Results for 'mathematical history'

1000+ found
Order:
  1.  59
    Natural Cybernetics and Mathematical History: The Principle of Least Choice in History.Vasil Penchev - 2020 - Cultural Anthropology (Elsevier: SSRN) 5 (23):1-44.
    The paper follows the track of a previous paper “Natural cybernetics of time” in relation to history in a research of the ways to be mathematized regardless of being a descriptive humanitarian science withal investigating unique events and thus rejecting any repeatability. The pathway of classical experimental science to be mathematized gradually and smoothly by more and more relevant mathematical models seems to be inapplicable. Anyway quantum mechanics suggests another pathway for mathematization; considering the historical reality as dual (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. History & Mathematics: Trends and Cycles.Leonid Grinin & Andrey V. Korotayev - 2014 - Volgograd: "Uchitel" Publishing House.
    The present yearbook (which is the fourth in the series) is subtitled Trends & Cycles. It is devoted to cyclical and trend dynamics in society and nature; special attention is paid to economic and demographic aspects, in particular to the mathematical modeling of the Malthusian and post-Malthusian traps' dynamics. An increasingly important role is played by new directions in historical research that study long-term dynamic processes and quantitative changes. This kind of history can hardly develop without the application (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Mathematical Symbols as Epistemic Actions.Johan De Smedt & Helen De Cruz - 2013 - Synthese 190 (1):3-19.
    Recent experimental evidence from developmental psychology and cognitive neuroscience indicates that humans are equipped with unlearned elementary mathematical skills. However, formal mathematics has properties that cannot be reduced to these elementary cognitive capacities. The question then arises how human beings cognitively deal with more advanced mathematical ideas. This paper draws on the extended mind thesis to suggest that mathematical symbols enable us to delegate some mathematical operations to the external environment. In this view, mathematical symbols (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  4. Models, Mathematics and Deleuze's Philosophy: Some Remarks on Simon Duffy's Deleuze and the History of Mathematics: In Defence of the New.James Williams - 2017 - Deleuze and Guatarri Studies 11 (3):475-481.
    Download  
     
    Export citation  
     
    Bookmark  
  5. The Directionality of Distinctively Mathematical Explanations.Carl F. Craver & Mark Povich - 2017 - Studies in History and Philosophy of Science Part A 63:31-38.
    In “What Makes a Scientific Explanation Distinctively Mathematical?” (2013b), Lange uses several compelling examples to argue that certain explanations for natural phenomena appeal primarily to mathematical, rather than natural, facts. In such explanations, the core explanatory facts are modally stronger than facts about causation, regularity, and other natural relations. We show that Lange's account of distinctively mathematical explanation is flawed in that it fails to account for the implicit directionality in each of his examples. This inadequacy is (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  6. Mathematics, Explanation and Reductionism: Exposing the Roots of the Egyptianism of European Civilization.Arran Gare - 2005 - Cosmos and History 1 (1):54-89.
    We have reached the peculiar situation where the advance of mainstream science has required us to dismiss as unreal our own existence as free, creative agents, the very condition of there being science at all. Efforts to free science from this dead-end and to give a place to creative becoming in the world have been hampered by unexamined assumptions about what science should be, assumptions which presuppose that if creative becoming is explained, it will be explained away as an illusion. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  7. Acts of Time: Cohen and Benjamin on Mathematics and History.Julia Ng - 2017 - Paradigmi. Rivista di Critica Filosofica 2017 (1):41-60.
    This paper argues that the principle of continuity that underlies Benjamin’s understanding of what makes the reality of a thing thinkable, which in the Kantian context implies a process of “filling time” with an anticipatory structure oriented to the subject, is of a different order than that of infinitesimal calculus—and that a “discontinuity” constitutive of the continuity of experience and (merely) counterposed to the image of actuality as an infinite gradation of ultimately thetic acts cannot be the principle on which (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   1 citation  
  8. Mathematical Abstraction, Conceptual Variation and Identity.Jean-Pierre Marquis - 2014 - In Peter Schroeder-Heister, Gerhard Heinzmann, Wilfred Hodges & Pierre Edouard Bour (eds.), Logic, Methodology and Philosophy of Science, Proceedings of the 14th International Congress. London, UK: pp. 299-322.
    One of the key features of modern mathematics is the adoption of the abstract method. Our goal in this paper is to propose an explication of that method that is rooted in the history of the subject.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  9.  16
    Mathematical Skepticism: A Sketch with Historian in Foreground.Luciano Floridi - 1998 - In J. van der Zande & R. Popkin (eds.), The Skeptical Tradition around 1800. Dordrecht, Netherlands: pp. 41–60.
    We know very little about mathematical skepticism in modem times. Imre Lakatos once remarked that “in discussing modem efforts to establish foundations for mathematical knowledge one tends to forget that these are but a chapter in the great effort to overcome skepticism by establishing foundations for knowledge in general." And in a sense he was clearly right: modem thought — with its new discoveries in mathematical sciences, the mathematization of physics, the spreading of Pyrrhonist doctrines, the centrality (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  10. Mathematics and Statistics in the Social Sciences.Stephan Hartmann & Jan Sprenger - 2011 - In Ian C. Jarvie & Jesus Zamora-Bonilla (eds.), The SAGE Handbook of the Philosophy of Social Sciences. Sage Publications. pp. 594-612.
    Over the years, mathematics and statistics have become increasingly important in the social sciences1 . A look at history quickly confirms this claim. At the beginning of the 20th century most theories in the social sciences were formulated in qualitative terms while quantitative methods did not play a substantial role in their formulation and establishment. Moreover, many practitioners considered mathematical methods to be inappropriate and simply unsuited to foster our understanding of the social domain. Notably, the famous Methodenstreit (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  11. Physical Mathematics and The Fine-Structure Constant.Michael A. Sherbon - 2018 - Journal of Advances in Physics 14 (3):5758-64.
    Research into ancient physical structures, some having been known as the seven wonders of the ancient world, inspired new developments in the early history of mathematics. At the other end of this spectrum of inquiry the research is concerned with the minimum of observations from physical data as exemplified by Eddington's Principle. Current discussions of the interplay between physics and mathematics revive some of this early history of mathematics and offer insight into the fine-structure constant. Arthur Eddington's work (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  12. Aristotle on Mathematical Truth.Phil Corkum - 2012 - British Journal for the History of Philosophy 20 (6):1057-1076.
    Both literalism, the view that mathematical objects simply exist in the empirical world, and fictionalism, the view that mathematical objects do not exist but are rather harmless fictions, have been both ascribed to Aristotle. The ascription of literalism to Aristotle, however, commits Aristotle to the unattractive view that mathematics studies but a small fragment of the physical world; and there is evidence that Aristotle would deny the literalist position that mathematical objects are perceivable. The ascription of fictionalism (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  13. Plato on Why Mathematics is Good for the Soul.Myles Burnyeat - 2000 - In T. Smiley (ed.), Mathematics and Necessity: Essays in the History of Philosophy. pp. 1-81.
    Anyone who has read Plato’s Republic knows it has a lot to say about mathematics. But why? I shall not be satisfied with the answer that the future rulers of the ideal city are to be educated in mathematics, so Plato is bound to give some space to the subject. I want to know why the rulers are to be educated in mathematics. More pointedly, why are they required to study so much mathematics, for so long?
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  14. The Normative Structure of Mathematization in Systematic Biology.Beckett Sterner & Scott Lidgard - 2014 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 46 (1):44-54.
    We argue that the mathematization of science should be understood as a normative activity of advocating for a particular methodology with its own criteria for evaluating good research. As a case study, we examine the mathematization of taxonomic classification in systematic biology. We show how mathematization is a normative activity by contrasting its distinctive features in numerical taxonomy in the 1960s with an earlier reform advocated by Ernst Mayr starting in the 1940s. Both Mayr and the numerical taxonomists sought to (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  15. The History and Prehistory of Natural-Language Semantics.Daniel W. Harris - 2017 - In Sandra Lapointe & Christopher Pincock (eds.), Innovations in the History of Analytical Philosophy. Palgrave-MacMillan. pp. 149--194.
    Contemporary natural-language semantics began with the assumption that the meaning of a sentence could be modeled by a single truth condition, or by an entity with a truth-condition. But with the recent explosion of dynamic semantics and pragmatics and of work on non- truth-conditional dimensions of linguistic meaning, we are now in the midst of a shift away from a truth-condition-centric view and toward the idea that a sentence’s meaning must be spelled out in terms of its various roles in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  16. Review of Reading Natural Philosophy: Essays in the History and Philosophy of Science and Mathematics. [REVIEW]Chris Smeenk - 2005 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (1):194-199.
    Book Review for Reading Natural Philosophy: Essays in the History and Philosophy of Science and Mathematics, La Salle, IL: Open Court, 2002. Edited by David Malament. This volume includes thirteen original essays by Howard Stein, spanning a range of topics that Stein has written about with characteristic passion and insight. This review focuses on the essays devoted to history and philosophy of physics.
    Download  
     
    Export citation  
     
    Bookmark  
  17. Can We Have Mathematical Understanding of Physical Phenomena?Gabriel Târziu - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (1):91-109.
    Can mathematics contribute to our understanding of physical phenomena? One way to try to answer this question is by getting involved in the recent philosophical dispute about the existence of mathematical explanations of physical phenomena. If there is such a thing, given the relation between explanation and understanding, we can say that there is an affirmative answer to our question. But what if we do not agree that mathematics can play an explanatory role in science? Can we still consider (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  18. Volume Introduction – Method, Science and Mathematics: Neo-Kantianism and Analytic Philosophy.Scott Edgar - 2018 - Journal for the History of Analytical Philosophy 6 (3):1-10.
    Introduction to the Special Volume, “Method, Science and Mathematics: Neo-Kantianism and Analytic Philosophy,” edited by Scott Edgar and Lydia Patton. At its core, analytic philosophy concerns urgent questions about philosophy’s relation to the formal and empirical sciences, questions about philosophy’s relation to psychology and the social sciences, and ultimately questions about philosophy’s place in a broader cultural landscape. This picture of analytic philosophy shapes this collection’s focus on the history of the philosophy of mathematics, physics, and psychology. The following (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  19. Mathematics' Poincare Conjecture and The Shape of the Universe.Rodney Bartlett - 2011 - Tomorrow's Science Today.
    intro to Part 1 - -/- Most people disliked mathematics when they were at school and they were absolutely correct to do so. This is because maths as we know it is severely incomplete. No matter how elaborated and complicated mathematical equations become, in today's world they're based on 1+1=2. This certainly conforms to the world our physical senses perceive and to the world scientific instruments detect. It has been of immeasurable value to all knowledge throughout history and (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  20.  34
    Time, Mathematics, and the Fold: A Post-Heideggerian Itinerary.Said Mikki - manuscript
    A perspective is provided on how to move beyond postmodernism while struggling to do philosophy in the twenty-first century. The ontological structures of time, history, and mathematics are analyzed from the vantagepoint of the Heideggerian theory of nonspatial Fold.
    Download  
     
    Export citation  
     
    Bookmark  
  21. Aristotle’s Prohibition Rule on Kind-Crossing and the Definition of Mathematics as a Science of Quantities.Paola Cantù - 2010 - Synthese 174 (2):225-235.
    The article evaluates the Domain Postulate of the Classical Model of Science and the related Aristotelian prohibition rule on kind-crossing as interpretative tools in the history of the development of mathematics into a general science of quantities. Special reference is made to Proclus’ commentary to Euclid’s first book of Elements , to the sixteenth century translations of Euclid’s work into Latin and to the works of Stevin, Wallis, Viète and Descartes. The prohibition rule on kind-crossing formulated by Aristotle in (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  22. On Two Mathematical Definitions of Observational Equivalence: Manifest Isomorphism and Epsilon-Congruence Reconsidered.Christopher Belanger - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (2):69-76.
    In this article I examine two mathematical definitions of observational equivalence, one proposed by Charlotte Werndl and based on manifest isomorphism, and the other based on Ornstein and Weiss’s ε-congruence. I argue, for two related reasons, that neither can function as a purely mathematical definition of observational equivalence. First, each definition permits of counterexamples; second, overcoming these counterexamples will introduce non-mathematical premises about the systems in question. Accordingly, the prospects for a broadly applicable and purely mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  23. Physically Similar Systems: A History of the Concept.Susan G. Sterrett - 2017 - In Lorenzo Magnani & Tommaso Wayne Bertolotti (eds.), Springer Handbook of Model-Based Science. Dordrecht Heidelberg London New York: Springer. pp. 377-412.
    The concept of similar systems arose in physics, and appears to have originated with Newton in the seventeenth century. This chapter provides a critical history of the concept of physically similar systems, the twentieth century concept into which it developed. The concept was used in the nineteenth century in various fields of engineering, theoretical physics and theoretical and experimental hydrodynamics. In 1914, it was articulated in terms of ideas developed in the eighteenth century and used in nineteenth century mathematics (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  24. Hobbes on Natural Philosophy as "True Physics" and Mixed Mathematics.Marcus P. Adams - 2016 - Studies in History and Philosophy of Science Part A 56:43-51.
    I offer an alternative account of the relationship of Hobbesian geometry to natural philosophy by arguing that mixed mathematics provided Hobbes with a model for thinking about it. In mixed mathematics, one may borrow causal principles from one science and use them in another science without there being a deductive relationship between those two sciences. Natural philosophy for Hobbes is mixed because an explanation may combine observations from experience (the ‘that’) with causal principles from geometry (the ‘why’). My argument shows (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  25. Walter Dubislav’s Philosophy of Science and Mathematics.Nikolay Milkov - 2016 - Hopos: The Journal of the International Society for the History of Philosophy of Science 6 (1):96-116.
    Walter Dubislav (1895–1937) was a leading member of the Berlin Group for scientific philosophy. This “sister group” of the more famous Vienna Circle emerged around Hans Reichenbach’s seminars at the University of Berlin in 1927 and 1928. Dubislav was to collaborate with Reichenbach, an association that eventuated in their conjointly conducting university colloquia. Dubislav produced original work in philosophy of mathematics, logic, and science, consequently following David Hilbert’s axiomatic method. This brought him to defend formalism in these disciplines as well (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  26.  69
    Mathematical Modeling of Biological and Social Evolutionary Macrotrends.Leonid Grinin, Alexander V. Markov & Andrey V. Korotayev - 2014 - In History & Mathematics: Trends and Cycles. Volgograd,Russia: Uchitel Publishing House. pp. 9-48.
    In the first part of this article we survey general similarities and differences between biological and social macroevolution. In the second (and main) part, we consider a concrete mathematical model capable of describing important features of both biological and social macroevolution. In mathematical models of historical macrodynamics, a hyperbolic pattern of world population growth arises from non-linear, second-order positive feedback between demographic growth and technological development. Based on diverse paleontological data and an analogy with macrosociological models, we suggest (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  27. Topology as an Issue for History of Philosophy of Science.Thomas Mormann - 2013 - In Hanne Andersen, Dennis Dieks, Wenceslao J. Gonzalez, Thomas Uebel & Gregory Wheeler (eds.), New Challenges to Philosophy of Science. Springer. pp. 423--434.
    Since antiquity well into the beginnings of the 20th century geometry was a central topic for philosophy. Since then, however, most philosophers of science, if they took notice of topology at all, considered it as an abstruse subdiscipline of mathematics lacking philosophical interest. Here it is argued that this neglect of topology by philosophy may be conceived of as the sign of a conceptual sea-change in philosophy of science that expelled geometry, and, more generally, mathematics, from the central position it (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  28. Russell’s Method of Analysis and the Axioms of Mathematics.Lydia Patton - 2017 - In Sandra Lapointe Christopher Pincock (ed.), Innovations in the History of Analytical Philosophy. London: Palgrave-Macmillan. pp. 105-126.
    In the early 1900s, Russell began to recognize that he, and many other mathematicians, had been using assertions like the Axiom of Choice implicitly, and without explicitly proving them. In working with the Axioms of Choice, Infinity, and Reducibility, and his and Whitehead’s Multiplicative Axiom, Russell came to take the position that some axioms are necessary to recovering certain results of mathematics, but may not be proven to be true absolutely. The essay traces historical roots of, and motivations for, Russell’s (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  29. Hermann Cohen's History and Philosophy of Science.Lydia Patton - 2004 - Dissertation, McGill University
    In my dissertation, I present Hermann Cohen's foundation for the history and philosophy of science. My investigation begins with Cohen's formulation of a neo-Kantian epistemology. I analyze Cohen's early work, especially his contributions to 19th century debates about the theory of knowledge. I conclude by examining Cohen's mature theory of science in two works, The Principle of the Infinitesimal Method and its History of 1883, and Cohen's extensive 1914 Introduction to Friedrich Lange's History of Materialism. In the (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  30. Hegel’s Idealistic Approach to Philosophy of History.Mudasir A. Tantray - 2018 - International Journal of Creative Research Thoughts 6 (1):103-106.
    Philosophy of history is the conceptual and technical study of the relation which exists between philosophy and history. This paper tries to analyze and examine the nature of philosophy of history, its methodology and ideal development. In this I have tried to set the limits of knowledge to know the special account of Hegel’s idealistic view about philosophy of history. In this paper I have also used the philosophical methodology and philosophy inquiry, quest and hypothesis to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  31. Ian Hacking, Why Is There Philosophy of Mathematics at All? [REVIEW]Max Harris Siegel - forthcoming - Mind 124.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  32. The Cultural Challenge in Mathematical Cognition.Andrea Bender, Dirk Schlimm, Stephen Crisomalis, Fiona M. Jordan, Karenleigh A. Overmann & Geoffrey B. Saxe - 2018 - Journal of Numerical Cognition 2 (4):448–463.
    In their recent paper on “Challenges in mathematical cognition”, Alcock and colleagues (Alcock et al. [2016]. Challenges in mathematical cognition: A collaboratively-derived research agenda. Journal of Numerical Cognition, 2, 20-41) defined a research agenda through 26 specific research questions. An important dimension of mathematical cognition almost completely absent from their discussion is the cultural constitution of mathematical cognition. Spanning work from a broad range of disciplines – including anthropology, archaeology, cognitive science, history of science, linguistics, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. 1983 Review in Mathematical Reviews 83e:03005 Of: Cocchiarella, Nino “The Development of the Theory of Logical Types and the Notion of a Logical Subject in Russell's Early Philosophy: Bertrand Russell's Early Philosophy, Part I”. Synthese 45 (1980), No. 1, 71-115.John Corcoran - 1983 - MATHEMATICAL REVIEWS 83:03005.
    CORCORAN RECOMMENDS COCCHIARELLA ON TYPE THEORY. The 1983 review in Mathematical Reviews 83e:03005 of: Cocchiarella, Nino “The development of the theory of logical types and the notion of a logical subject in Russell's early philosophy: Bertrand Russell's early philosophy, Part I”. Synthese 45 (1980), no. 1, 71-115 .
    Download  
     
    Export citation  
     
    Bookmark  
  34.  49
    Matthew Handelman: The Mathematical Imagination: On the Origins and Promise of Critical Theory. [REVIEW]Francoise Monnoyeur - 2020 - Phenomenological Reviews 5.
    The Mathematical Imagination focuses on the role of mathematics and digital technologies in critical theory of culture. This book belongs to the history of ideas rather than to that of mathematics proper since it treats it on a metaphorical level to express phenomena of silence or discontinuity. In order to bring more readability and clarity to the non-specialist readers, I firstly present the essential concepts, background, and objectives of his book...
    Download  
     
    Export citation  
     
    Bookmark  
  35. Bayesian Perspectives on Mathematical Practice.James Franklin - 2020 - Handbook of the History and Philosophy of Mathematical Practice.
    Mathematicians often speak of conjectures as being confirmed by evidence that falls short of proof. For their own conjectures, evidence justifies further work in looking for a proof. Those conjectures of mathematics that have long resisted proof, such as the Riemann hypothesis, have had to be considered in terms of the evidence for and against them. In recent decades, massive increases in computer power have permitted the gathering of huge amounts of numerical evidence, both for conjectures in pure mathematics and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36.  70
    What is Mathematics: School Guide to Conceptual Understanding of Mathematics.Catalin Barboianu - 2021 - Targu Jiu: PhilScience Press.
    This is not a mathematics book, but a book about mathematics, which addresses both student and teacher, with a goal as practical as possible, namely to initiate and smooth the way toward the student’s full understanding of the mathematics taught in school. The customary procedural-formal approach to teaching mathematics has resulted in students’ distorted vision of mathematics as a merely formal, instrumental, and computational discipline. Without the conceptual base of mathematics, students develop over time a “mathematical anxiety” and abandon (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. On the Mathematical Representation of Spacetime: A Case Study in Historical–Phenomenological Desedimentation.Joseph Cosgrove - 2011 - New Yearbook for Phenomenology and Phenomenological Philosophy 11:154-186.
    This essay is a contribution to the historical phenomenology of science, taking as its point of departure Husserl’s later philosophy of science and Jacob Klein’s seminal work on the emergence of the symbolic conception of number in European mathematics during the late sixteenth and seventeenth centuries. Sinceneither Husserl nor Klein applied their ideas to actual theories of modern mathematical physics, this essay attempts to do so through a case study of the conceptof “spacetime.” In §1, I sketch Klein’s account (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38.  40
    Lisa A. Shabel, Mathematics in Kant’s Critical Philosophy-Reflections on Mathematical Practice. Routledge New York & London 2003, pp.192 $ 65.00 (hbk) ISBN 0-415-93955-0. Recensione di Francesco Tampoia 3/06/2004. [REVIEW]Francesco Tampoia - manuscript
    Scopo di questo agile ma denso volume è approfondire “The part played by the mathematical construction in the context of a full investigation of Kant’s theory of sensibility, that to say the Transcendental Aesthetic”. Si tratta della ripresentazione della tesi di dottorato della Shabel, da cui la stessa ha riportato ampi squarci per un articolo award-winning 1998 dal titolo ”Kant on the Symbolic Construction of Mathematical Concepts” (Studies in the History and the Philosophy of Science). Non si (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  39. Schemata: The Concept of Schema in the History of Logic.John Corcoran - 2006 - Bulletin of Symbolic Logic 12 (2):219-240.
    The syllogistic figures and moods can be taken to be argument schemata as can the rules of the Stoic propositional logic. Sentence schemata have been used in axiomatizations of logic only since the landmark 1927 von Neumann paper [31]. Modern philosophers know the role of schemata in explications of the semantic conception of truth through Tarski’s 1933 Convention T [42]. Mathematical logicians recognize the role of schemata in first-order number theory where Peano’s second-order Induction Axiom is approximated by Herbrand’s (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  40. What is Mathematical Logic?John Corcoran & Stewart Shapiro - 1978 - Philosophia 8 (1):79-94.
    This review concludes that if the authors know what mathematical logic is they have not shared their knowledge with the readers. This highly praised book is replete with errors and incoherency.
    Download  
     
    Export citation  
     
    Bookmark  
  41. Group Knowledge and Mathematical Collaboration: A Philosophical Examination of the Classification of Finite Simple Groups.Joshua Habgood-Coote & Fenner Stanley Tanswell - forthcoming - Episteme.
    In this paper we apply social epistemology to mathematical proofs and their role in mathematical knowledge. The most famous modern collaborative mathematical proof effort is the Classification of Finite Simple Groups. The history and sociology of this proof have been well-documented by Alma Steingart (2012), who highlights a number of surprising and unusual features of this collaborative endeavour that set it apart from smaller-scale pieces of mathematics. These features raise a number of interesting philosophical issues, but (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. The Interplay Between Mathematical Practices and Results.Mélissa Arneton, Amirouche Moktefi & Catherine Allamel-Raffin - 2014 - In Léna Soler, Sjoerd Zwart, Michael Lynch & Vincent Israel-Jost (eds.), Science After the Practice Turn in the Philosophy, History, and Social Studies of Science. New York - London: Routledge. pp. 269-276.
    Download  
     
    Export citation  
     
    Bookmark  
  43.  56
    A Path to the Epistemology of Mathematics: Homotopy Theory.Jean-Pierre Marquis - 2006 - In Jeremy Gray & Jose Ferreiros (eds.), The Architecture of Modern Mathematics: Essays in History and Philosophy. Oxford University Press. pp. 239--260.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  44.  97
    Review Of: Garciadiego, A., "Emergence Of...Paradoxes...Set Theory", Historia Mathematica (1985), in Mathematical Reviews 87j:01035.John Corcoran - 1987 - MATHEMATICAL REVIEWS 87 (J):01035.
    DEFINING OUR TERMS A “paradox" is an argumentation that appears to deduce a conclusion believed to be false from premises believed to be true. An “inconsistency proof for a theory" is an argumentation that actually deduces a negation of a theorem of the theory from premises that are all theorems of the theory. An “indirect proof of the negation of a hypothesis" is an argumentation that actually deduces a conclusion known to be false from the hypothesis alone or, more commonly, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Sofia A. Yanovskaya: The Marxist Pioneer of Mathematical Logic in the Soviet Union.Dimitris Kilakos - 2019 - Transversal: International Journal for the Historiography of Science 6:49-64.
    K. Marx’s 200th jubilee coincides with the celebration of the 85 years from the first publication of his “Mathematical Manuscripts” in 1933. Its editor, Sofia Alexandrovna Yanovskaya (1896–1966), was a renowned Soviet mathematician, whose significant studies on the foundations of mathematics and mathematical logic, as well as on the history and philosophy of mathematics are unduly neglected nowadays. Yanovskaya, as a militant Marxist, was actively engaged in the ideological confrontation with idealism and its influence on modern mathematics (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Review Of: Hodesdon, K. “Mathematica Representation: Playing a Role”. Philosophical Studies (2014) 168:769–782. Mathematical Reviews. MR 3176431.John Corcoran - 2015 - MATHEMATICAL REVIEWS 2015:3176431.
    This 4-page review-essay—which is entirely reportorial and philosophically neutral as are my other contributions to MATHEMATICAL REVIEWS—starts with a short introduction to the philosophy known as mathematical structuralism. The history of structuralism traces back to George Boole (1815–1864). By reference to a recent article various feature of structuralism are discussed with special attention to ambiguity and other terminological issues. The review-essay includes a description of the recent article. The article’s 4-sentence summary is quoted in full and then (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. On the History of Differentiable Manifolds.Giuseppe Iurato - 2012 - International Mathematical Forum 7 (10):477-514.
    We discuss central aspects of history of the concept of an affine differentiable manifold, as a proposal confirming the need for using some quantitative methods (drawn from elementary Model Theory) in Mathematical Historiography. In particular, we prove that this geometric structure is a syntactic rigid designator in the sense of Kripke-Putnam.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  48. Religion and Ideological Confrontations in Early Soviet Mathematics: The Case of P.A. Nekrasov.Dimitris Kilakos - 2018 - Almagest 9 (2):13-38.
    The influence of religious beliefs to several leading mathematicians in early Soviet years, especially among members of the Moscow Mathematical Society, had drawn the attention of militant Soviet marxists, as well as Soviet authorities. The issue has also drawn significant attention from scholars in the post-Soviet period. According to the currently prevailing interpretation, reported purges against Moscow mathematicians due to their religious inclination are the focal point of the relevant history. However, I maintain that historical data arguably offer (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. The Fundamental Cognitive Approaches of Mathematics.Salvador Daniel Escobedo Casillas - manuscript
    We propose a way to explain the diversification of branches of mathematics, distinguishing the different approaches by which mathematical objects can be studied. In our philosophy of mathematics, there is a base object, which is the abstract multiplicity that comes from our empirical experience. However, due to our human condition, the analysis of such multiplicity is covered by other empirical cognitive attitudes (approaches), diversifying the ways in which it can be conceived, and consequently giving rise to different mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50.  50
    History of Science as a Facilitator for the Study of Physics: A Repertoire of Quantum Theory.Roberto Angeloni - 2018 - Newcastle upon Tyne District, Newcastle upon Tyne, UK: Cambridge Scholars Publishing.
    This proposal serves to enhance scientific and technological literacy, by promoting STEM (Science, Technology, Engineering, and Mathematics) education with particular reference to contemporary physics. The study is presented in the form of a repertoire, and it gives the reader a glimpse of the conceptual structure and development of quantum theory along a rational line of thought, whose understanding might be the key to introducing young generations of students to physics.
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 1000