Results for 'mathematical modeling in biology'

999 found
Order:
  1. Mathematical Modeling in Biology: Philosophy and Pragmatics.Rasmus Grønfeldt Winther - 2012 - Frontiers in Plant Evolution and Development 2012:1-3.
    Philosophy can shed light on mathematical modeling and the juxtaposition of modeling and empirical data. This paper explores three philosophical traditions of the structure of scientific theory—Syntactic, Semantic, and Pragmatic—to show that each illuminates mathematical modeling. The Pragmatic View identifies four critical functions of mathematical modeling: (1) unification of both models and data, (2) model fitting to data, (3) mechanism identification accounting for observation, and (4) prediction of future observations. Such facets are explored (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  2. Mathematical Modeling of Biological and Social Evolutionary Macrotrends.Leonid Grinin, Alexander V. Markov & Andrey V. Korotayev - 2014 - In History & Mathematics: Trends and Cycles. Volgograd,Russia: Uchitel Publishing House. pp. 9-48.
    In the first part of this article we survey general similarities and differences between biological and social macroevolution. In the second (and main) part, we consider a concrete mathematical model capable of describing important features of both biological and social macroevolution. In mathematical models of historical macrodynamics, a hyperbolic pattern of world population growth arises from non-linear, second-order positive feedback between demographic growth and technological development. Based on diverse paleontological data and an analogy with macrosociological models, we suggest (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Modeling of Biological and Social Phases of Big History.Leonid Grinin, Andrey V. Korotayev & Alexander V. Markov - 2015 - In Leonid Grinin & Andrey Korotayev (eds.), Evolution: From Big Bang to Nanorobots. Volgograd,Russia: Uchitel Publishing House. pp. 111-150.
    In the first part of this article we survey general similarities and differences between biological and social macroevolution. In the second (and main) part, we consider a concrete mathematical model capable of describing important features of both biological and social macroevolution. In mathematical models of historical macrodynamics, a hyperbolic pattern of world population growth arises from non-linear, second-order positive feedback between demographic growth and technological development. Based on diverse paleontological data and an analogy with macrosociological models, we suggest (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. On Similarities between Biological and Social Evolutionary Mechanisms: Mathematical Modeling.Leonid Grinin - 2013 - Cliodynamics: The Journal of Theoretical and Mathematical History 4:185-228.
    In the first part of this article we survey general similarities and differences between biological and social macroevolution. In the second (and main) part, we consider a concrete mathematical model capable of describing important features of both biological and social macroevolution. In mathematical models of historical macrodynamics, a hyperbolic pattern of world population growth arises from non-linear, second-order positive feedback between demographic growth and technological development. This is more or less identical with the working of the collective learning (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Using blinking fractals for mathematical modelling of processes of growth in biological systems.Yaroslav Sergeyev - 2011 - Informatica 22 (4):559–576.
    Many biological processes and objects can be described by fractals. The paper uses a new type of objects – blinking fractals – that are not covered by traditional theories considering dynamics of self-similarity processes. It is shown that both traditional and blinking fractals can be successfully studied by a recent approach allowing one to work numerically with infinite and infinitesimal numbers. It is shown that blinking fractals can be applied for modeling complex processes of growth of biological systems including (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  6. The Mathematical Theory of Categories in Biology and the Concept of Natural Equivalence in Robert Rosen.Franck Varenne - 2013 - Revue d'Histoire des Sciences 66 (1):167-197.
    The aim of this paper is to describe and analyze the epistemological justification of a proposal initially made by the biomathematician Robert Rosen in 1958. In this theoretical proposal, Rosen suggests using the mathematical concept of “category” and the correlative concept of “natural equivalence” in mathematical modeling applied to living beings. Our questions are the following: According to Rosen, to what extent does the mathematical notion of category give access to more “natural” formalisms in the (...) of living beings? Is the so -called “naturalness” of some kinds of equivalences (which the mathematical notion of category makes it possible to generalize and to put at the forefront) analogous to the naturalness of living systems? Rosen appears to answer “yes” and to ground this transfer of the concept of “natural equivalence” in biology on such an analogy. But this hypothesis, although fertile, remains debatable. Finally, this paper makes a brief account of the later evolution of Rosen’s arguments about this topic. In particular, it sheds light on the new role played by the notion of “category” in his more recent objections to the computational models that have pervaded almost every domain of biology since the 1990s. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Mathematization in Synthetic Biology: Analogies, Templates, and Fictions.Andrea Loettgers & Tarja Knuuttila - 2017 - In Martin Carrier & Johannes Lenhard (eds.), Mathematics as a Tool: Tracing New Roles of Mathematics in the Sciences. Springer Verlag.
    In his famous article “The Unreasonable Effectiveness of Mathematics in the Natural Sciences” Eugen Wigner argues for a unique tie between mathematics and physics, invoking even religious language: “The miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics is a wonderful gift which we neither understand nor deserve”. The possible existence of such a unique match between mathematics and physics has been extensively discussed by philosophers and historians of mathematics. Whatever the merits (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  8. Experimental Modeling in Biology: In Vivo Representation and Stand-ins As Modeling Strategies.Marcel Weber - 2014 - Philosophy of Science 81 (5):756-769.
    Experimental modeling in biology involves the use of living organisms (not necessarily so-called "model organisms") in order to model or simulate biological processes. I argue here that experimental modeling is a bona fide form of scientific modeling that plays an epistemic role that is distinct from that of ordinary biological experiments. What distinguishes them from ordinary experiments is that they use what I call "in vivo representations" where one kind of causal process is used to stand (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  9. Biological Control Variously Materialized: Modeling, Experimentation and Exploration in Multiple Media.Tarja Knuuttila & Andrea Loettgers - 2021 - Perspectives on Science 29 (4):468-492.
    This paper examines two parallel discussions of scientific modeling which have invoked experimentation in addressing the role of models in scientific inquiry. One side discusses the experimental character of models, whereas the other focuses on their exploratory uses. Although both relate modeling to experimentation, they do so differently. The former has considered the similarities and differences between models and experiments, addressing, in particular, the epistemic value of materiality. By contrast, the focus on exploratory modeling has highlighted the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  10. Mathematical Explanations in Evolutionary Biology or Naturalism? A Challenge for the Statisticalist.Fabio Sterpetti - 2021 - Foundations of Science 27 (3):1073-1105.
    This article presents a challenge that those philosophers who deny the causal interpretation of explanations provided by population genetics might have to address. Indeed, some philosophers, known as statisticalists, claim that the concept of natural selection is statistical in character and cannot be construed in causal terms. On the contrary, other philosophers, known as causalists, argue against the statistical view and support the causal interpretation of natural selection. The problem I am concerned with here arises for the statisticalists because the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  11. Epistemic artifacts and the modal dimension of modeling.Tarja Knuuttila - 2021 - European Journal for Philosophy of Science 11 (3):1-18.
    The epistemic value of models has traditionally been approached from a representational perspective. This paper argues that the artifactual approach evades the problem of accounting for representation and better accommodates the modal dimension of modeling. From an artifactual perspective, models are viewed as erotetic vehicles constrained by their construction and available representational tools. The modal dimension of modeling is approached through two case studies. The first portrays mathematical modeling in economics, while the other discusses the (...) practice of synthetic biology, which exploits and combines models in various modes and media. Neither model intends to represent any actual target system. Rather, they are constructed to study possible mechanisms through the construction of a model system with built-in dependencies. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  12. Optimality modeling in a suboptimal world.Angela Potochnik - 2009 - Biology and Philosophy 24 (2):183-197.
    The fate of optimality modeling is typically linked to that of adaptationism: the two are thought to stand or fall together (Gould and Lewontin, Proc Relig Soc Lond 205:581–598, 1979; Orzack and Sober, Am Nat 143(3):361–380, 1994). I argue here that this is mistaken. The debate over adaptationism has tended to focus on one particular use of optimality models, which I refer to here as their strong use. The strong use of an optimality model involves the claim that selection (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  13. The Sum of the Parts: Large-Scale Modeling in Systems Biology.Fridolin Gross & Sara Green - 2017 - Philosophy, Theory, and Practice in Biology 9 (10).
    Systems biologists often distance themselves from reductionist approaches and formulate their aim as understanding living systems “as a whole.” Yet, it is often unclear what kind of reductionism they have in mind, and in what sense their methodologies would offer a superior approach. To address these questions, we distinguish between two types of reductionism which we call “modular reductionism” and “bottom-up reductionism.” Much knowledge in molecular biology has been gained by decomposing living systems into functional modules or through detailed (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  14. Economic and mathematical modeling of integration influence of information and communication technologies on the development of e-commerce of industrial enterprises.Igor Kryvovyazyuk, Igor Britchenko, Liubov Kovalska, Iryna Oleksandrenko, Liudmyla Pavliuk & Olena Zavadska - 2023 - Journal of Theoretical and Applied Information Technology 101 (11):3801-3815.
    This research aims at establishing the impact of information and communication technologies (ICT) on e-commerce development of industrial enterprises by means of economic and mathematical modelling. The goal was achieved using the following methods: theoretical generalization, analysis and synthesis (to critically analyse the scientific approaches of scientists regarding the expediency of using mathematical models in the context of enterprises’ e-commerce development), target, comparison and grouping (to reveal innovative methodological approach to assessing ICT impact on e-commerce development of industrial (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Formal Biology and Compositional Biology as Two Kinds of Biological Theorizing.Rasmus Grønfeldt Winther - 2003 - Dissertation, Indiana University, Hps
    There are two fundamentally distinct kinds of biological theorizing. "Formal biology" focuses on the relations, captured in formal laws, among mathematically abstracted properties of abstract objects. Population genetics and theoretical mathematical ecology, which are cases of formal biology, thus share methods and goals with theoretical physics. "Compositional biology," on the other hand, is concerned with articulating the concrete structure, mechanisms, and function, through developmental and evolutionary time, of material parts and wholes. Molecular genetics, biochemistry, developmental (...), and physiology, which are examples of compositional biology, are in serious need of philosophical attention. For example, the very concept of a "part" is understudied in both philosophy of biology and philosophy of science. ;My dissertation is an attempt to clarify the distinction between formal biology and compositional biology and, in so doing, provide a clear philosophical analysis, with case studies, of compositional biology. Given the social, economic, and medical importance of compositional biology, understanding it is urgent. For my investigation, I draw on the philosophical fields of metaphysics and epistemology, as well as philosophy of biology and philosophy of science. I suggest new ways of thinking about some classic philosophy of science issues, such as modeling, laws of nature, abstraction, explanation, and confirmation. I hint at the relevance of my study of two kinds of biological theorizing to debates concerning the disunity of science. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  16. The Nature of the Structures of Applied Mathematics and the Metatheoretical Justification for the Mathematical Modeling.Catalin Barboianu - 2015 - Romanian Journal of Analytic Philosophy 9 (2):1-32.
    The classical (set-theoretic) concept of structure has become essential for every contemporary account of a scientific theory, but also for the metatheoretical accounts dealing with the adequacy of such theories and their methods. In the latter category of accounts, and in particular, the structural metamodels designed for the applicability of mathematics have struggled over the last decade to justify the use of mathematical models in sciences beyond their 'indispensability' in terms of either method or concepts/entities. In this paper, I (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17.  75
    Metacognitive Awareness as a Predictor of Mathematical Modeling Competency among Preservice Elementary Teachers.John Rey Oficiar, Edwin Ibañez & Jupeth Pentang - 2024 - International Journal of Educational Methodology 10 (2):1079-1092.
    Mathematical modeling offers a promising approach to improving mathematics education. This study aims to determine if the concept of metacognitive awareness in the learning process is associated with mathematical modeling. This study also considers the interaction effect of sex and academic year level on both variables. Focusing the study on preservice elementary teachers might address potential issues and targeted intervention in their preparation program concerning their ability to teach and guide young learners in modeling activities. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Pluralism in evolutionary controversies: styles and averaging strategies in hierarchical selection theories.Rasmus Grønfeldt Winther, Michael J. Wade & Christopher C. Dimond - 2013 - Biology and Philosophy 28 (6):957-979.
    Two controversies exist regarding the appropriate characterization of hierarchical and adaptive evolution in natural populations. In biology, there is the Wright-Fisher controversy over the relative roles of random genetic drift, natural selection, population structure, and interdemic selection in adaptive evolution begun by Sewall Wright and Ronald Aylmer Fisher. There is also the Units of Selection debate, spanning both the biological and the philosophical literature and including the impassioned group-selection debate. Why do these two discourses exist separately, and interact relatively (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  19. Detection and Mathematical Modeling of Anxiety Disorder Based on Socioeconomic Factors Using Machine Learning Techniques.Razan Ibrahim Alsuwailem & Surbhi Bhatia - 2022 - Human-Centric Computing and Information Sciences 12:52.
    The mental risk poses a high threat to the individuals, especially overseas demographic, including expatriates in comparison to the general Arab demographic. Since Arab countries are renowned for their multicultural environment with half of the population of students and faculties being international, this paper focuses on a comprehensive analysis of mental health problems such as depression, stress, anxiety, isolation, and other unfortunate conditions. The dataset is developed from a web-based survey. The detailed exploratory data analysis is conducted on the dataset (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Holobiont Evolution: Mathematical Model with Vertical vs. Horizontal Microbiome Transmission.Joan Roughgarden - 2020 - Philosophy, Theory, and Practice in Biology 12 (2).
    A holobiont is a composite organism consisting of a host together with its microbiome, such as a coral with its zooxanthellae. To explain the often intimate integration between hosts and their microbiomes, some investigators contend that selection operates on holobionts as a unit and view the microbiome’s genes as extending the host’s nuclear genome to jointly comprise a hologenome. Because vertical transmission of microbiomes is uncommon, other investigators contend that holobiont selection cannot be effective because a holobiont’s microbiome is an (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21.  36
    In Vitro Analogies: Simulation Modeling in Bioengineering Sciences.Nancy Nersessian - forthcoming - In Tarja Knuuttila, Natalia Carrillo & Rami Koskinen (eds.), Routledge Handbook of Scientific Modeling. Routledge.
    This chapter focuses on a novel class of models used in frontier research in the bioengineering sciences – in vitro simulation models – that provide the basis for biological experimentation. These bioengineered models are hybrid constructions, composed of living tissues or cells and engineered materials. Specifically, it discusses the processes through which in vitro models were built, experimented with, and justified in a tissue engineering lab. It examines processes of design, construction, experimentation, evaluation, and redesign of in vitro simulation models, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Defusing Ideological Defenses in Biology.Angela Potochnik - 2013 - BioScience 63 (2):118-123.
    Ideological language is widespread in theoretical biology. Evolutionary game theory has been defended as a worldview and a leap of faith, and sexual selection theory has been criticized for what it posits as basic to biological nature. Views such as these encourage the impression of ideological rifts in the field. I advocate an alternative interpretation, whereby many disagreements between different camps of biologists merely reflect methodological differences. This interpretation provides a more accurate and more optimistic account of the state (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  23. Protention and retention in biological systems.Giuseppe Longo & Maël Montévil - 2011 - Theory in Biosciences 130:107-117.
    This article proposes an abstract mathematical frame for describing some features of cognitive and biological time. We focus here on the so called “extended present” as a result of protentional and retentional activities (memory and anticipation). Memory, as retention, is treated in some physical theories (relaxation phenomena, which will inspire our approach), while protention (or anticipation) seems outside the scope of physics. We then suggest a simple functional representation of biological protention. This allows us to introduce the abstract notion (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  24.  35
    Dissertation Abstract - Math Over Mechanism: Proposing the Rational-Relational Theory of Scientific Explanation in Light of Impinging Constraints of New Mechanism.Jenny Nielsen - forthcoming - In ProQuest.
    In this dissertation I achieve the following: (1) I present motivating criteria for a general comprehensive theory of scientific explanation. I review historical approaches to modeling explanation in light of these criteria. (2) I present New Mechanist Explanation ("NME") as the leading candidate for a contemporary, complete theory of scientific explanation. (3) I present constraints on the applicability of New Mechanism in modeling biology, chemistry, and physics. I argue for the unsuitability of NME as a candidate for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Randomness Increases Order in Biological Evolution.Giuseppe Longo & Maël Montévil - 2012 - In M. Dinneen, B. Khoussainov & A. Nies (eds.), Computation, Physics and Beyond. Berlin Heidelberg: pp. 289-308.
    n this text, we revisit part of the analysis of anti-entropy in Bailly and Longo (2009} and develop further theoretical reflections. In particular, we analyze how randomness, an essential component of biological variability, is associated to the growth of biological organization, both in ontogenesis and in evolution. This approach, in particular, focuses on the role of global entropy production and provides a tool for a mathematical understanding of some fundamental observations by Gould on the increasing phenotypic complexity along evolution. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Models and Inferences in Science.Emiliano Ippoliti, Fabio Sterpetti & Thomas Nickles (eds.) - 2016 - Cham: Springer.
    The book answers long-standing questions on scientific modeling and inference across multiple perspectives and disciplines, including logic, mathematics, physics and medicine. The different chapters cover a variety of issues, such as the role models play in scientific practice; the way science shapes our concept of models; ways of modeling the pursuit of scientific knowledge; the relationship between our concept of models and our concept of science. The book also discusses models and scientific explanations; models in the semantic view (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  27. Some resonances between Eastern thought and Integral Biomathics in the framework of the WLIMES formalism for modelling living systems.Plamen L. Simeonov & Andree C. Ehresmann - forthcoming - Progress in Biophysics and Molecular Biology 131 (Special).
    Forty-two years ago, Capra published “The Tao of Physics” (Capra, 1975). In this book (page 17) he writes: “The exploration of the atomic and subatomic world in the twentieth century has …. necessitated a radical revision of many of our basic concepts” and that, unlike ‘classical’ physics, the sub-atomic and quantum “modern physics” shows resonances with Eastern thoughts and “leads us to a view of the world which is very similar to the views held by mystics of all ages and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  28. Mathematical biology and the existence of biological laws.Mauro Dorato - 2012 - In D. Dieks, S. Hartmann, T. Uebel & M. Weber (eds.), Probabilities, Laws and Structure. Springer.
    An influential position in the philosophy of biology claims that there are no biological laws, since any apparently biological generalization is either too accidental, fact-like or contingent to be named a law, or is simply reducible to physical laws that regulate electrical and chemical interactions taking place between merely physical systems. In the following I will stress a neglected aspect of the debate that emerges directly from the growing importance of mathematical models of biological phenomena. My main aim (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  29. Stepping Beyond the Newtonian Paradigm in Biology. Towards an Integrable Model of Life: Accelerating Discovery in the Biological Foundations of Science.Plamen L. Simeonov, Edwin Brezina, Ron Cottam, Andreé C. Ehresmann, Arran Gare, Ted Goranson, Jaime Gomez‐Ramirez, Brian D. Josephson, Bruno Marchal, Koichiro Matsuno, Robert S. Root-­Bernstein, Otto E. Rössler, Stanley N. Salthe, Marcin Schroeder, Bill Seaman & Pridi Siregar - 2012 - In Plamen L. Simeonov, Leslie S. Smith & Andreé C. Ehresmann (eds.), Integral Biomathics: Tracing the Road to Reality. Springer. pp. 328-427.
    The INBIOSA project brings together a group of experts across many disciplines who believe that science requires a revolutionary transformative step in order to address many of the vexing challenges presented by the world. It is INBIOSA’s purpose to enable the focused collaboration of an interdisciplinary community of original thinkers. This paper sets out the case for support for this effort. The focus of the transformative research program proposal is biology-centric. We admit that biology to date has been (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  30. Standard Aberration: Cancer Biology and the Modeling Account of Normal Function.Seth Goldwasser - 2023 - Biology and Philosophy 38 (1):(4) 1-33.
    Cancer biology features the ascription of normal functions to parts of cancers. At least some ascriptions of function in cancer biology track local normality of parts within the global abnormality of the aberration to which those parts belong. That is, cancer biologists identify as functions activities that, in some sense, parts of cancers are supposed to perform, despite cancers themselves having no purpose. The present paper provides a theory to accommodate these normal function ascriptions—I call it the (...) Account of Normal Function (MA). MA comprises two claims. First, normal functions are activities whose performance by the function-bearing part contributes to the self-maintenance of the whole system and, thereby, results in the continued presence of that part. Second, MA holds that models of system-level activities that are (partly) constitutive of self-maintenance are improved by including a representation of the relevant function-bearing part and by making reference to the activity/activities that part performs which contribute(s) to those system-level activities. I contrast MA with two other accounts that seek to explicate the ascription of normal functions in biology, namely, the organizational account and the selected effects account. Both struggle to extend to cancer biology. However, I offer ecumenical readings which allow them to recover some ascriptions of normal function to parts of cancers. So, though I contend that MA excels in this respect, the purpose of this paper is served if it provides materials for bridging the gap between cancer biology, philosophy of cancer, and the literature on function. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  31. The normative structure of mathematization in systematic biology.Beckett Sterner & Scott Lidgard - 2014 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 46 (1):44-54.
    We argue that the mathematization of science should be understood as a normative activity of advocating for a particular methodology with its own criteria for evaluating good research. As a case study, we examine the mathematization of taxonomic classification in systematic biology. We show how mathematization is a normative activity by contrasting its distinctive features in numerical taxonomy in the 1960s with an earlier reform advocated by Ernst Mayr starting in the 1940s. Both Mayr and the numerical taxonomists sought (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  32. Introduction: Genomics and Philosophy of Race.Rasmus Grønfeldt Winther, Roberta L. Millstein & Rasmus Nielsen - 2015 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 52:1-4.
    This year’s topic is “Genomics and Philosophy of Race.” Different researchers might work on distinct subsets of the six thematic clusters below, which are neither mutually exclusive nor collectively exhaustive: (1) Concepts of ‘Race’; (2) Mathematical Modeling of Human History and Population Structure; (3) Data and Technologies of Human Genomics; (4) Biological Reality of Race; (5) Racialized Selves in a Global Context; (6) Pragmatic Consequences of ‘Race Talk’ among Biologists.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  33. Heuristics, Descriptions, and the Scope of Mechanistic Explanation.Carlos Zednik - 2015 - In P. Braillard & C. Malaterre (eds.), Explanation in Biology. An Enquiry into the Diversity of Explanatory Patterns in the Life Sciences. Dordrecht: Springer. pp. 295-318.
    The philosophical conception of mechanistic explanation is grounded on a limited number of canonical examples. These examples provide an overly narrow view of contemporary scientific practice, because they do not reflect the extent to which the heuristic strategies and descriptive practices that contribute to mechanistic explanation have evolved beyond the well-known methods of decomposition, localization, and pictorial representation. Recent examples from evolutionary robotics and network approaches to biology and neuroscience demonstrate the increasingly important role played by computer simulations and (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  34. Life’s demons: information and order in biology.Philippe M. Binder & Antoine Danchin - 2011 - EMBO Reports 12 (6):495-499.
    Two decades ago, Rolf Landauer (1991) argued that “information is physical” and ought to have a role in the scientific analysis of reality comparable to that of matter, energy, space and time. This would also help to bridge the gap between biology and mathematics and physics. Although it can be argued that we are living in the ‘golden age’ of biology, both because of the great challenges posed by medicine and the environment and the significant advances that have (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  35. Marriages of Mathematics and Physics: A Challenge for Biology.Arezoo Islami & Giuseppe Longo - 2017 - Progress in Biophysics and Molecular Biology 131:179-192.
    The human attempts to access, measure and organize physical phenomena have led to a manifold construction of mathematical and physical spaces. We will survey the evolution of geometries from Euclid to the Algebraic Geometry of the 20th century. The role of Persian/Arabic Algebra in this transition and its Western symbolic development is emphasized. In this relation, we will also discuss changes in the ontological attitudes toward mathematics and its applications. Historically, the encounter of geometric and algebraic perspectives enriched the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  36. Agent-based modeling: the right mathematics for the social sciences?Paul L. Borrill & Leigh Tesfatsion - 2011 - In J. B. Davis & D. W. Hands (eds.), Elgar Companion to Recent Economic Methodology. Edward Elgar Publishers. pp. 228.
    This study provides a basic introduction to agent-based modeling (ABM) as a powerful blend of classical and constructive mathematics, with a primary focus on its applicability for social science research. The typical goals of ABM social science researchers are discussed along with the culture-dish nature of their computer experiments. The applicability of ABM for science more generally is also considered, with special attention to physics. Finally, two distinct types of ABM applications are summarized in order to illustrate concretely the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  37.  13
    The Biological Framework for a Mathematical Universe.Ronald Williams - manuscript
    The mathematical universe hypothesis is a theory that the physical universe is not merely described by mathematics, but is mathematics, specifically a mathematical structure. Our research provides evidence that the mathematical structure of the universe is biological in nature and all systems, processes, and objects within the universe function in harmony with biological patterns. Living organisms are the result of the universe’s biological pattern and are embedded within their physiology the patterns of this biological universe. Therefore physiological (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Fisherian and Wrightian Perspectives in Evolutionary Genetics and Model-Mediated Imposition of Theoretical Assumptions.Rasmus Grønfeldt Winther - 2006 - Journal of Theoretical Biology 240:218-232.
    I investigate how theoretical assumptions, pertinent to different perspectives and operative during the modeling process, are central in determining how nature is actually taken to be. I explore two different models by Michael Turelli and Steve Frank of the evolution of parasite-mediated cytoplasmic incompatility, guided, respectively, by Fisherian and Wrightian perspectives. Since the two models can be shown to be commensurable both with respect to mathematics and data, I argue that the differences between them in the (1) mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  39. Joint representation: Modeling a phenomenon with multiple biological systems.Yoshinari Yoshida - 2023 - Studies in History and Philosophy of Science Part A 99:67-76.
    Biologists often study particular biological systems as models of a phenomenon of interest even if they already know that the phenomenon is produced by diverse mechanisms and hence none of those systems alone can sufficiently represent it. To understand this modeling practice, the present paper provides an account of how multiple model systems can be used to study a phenomenon that is produced by diverse mechanisms. Even if generalizability of results from a single model system is significantly limited, generalizations (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Generation of Biological Patterns and Form: Some Physical, Mathematical and Logical Aspects.Alfred Gierer - 1981 - Progress in Biophysics and Molecular Biology 37 (1):1-48.
    While many different mechanisms contribute to the generation of spatial order in biological development, the formation of morphogenetic fields which in turn direct cell responses giving rise to pattern and form are of major importance and essential for embryogenesis and regeneration. Most likely the fields represent concentration patterns of substances produced by molecular kinetics. Short range autocatalytic activation in conjunction with longer range “lateral” inhibition or depletion effects is capable of generating such patterns (Gierer and Meinhardt, 1972). Non-linear reactions are (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  41. Animats in the modeling ecosystem.Xabier Barandiaran & Anthony Chemero - 2009 - Adaptive Behavior 17 (4):287-292.
    There are many different kinds of model and scientists do all kind of things with them. This diversity of model type and model use is a good thing for science. Indeed, it is crucial especially for the biological and cognitive sciences, which have to solve many different problems at many different scales, ranging from the most concrete of the structural details of a DNA molecule to the most abstract and generic principles of self-organization in networks. Getting a grip (or more (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  42. Biological constraints as norms in evolution.Mathilde Tahar - 2022 - History and Philosophy of the Life Sciences 44 (1):1-21.
    Biology seems to present local and transitory regularities rather than immutable laws. To account for these historically constituted regularities and to distinguish them from mathematical invariants, Montévil and Mossio (Journal of Theoretical Biology 372:179–191, 2015) have proposed to speak of constraints. In this article we analyse the causal power of these constraints in the evolution of biodiversity, i.e., their positivity, but also the modality of their action on the directions taken by evolution. We argue that to fully (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  43. Heads and Tails: Molecular Imagination and the Lipid Bilayer, 1917–1941.Daniel Liu - 2018 - In Karl Matlin, Jane Maienschein & Manfred Laubichler (eds.), Visions of Cell Biology: Reflections Inspired by Cowdry's General Cytology. University of Chicago Press. pp. 209-245.
    Today, the lipid bilayer structure is nearly ubiquitous, taken for granted in even the most rudimentary introductions to cell biology. Yet the image of the lipid bilayer, built out of lipids with heads and tails, went from having obscure origins deep in colloid chemical theory in 1924 to being “obvious to any competent physical chemist” by 1935. This chapter examines how this schematic, strictly heuristic explanation of the idea of molecular orientation was developed within colloid physical chemistry, and how (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  44. Modeling the concept of truth using the largest intrinsic fixed point of the strong Kleene three valued semantics (in Croatian language).Boris Culina - 2004 - Dissertation, University of Zagreb
    The thesis deals with the concept of truth and the paradoxes of truth. Philosophical theories usually consider the concept of truth from a wider perspective. They are concerned with questions such as - Is there any connection between the truth and the world? And, if there is - What is the nature of the connection? Contrary to these theories, this analysis is of a logical nature. It deals with the internal semantic structure of language, the mutual semantic connection of sentences, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Mathematical models of games of chance: Epistemological taxonomy and potential in problem-gambling research.Catalin Barboianu - 2015 - UNLV Gaming Research and Review Journal 19 (1):17-30.
    Games of chance are developed in their physical consumer-ready form on the basis of mathematical models, which stand as the premises of their existence and represent their physical processes. There is a prevalence of statistical and probabilistic models in the interest of all parties involved in the study of gambling – researchers, game producers and operators, and players – while functional models are of interest more to math-inclined players than problem-gambling researchers. In this paper I present a structural analysis (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  46. Habit in Semiosis: Two Different Perspectives Based on Hierarchical Multi-level System Modeling and Niche Construction Theory.Pedro Ata & Joao Queiroz - 2016 - In West D. Anderson M. & West Donna (eds.), Consensus on Peirce’s Concept of Habit. Springer. pp. 109-119.
    Habit in semiosis can be modeled both as a macro-level in a hierarchical multi-level system where it functions as boundary conditions for emergence of semiosis, and as a cognitive niche produced by an ecologically-inherited environment of cognitive artifacts. According to the first perspective, semiosis is modeled in terms of a multilayered system, with micro functional entities at the lower-level and with higher-level processes being mereologically composed of these lower-level entities. According to the second perspective, habits are embedded in ecologically-inherited environments (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  47. Magnetized Memories: Analogies and Templates in Model Transfer.Tarja Knuuttila & Andrea Loettgers - 2020 - In S. Holm & M. Serban (eds.), Biology: Living Machines? Routledge. pp. 123-140.
    One striking feature of the contemporary modeling practice is its interdisciplinarity: the same function forms and equations, and mathematical and computational methods are being transferred across disciplinary boundaries. Within philosophy of science this interdisciplinary dimension of modeling has been addressed by both analogy and template-based approaches that have proceeded separately from each other. We argue that a more fully-blown account of model transfer needs both perspectives. We examine analogical reasoning and template application through a detailed case study (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  48. Essay in Formal Biology.Nikolay Milkov - 2019 - In Shyam Wuppuluri & Newton da Costa (eds.), Wittgensteinian : Looking at the World From the Viewpoint of Wittgenstein's Philosophy. Springer Verlag. pp. 473-86.
    The task of this essay is to put biological individuals in formal terms. This approach is not directly interested in matters of time (for example, in evolution), but rather in the formal shape of biological objects. So it is different from, but not opposed to, natural science. In his later years, Wittgenstein made similar investigations in psychology and mathematics. Unfortunately, he found no time to make extensive remarks on philosophy of biology. This is what we are going to advance (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. On the Limits of Causal Modeling: Spatially-Structurally Complex Biological Phenomena.Marie I. Kaiser - 2016 - Philosophy of Science 83 (5):921-933.
    This paper examines the adequacy of causal graph theory as a tool for modeling biological phenomena and formalizing biological explanations. I point out that the causal graph approach reaches it limits when it comes to modeling biological phenomena that involve complex spatial and structural relations. Using a case study from molecular biology, DNA-binding and -recognition of proteins, I argue that causal graph models fail to adequately represent and explain causal phenomena in this field. The inadequacy of these (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  50. A New Role for Mathematics in Empirical Sciences.Atoosa Kasirzadeh - 2021 - Philosophy of Science 88 (4):686-706.
    Mathematics is often taken to play one of two roles in the empirical sciences: either it represents empirical phenomena or it explains these phenomena by imposing constraints on them. This article identifies a third and distinct role that has not been fully appreciated in the literature on applicability of mathematics and may be pervasive in scientific practice. I call this the “bridging” role of mathematics, according to which mathematics acts as a connecting scheme in our explanatory reasoning about why and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
1 — 50 / 999