: A Case Study in the Acquisition of Mathematical Concepts.Denis Buehler - 2014 - Synthese 191 (17):4231-4252.
    In this paper, I present the case of the discovery of complex numbers by Girolamo Cardano. Cardano acquires the concepts of (specific) complex numbers, complex addition, and complex multiplication. His understanding of these concepts is incomplete. I show that his acquisition of these concepts cannot be explained on the basis of Christopher Peacocke’s Conceptual Role Theory of concept possession. I argue that Strong Conceptual Role Theories that are committed to specifying a set of transitions that is both necessary and sufficient (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Topology as an Issue for History of Philosophy of Science.Thomas Mormann - 2013 - In Hanne Andersen, Dennis Dieks, Wenceslao J. Gonzalez, Thomas Uebel & Gregory Wheeler (eds.), New Challenges to Philosophy of Science. Springer. pp. 423--434.
    Since antiquity well into the beginnings of the 20th century geometry was a central topic for philosophy. Since then, however, most philosophers of science, if they took notice of topology at all, considered it as an abstruse subdiscipline of mathematics lacking philosophical interest. Here it is argued that this neglect of topology by philosophy may be conceived of as the sign of a conceptual sea-change in philosophy of science that expelled geometry, and, more generally, mathematics, from the central (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  12. Russell’s Method of Analysis and the Axioms of Mathematics.Lydia Patton - 2017 - In Sandra Lapointe Christopher Pincock (ed.), Innovations in the History of Analytical Philosophy. London: Palgrave-Macmillan. pp. 105-126.
    In the early 1900s, Russell began to recognize that he, and many other mathematicians, had been using assertions like the Axiom of Choice implicitly, and without explicitly proving them. In working with the Axioms of Choice, Infinity, and Reducibility, and his and Whitehead’s Multiplicative Axiom, Russell came to take the position that some axioms are necessary to recovering certain results of mathematics, but may not be proven to be true absolutely. The essay traces historical roots of, and motivations for, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  13. Ian Hacking, Why Is There Philosophy of Mathematics at All? [REVIEW]Max Harris Siegel - forthcoming - Mind 124.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  14. The Normative Structure of Mathematization in Systematic Biology.Beckett Sterner & Scott Lidgard - 2014 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 46 (1):44-54.
    We argue that the mathematization of science should be understood as a normative activity of advocating for a particular methodology with its own criteria for evaluating good research. As a case study, we examine the mathematization of taxonomic classification in systematic biology. We show how mathematization is a normative activity by contrasting its distinctive features in numerical taxonomy in the 1960s with an earlier reform advocated by Ernst Mayr starting in the 1940s. Both Mayr and the numerical taxonomists sought to (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  15. What is Mathematics: School Guide to Conceptual Understanding of Mathematics.Catalin Barboianu - 2021 - Targu Jiu: PhilScience Press.
    This is not a mathematics book, but a book about mathematics, which addresses both student and teacher, with a goal as practical as possible, namely to initiate and smooth the way toward the student’s full understanding of the mathematics taught in school. The customary procedural-formal approach to teaching mathematics has resulted in students’ distorted vision of mathematics as a merely formal, instrumental, and computational discipline. Without the conceptual base of mathematics, students develop over time (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Sofia A. Yanovskaya: The Marxist Pioneer of Mathematical Logic in the Soviet Union.Dimitris Kilakos - 2019 - Transversal: International Journal for the Historiography of Science 6:49-64.
    K. Marx’s 200th jubilee coincides with the celebration of the 85 years from the first publication of his “Mathematical Manuscripts” in 1933. Its editor, Sofia Alexandrovna Yanovskaya (1896–1966), was a renowned Soviet mathematician, whose significant studies on the foundations of mathematics and mathematical logic, as well as on the history and philosophy of mathematics are unduly neglected nowadays. Yanovskaya, as a militant Marxist, was actively engaged in the ideological confrontation with idealism and its influence on modern (...) and their interpretation. Concomitantly, she was one of the pioneers of mathematical logic in the Soviet Union, in an era of fierce disputes on its compatibility with Marxist philosophy. Yanovskaya managed to embrace in an originally Marxist spirit the contemporary level of logico-philosophical research of her time. Due to her highly esteemed status within Soviet academia, she became one of the most significant pillars for the culmination of modern mathematics in the Soviet Union. In this paper, I attempt to trace the influence of the complex socio-cultural context of the first decades of the Soviet Union on Yanovskaya’s work. Among the several issues I discuss, her encounter with L. Wittgenstein is striking. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  17. On the History of Differentiable Manifolds.Giuseppe Iurato - 2012 - International Mathematical Forum 7 (10):477-514.
    We discuss central aspects of history of the concept of an affine differentiable manifold, as a proposal confirming the need for using some quantitative methods (drawn from elementary Model Theory) in Mathematical Historiography. In particular, we prove that this geometric structure is a syntactic rigid designator in the sense of Kripke-Putnam.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  18. Review Of: Garciadiego, A., "Emergence Of...Paradoxes...Set Theory", Historia Mathematica (1985), in Mathematical Reviews 87j:01035.John Corcoran - 1987 - MATHEMATICAL REVIEWS 87 (J):01035.
    DEFINING OUR TERMS A “paradox" is an argumentation that appears to deduce a conclusion believed to be false from premises believed to be true. An “inconsistency proof for a theory" is an argumentation that actually deduces a negation of a theorem of the theory from premises that are all theorems of the theory. An “indirect proof of the negation of a hypothesis" is an argumentation that actually deduces a conclusion known to be false from the hypothesis alone or, more commonly, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Acts of Time: Cohen and Benjamin on Mathematics and History.Julia Ng - 2017 - Paradigmi. Rivista di Critica Filosofica 2017 (1):41-60.
    This paper argues that the principle of continuity that underlies Benjamin’s understanding of what makes the reality of a thing thinkable, which in the Kantian context implies a process of “filling time” with an anticipatory structure oriented to the subject, is of a different order than that of infinitesimal calculus—and that a “discontinuity” constitutive of the continuity of experience and (merely) counterposed to the image of actuality as an infinite gradation of ultimately thetic acts cannot be the principle on which (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20. Natural Cybernetics and Mathematical History: The Principle of Least Choice in History.Vasil Penchev - 2020 - Cultural Anthropology (Elsevier: SSRN) 5 (23):1-44.
    The paper follows the track of a previous paper “Natural cybernetics of time” in relation to history in a research of the ways to be mathematized regardless of being a descriptive humanitarian science withal investigating unique events and thus rejecting any repeatability. The pathway of classical experimental science to be mathematized gradually and smoothly by more and more relevant mathematical models seems to be inapplicable. Anyway quantum mechanics suggests another pathway for mathematization; considering the historical reality as dual or (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Mathematics, Explanation and Reductionism: Exposing the Roots of the Egyptianism of European Civilization.Arran Gare - 2005 - Cosmos and History 1 (1):54-89.
    We have reached the peculiar situation where the advance of mainstream science has required us to dismiss as unreal our own existence as free, creative agents, the very condition of there being science at all. Efforts to free science from this dead-end and to give a place to creative becoming in the world have been hampered by unexamined assumptions about what science should be, assumptions which presuppose that if creative becoming is explained, it will be explained away as an illusion. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  22. Aristotle’s Prohibition Rule on Kind-Crossing and the Definition of Mathematics as a Science of Quantities.Paola Cantù - 2010 - Synthese 174 (2):225-235.
    The article evaluates the Domain Postulate of the Classical Model of Science and the related Aristotelian prohibition rule on kind-crossing as interpretative tools in the history of the development of mathematics into a general science of quantities. Special reference is made to Proclus’ commentary to Euclid’s first book of Elements , to the sixteenth century translations of Euclid’s work into Latin and to the works of Stevin, Wallis, Viète and Descartes. The prohibition rule on kind-crossing formulated by Aristotle (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  23. Computability. Computable Functions, Logic, and the Foundations of Mathematics[REVIEW]R. Zach - 2002 - History and Philosophy of Logic 23 (1):67-69.
    Epstein and Carnielli's fine textbook on logic and computability is now in its second edition. The readers of this journal might be particularly interested in the timeline `Computability and Undecidability' added in this edition, and the included wall-poster of the same title. The text itself, however, has some aspects which are worth commenting on.
    Download  
     
    Export citation  
     
    Bookmark  
  24. David Lewis's Place in the History of Late Analytic Philosophy: His Conservative and Liberal Methodology.Frederique Janssen-Lauret & Fraser MacBride - 2018 - Philosophical Inquiries 5 (1):1-22.
    In 1901 Russell had envisaged the new analytic philosophy as uniquely systematic, borrowing the methods of science and mathematics. A century later, have Russell’s hopes become reality? David Lewis is often celebrated as a great systematic metaphysician, his influence proof that we live in a heyday of systematic philosophy. But, we argue, this common belief is misguided: Lewis was not a systematic philosopher, and he didn’t want to be. Although some aspects of his philosophy are systematic, mainly his pluriverse (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. History & Mathematics: Trends and Cycles.Leonid Grinin & Andrey V. Korotayev - 2014 - Volgograd: "Uchitel" Publishing House.
    The present yearbook (which is the fourth in the series) is subtitled Trends & Cycles. It is devoted to cyclical and trend dynamics in society and nature; special attention is paid to economic and demographic aspects, in particular to the mathematical modeling of the Malthusian and post-Malthusian traps' dynamics. An increasingly important role is played by new directions in historical research that study long-term dynamic processes and quantitative changes. This kind of history can hardly develop without the application of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. A Path to the Epistemology of Mathematics: Homotopy Theory.Jean-Pierre Marquis - 2006 - In Jeremy Gray & Jose Ferreiros (eds.), The Architecture of Modern Mathematics: Essays in History and Philosophy. Oxford University Press. pp. 239--260.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  27.  21
    Denoting Concepts and Ontology in Russell's Principles of Mathematics.Wouter Adriaan Cohen - 2022 - Journal for the History of Analytical Philosophy 10 (7).
    Bertrand Russell’s _Principles of Mathematics_ (1903) gives rise to several interpretational challenges, especially concerning the theory of denoting concepts. Only relatively recently, for instance, has it been properly realised that Russell accepted denoting concepts that do not denote anything. Such empty denoting concepts are sometimes thought to enable Russell, whether he was aware of it or not, to avoid commitment to some of the problematic non-existent entities he seems to accept, such as the Homeric gods and chimeras. In this paper, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Review Of: Hodesdon, K. “Mathematica Representation: Playing a Role”. Philosophical Studies (2014) 168:769–782. Mathematical Reviews. MR 3176431.John Corcoran - 2015 - MATHEMATICAL REVIEWS 2015:3176431.
    This 4-page review-essay—which is entirely reportorial and philosophically neutral as are my other contributions to MATHEMATICAL REVIEWS—starts with a short introduction to the philosophy known as mathematical structuralism. The history of structuralism traces back to George Boole (1815–1864). By reference to a recent article various feature of structuralism are discussed with special attention to ambiguity and other terminological issues. The review-essay includes a description of the recent article. The article’s 4-sentence summary is quoted in full and then analyzed. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. REVIEW OF 1988. Saccheri, G. Euclides Vindicatus (1733), Edited and Translated by G. B. Halsted, 2nd Ed. (1986), in Mathematical Reviews MR0862448. 88j:01013.John Corcoran - 1988 - MATHEMATICAL REVIEWS 88 (J):88j:01013.
    Girolamo Saccheri (1667--1733) was an Italian Jesuit priest, scholastic philosopher, and mathematician. He earned a permanent place in the history of mathematics by discovering and rigorously deducing an elaborate chain of consequences of an axiom-set for what is now known as hyperbolic (or Lobachevskian) plane geometry. Reviewer's remarks: (1) On two pages of this book Saccheri refers to his previous and equally original book Logica demonstrativa (Turin, 1697) to which 14 of the 16 pages of the editor's "Introduction" (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Review of Reading Natural Philosophy: Essays in the History and Philosophy of Science and Mathematics[REVIEW]Chris Smeenk - 2005 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (1):194-199.
    Book Review for Reading Natural Philosophy: Essays in the History and Philosophy of Science and Mathematics, La Salle, IL: Open Court, 2002. Edited by David Malament. This volume includes thirteen original essays by Howard Stein, spanning a range of topics that Stein has written about with characteristic passion and insight. This review focuses on the essays devoted to history and philosophy of physics.
    Download  
     
    Export citation  
     
    Bookmark  
  31. The History and Prehistory of Natural-Language Semantics.Daniel W. Harris - 2017 - In Sandra Lapointe & Christopher Pincock (eds.), Innovations in the History of Analytical Philosophy. Palgrave-MacMillan. pp. 149--194.
    Contemporary natural-language semantics began with the assumption that the meaning of a sentence could be modeled by a single truth condition, or by an entity with a truth-condition. But with the recent explosion of dynamic semantics and pragmatics and of work on non- truth-conditional dimensions of linguistic meaning, we are now in the midst of a shift away from a truth-condition-centric view and toward the idea that a sentence’s meaning must be spelled out in terms of its various roles in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  32. The Question of the Existence of God in the Book of Stephen Hawking: A Brief History of Time.Alfred Driessen - 1997 - In Alfred Driessen & Antoine Suarez (eds.), Mathematical undecidability, quantum nonlocality, and the question of the existence of God. Springer.
    The continuing interest in the book of S. Hawking "A Brief History of Time" makes a philosophical evaluation of the content highly desirable. As will be shown, the genre of this work can be identified as a speciality in philosophy, namely the proof of the existence of God. In this study an attempt is given to unveil the philosophical concepts and steps that lead to the final conclusions, without discussing in detail the remarkable review of modern physical theories. In (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  33. Schemata: The Concept of Schema in the History of Logic.John Corcoran - 2006 - Bulletin of Symbolic Logic 12 (2):219-240.
    The syllogistic figures and moods can be taken to be argument schemata as can the rules of the Stoic propositional logic. Sentence schemata have been used in axiomatizations of logic only since the landmark 1927 von Neumann paper [31]. Modern philosophers know the role of schemata in explications of the semantic conception of truth through Tarski’s 1933 Convention T [42]. Mathematical logicians recognize the role of schemata in first-order number theory where Peano’s second-order Induction Axiom is approximated by Herbrand’s Induction-Axiom (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  34. Group Knowledge and Mathematical Collaboration: A Philosophical Examination of the Classification of Finite Simple Groups.Joshua Habgood-Coote & Fenner Stanley Tanswell - forthcoming - Episteme.
    In this paper we apply social epistemology to mathematical proofs and their role in mathematical knowledge. The most famous modern collaborative mathematical proof effort is the Classification of Finite Simple Groups. The history and sociology of this proof have been well-documented by Alma Steingart (2012), who highlights a number of surprising and unusual features of this collaborative endeavour that set it apart from smaller-scale pieces of mathematics. These features raise a number of interesting philosophical issues, but have received (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  35. Review of Macbeth, D. Diagrammatic Reasoning in Frege's Begriffsschrift. Synthese 186 (2012), No. 1, 289–314. Mathematical Reviews MR 2935338.John Corcoran - 2014 - MATHEMATICAL REVIEWS 2014:2935338.
    A Mathematical Review by John Corcoran, SUNY/Buffalo -/- Macbeth, Danielle Diagrammatic reasoning in Frege's Begriffsschrift. Synthese 186 (2012), no. 1, 289–314. ABSTRACT This review begins with two quotations from the paper: its abstract and the first paragraph of the conclusion. The point of the quotations is to make clear by the “give-them-enough-rope” strategy how murky, incompetent, and badly written the paper is. I know I am asking a lot, but I have to ask you to read the quoted passages—aloud if (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Gödel’s Disjunction: The Scope and Limits of Mathematical Knowledge. [REVIEW]Panu Raatikainen - 2018 - History and Philosophy of Logic 39 (4):401-403.
    Austrian-born Kurt Gödel is widely considered the greatest logician of modern times. It is above all his celebrated incompleteness theorems—rigorous mathematical results about the necessary limits...
    Download  
     
    Export citation  
     
    Bookmark  
  37. 1983 Review in Mathematical Reviews 83e:03005 Of: Cocchiarella, Nino “The Development of the Theory of Logical Types and the Notion of a Logical Subject in Russell's Early Philosophy: Bertrand Russell's Early Philosophy, Part I”. Synthese 45 (1980), No. 1, 71-115.John Corcoran - 1983 - MATHEMATICAL REVIEWS 83:03005.
    CORCORAN RECOMMENDS COCCHIARELLA ON TYPE THEORY. The 1983 review in Mathematical Reviews 83e:03005 of: Cocchiarella, Nino “The development of the theory of logical types and the notion of a logical subject in Russell's early philosophy: Bertrand Russell's early philosophy, Part I”. Synthese 45 (1980), no. 1, 71-115 .
    Download  
     
    Export citation  
     
    Bookmark  
  38. Physical Mathematics and The Fine-Structure Constant.Michael A. Sherbon - 2018 - Journal of Advances in Physics 14 (3):5758-64.
    Research into ancient physical structures, some having been known as the seven wonders of the ancient world, inspired new developments in the early history of mathematics. At the other end of this spectrum of inquiry the research is concerned with the minimum of observations from physical data as exemplified by Eddington's Principle. Current discussions of the interplay between physics and mathematics revive some of this early history of mathematics and offer insight into the fine-structure constant. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  39. The Grounding of Computational Psychoanalysis: A Comparative History of Culture Overview of Matte Blanco Bilogic.Giuseppe Iurato - 2014 - In S. Patel, Y. Wang, W. Kinsner, D. Patel, G. Fariello & L. A. Zadeh (eds.), 13th IEEE International Conference on Cognitive Informatics and Cognitive Computing, (ICCI*CC’14) at LSBU, London, UK. IEEE Computer Society Press. pp. 162-171.
    In this paper, we wish to highlight, within the general cultural context, some possible elementary computational psychoanalysis formalizations concerning Matte Blanco’s bi-logic components through certain very elementary mathematical tools and notions drawn from theoretical physics and algebra. NOTE: This is the corrected version of the paper which had to be published but that instead has been wrongly uploaded in the related published proceedings.
    Download  
     
    Export citation  
     
    Bookmark  
  40. Mathematical Modeling of Biological and Social Evolutionary Macrotrends.Leonid Grinin, Alexander V. Markov & Andrey V. Korotayev - 2014 - In History & Mathematics: Trends and Cycles. Volgograd,Russia: Uchitel Publishing House. pp. 9-48.
    In the first part of this article we survey general similarities and differences between biological and social macroevolution. In the second (and main) part, we consider a concrete mathematical model capable of describing important features of both biological and social macroevolution. In mathematical models of historical macrodynamics, a hyperbolic pattern of world population growth arises from non-linear, second-order positive feedback between demographic growth and technological development. Based on diverse paleontological data and an analogy with macrosociological models, we suggest that the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. The Idea of Continuity as Mathematical-Philosophical Invariant.Eldar Amirov - 2019 - “Metafizika” Journal 2 (8):p. 87-100.
    The concept of ‘ideas’ plays central role in philosophy. The genesis of the idea of continuity and its essential role in intellectual history have been analyzed in this research. The main question of this research is how the idea of continuity came to the human cognitive system. In this context, we analyzed the epistemological function of this idea. In intellectual history, the idea of continuity was first introduced by Leibniz. After him, this idea, as a paradigm, formed the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Mathematics' Poincare Conjecture and The Shape of the Universe.Rodney Bartlett - 2011 - Tomorrow's Science Today.
    intro to Part 1 - -/- Most people disliked mathematics when they were at school and they were absolutely correct to do so. This is because maths as we know it is severely incomplete. No matter how elaborated and complicated mathematical equations become, in today's world they're based on 1+1=2. This certainly conforms to the world our physical senses perceive and to the world scientific instruments detect. It has been of immeasurable value to all knowledge throughout history and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Matthew Handelman: The Mathematical Imagination: On the Origins and Promise of Critical Theory. [REVIEW]Francoise Monnoyeur - 2020 - Phenomenological Reviews 5.
    The Mathematical Imagination focuses on the role of mathematics and digital technologies in critical theory of culture. This book belongs to the history of ideas rather than to that of mathematics proper since it treats it on a metaphorical level to express phenomena of silence or discontinuity. In order to bring more readability and clarity to the non-specialist readers, I firstly present the essential concepts, background, and objectives of his book...
    Download  
     
    Export citation  
     
    Bookmark  
  44. Copernican Revolution: Unification of Mundane Physics with Mathematics of the Skies.Rinat M. Nugayev (ed.) - 2012 - Logos: Innovative Technologies Publishing House.
    What were the reasons of the Copernican Revolution ? How did modern science (created by a bunch of ambitious intellectuals) manage to force out the old one created by Aristotle and Ptolemy, rooted in millennial traditions and strongly supported by the Church? What deep internal causes and strong social movements took part in the genesis, development and victory of modern science? The author comes to a new picture of Copernican Revolution on the basis of the elaborated model of scientific revolutions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Mathematical Symbols as Epistemic Actions.Johan De Smedt & Helen De Cruz - 2013 - Synthese 190 (1):3-19.
    Recent experimental evidence from developmental psychology and cognitive neuroscience indicates that humans are equipped with unlearned elementary mathematical skills. However, formal mathematics has properties that cannot be reduced to these elementary cognitive capacities. The question then arises how human beings cognitively deal with more advanced mathematical ideas. This paper draws on the extended mind thesis to suggest that mathematical symbols enable us to delegate some mathematical operations to the external environment. In this view, mathematical symbols are not only used (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  46. The Structuralist Mathematical Style: Bourbaki as a Case Study.Jean-Pierre Marquis - 2022 - In Claudio Ternullo Gianluigi Oliveri (ed.), Boston Studies in the Philosophy and the History of Science. New York, État de New York, États-Unis: pp. 199-231.
    In this paper, we look at Bourbaki’s work as a case study for the notion of mathematical style. We argue that indeed Bourbaki exemplifies a mathematical style, namely the structuralist style.
    Download  
     
    Export citation  
     
    Bookmark  
  47. Hermann Cohen’s History and Philosophy of Science.Lydia Patton - 2004 - Dissertation, McGill University
    In my dissertation, I present Hermann Cohen's foundation for the history and philosophy of science. My investigation begins with Cohen's formulation of a neo-Kantian epistemology. I analyze Cohen's early work, especially his contributions to 19th century debates about the theory of knowledge. I conclude by examining Cohen's mature theory of science in two works, The Principle of the Infinitesimal Method and its History of 1883, and Cohen's extensive 1914 Introduction to Friedrich Lange's History of Materialism. In the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  48. Modeling of Biological and Social Phases of Big History.Leonid Grinin, Andrey V. Korotayev & Alexander V. Markov - 2015 - In Leonid Grinin & Andrey Korotayev (eds.), Evolution: From Big Bang to Nanorobots. Volgograd,Russia: Uchitel Publishing House. pp. 111-150.
    In the first part of this article we survey general similarities and differences between biological and social macroevolution. In the second (and main) part, we consider a concrete mathematical model capable of describing important features of both biological and social macroevolution. In mathematical models of historical macrodynamics, a hyperbolic pattern of world population growth arises from non-linear, second-order positive feedback between demographic growth and technological development. Based on diverse paleontological data and an analogy with macrosociological models, we suggest that the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Hegel’s Idealistic Approach to Philosophy of History.Mudasir A. Tantray - 2018 - International Journal of Creative Research Thoughts 6 (1):103-106.
    Philosophy of history is the conceptual and technical study of the relation which exists between philosophy and history. This paper tries to analyze and examine the nature of philosophy of history, its methodology and ideal development. In this I have tried to set the limits of knowledge to know the special account of Hegel’s idealistic view about philosophy of history. In this paper I have also used the philosophical methodology and philosophy inquiry, quest and hypothesis to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  50. The Directionality of Distinctively Mathematical Explanations.Carl F. Craver & Mark Povich - 2017 - Studies in History and Philosophy of Science Part A 63:31-38.
    In “What Makes a Scientific Explanation Distinctively Mathematical?” (2013b), Lange uses several compelling examples to argue that certain explanations for natural phenomena appeal primarily to mathematical, rather than natural, facts. In such explanations, the core explanatory facts are modally stronger than facts about causation, regularity, and other natural relations. We show that Lange's account of distinctively mathematical explanation is flawed in that it fails to account for the implicit directionality in each of his examples. This inadequacy is remediable in each (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
1 — 50 / 1000