Results for 'practical geometry'

960 found
Order:
  1. From practical to pure geometry and back.Mario Bacelar Valente - 2020 - Revista Brasileira de História da Matemática 20 (39):13-33.
    The purpose of this work is to address the relation existing between ancient Greek practical geometry and ancient Greek pure geometry. In the first part of the work, we will consider practical and pure geometry and how pure geometry can be seen, in some respects, as arising from an idealization of practical geometry. From an analysis of relevant extant texts, we will make explicit the idealizations at play in pure geometry in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Geometrical objects and figures in practical, pure, and applied geometry.Mario Bacelar Valente - 2020 - Disputatio. Philosophical Research Bulletin 9 (15):33-51.
    The purpose of this work is to address what notion of geometrical object and geometrical figure we have in different kinds of geometry: practical, pure, and applied. Also, we address the relation between geometrical objects and figures when this is possible, which is the case of pure and applied geometry. In practical geometry it turns out that there is no conception of geometrical object.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  3. On the relationship between geometric objects and figures in Euclidean geometry.Mario Bacelar Valente - 2021 - In Diagrammatic Representation and Inference. 12th International Conference, Diagrams 2021. pp. 71-78.
    In this paper, we will make explicit the relationship that exists between geometric objects and geometric figures in planar Euclidean geometry. That will enable us to determine basic features regarding the role of geometric figures and diagrams when used in the context of pure and applied planar Euclidean geometry, arising due to this relationship. By taking into account pure geometry, as developed in Euclid’s Elements, and practical geometry, we will establish a relation between geometric objects (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Carnap’s conventionalism in geometry.Stefan Lukits - 2013 - Grazer Philosophische Studien 88 (1):123-138.
    Against Thomas Mormann's argument that differential topology does not support Carnap's conventionalism in geometry we show their compatibility. However, Mormann's emphasis on the entanglement that characterizes topology and its associated metrics is not misplaced. It poses questions about limits of empirical inquiry. For Carnap, to pose a question is to give a statement with the task of deciding its truth. Mormann's point forces us to introduce more clarity to what it means to specify the task that decides between competing (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. On the relationship between plane and solid geometry.Andrew Arana & Paolo Mancosu - 2012 - Review of Symbolic Logic 5 (2):294-353.
    Traditional geometry concerns itself with planimetric and stereometric considerations, which are at the root of the division between plane and solid geometry. To raise the issue of the relation between these two areas brings with it a host of different problems that pertain to mathematical practice, epistemology, semantics, ontology, methodology, and logic. In addition, issues of psychology and pedagogy are also important here. To our knowledge there is no single contribution that studies in detail even one of the (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  6. Cassirer and the Structural Turn in Modern Geometry.Georg Schiemer - 2018 - Journal for the History of Analytical Philosophy 6 (3).
    The paper investigates Ernst Cassirer’s structuralist account of geometrical knowledge developed in his Substanzbegriff und Funktionsbegriff. The aim here is twofold. First, to give a closer study of several developments in projective geometry that form the direct background for Cassirer’s philosophical remarks on geometrical concept formation. Specifically, the paper will survey different attempts to justify the principle of duality in projective geometry as well as Felix Klein’s generalization of the use of geometrical transformations in his Erlangen program. The (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  7. (1 other version)Recalcitrant Disagreement in Mathematics: An “Endless and Depressing Controversy” in the History of Italian Algebraic Geometry.Silvia De Toffoli & Claudio Fontanari - 2023 - Global Philosophy 33 (38):1-29.
    If there is an area of discourse in which disagreement is virtually absent, it is mathematics. After all, mathematicians justify their claims with deductive proofs: arguments that entail their conclusions. But is mathematics really exceptional in this respect? Looking at the history and practice of mathematics, we soon realize that it is not. First, deductive arguments must start somewhere. How should we choose the starting points (i.e., the axioms)? Second, mathematicians, like the rest of us, are fallible. Their ability to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. Objectivity and Rigor in Classical Italian Algebraic Geometry.Silvia De Toffoli & Claudio Fontanari - 2022 - Noesis 38:195-212.
    The classification of algebraic surfaces by the Italian School of algebraic geometry is universally recognized as a breakthrough in 20th-century mathematics. The methods by which it was achieved do not, however, meet the modern standard of rigor and therefore appear dubious from a contemporary viewpoint. In this article, we offer a glimpse into the mathematical practice of the three leading exponents of the Italian School of algebraic geometry: Castelnuovo, Enriques, and Severi. We then bring into focus their distinctive (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  9. Differential Practices.Alistair Welchman - 1999 - In Deepak Narang Sawhney (ed.), Must We Burn Sade? Humanity Books. pp. 159-81.
    In this essay I take issue with the ease which the work of Sade has been, since Roland Barthes, integrated into academic discourse and try to reawaken a sense for what is unacceptable in Sade, but without lapsing into moralism. I try to give a reinvigorated account of the materialism of Sade's writing (as opposed to formalist appropriations of Sade like Barthes') which I then apply to the two characteristic Sadian devices: first, the encyclopedic enumeration and the (quite separate) philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. A hub-and-spoke model of geometric concepts.Mario Bacelar Valente - 2023 - Theoria : An International Journal for Theory, History and Fundations of Science 38 (1):25-44.
    The cognitive basis of geometry is still poorly understood, even the ‘simpler’ issue of what kind of representation of geometric objects we have. In this work, we set forward a tentative model of the neural representation of geometric objects for the case of the pure geometry of Euclid. To arrive at a coherent model, we found it necessary to consider earlier forms of geometry. We start by developing models of the neural representation of the geometric figures of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Word choice in mathematical practice: a case study in polyhedra.Lowell Abrams & Landon D. C. Elkind - 2019 - Synthese (4):1-29.
    We examine the influence of word choices on mathematical practice, i.e. in developing definitions, theorems, and proofs. As a case study, we consider Euclid’s and Euler’s word choices in their influential developments of geometry and, in particular, their use of the term ‘polyhedron’. Then, jumping to the twentieth century, we look at word choices surrounding the use of the term ‘polyhedron’ in the work of Coxeter and of Grünbaum. We also consider a recent and explicit conflict of approach between (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12.  52
    The Nuances of Deprogramming Zeros.Parker Emmerson - 2024 - Journal of Liberated Mathematics.
    Description In this paper, we propose an advanced mathematical framework centered around the Energy Number Field (E), which fundamentally avoids the conventional concept of zero by introducing a neutral ele- ment, νE. Through this approach, we redefine core mathematical constructs, including limits, continuity, differentiation, integration, and series summation, ensuring they operate seamlessly within a zero-less paradigm. We address and redefine matrix operations, topology, metric spaces, and complex analysis, aligning them with the principles of E. Additionally, we explore non-mappable properties of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13.  24
    Homogeneous Model in Finite Element Analysis for Natural Frequency Calculation of Axisymmetric Shells.Volodymyr Lipovskyi - 2024 - Challenges and Issues of Modern Science 3:8–14.
    Purpose. The article aims to provide practical recommendations for calculating natural frequencies in axisymmetric shells using finite element methods. It focuses on the need to develop a simplified model that can be used in any modern finite element software package. The study analyzes the impact of the simplified homogeneous model on the deviation and error of natural frequencies compared to real structures. Design / Method / Approach. The research is based on creating a simplified shell geometry by determining (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Thoughts on Artificial Intelligence and the Origin of Life Resulting from General Relativity, with Neo-Darwinist Reference to Human Evolution and Mathematical Reference to Cosmology.Rodney Bartlett - manuscript
    When this article was first planned, writing was going to be exclusively about two things - the origin of life and human evolution. But it turned out to be out of the question for the author to restrict himself to these biological and anthropological topics. A proper understanding of them required answering questions like “What is the nature of the universe – the home of life – and how did it originate?”, “How can time travel be removed from fantasy and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Aristotle on the Purity of Forms in Metaphysics Z.10–11.Samuel Meister - 2020 - Ergo: An Open Access Journal of Philosophy 7:1-33.
    Aristotle analyses a large range of objects as composites of matter and form. But how exactly should we understand the relation between the matter and form of a composite? Some commentators have argued that forms themselves are somehow material, that is, forms are impure. Others have denied that claim and argued for the purity of forms. In this paper, I develop a new purist interpretation of Metaphysics Z.10-11, a text central to the debate, which I call 'hierarchical purism'. I argue (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  16. Conceptual Spaces: A Solution to Goodman’s New Riddle of Induction?Sebastian Scholz - 2024 - Philosophia 52 (4).
    Nelson Goodman observed that we use only certain ‘good’ (viz. projectible) predicates during reasoning, with no obvious demarcation criterion in sight to distinguish them from the bad and gruesome ones. This apparent arbitrariness undermines the justifiability of our reasoning practices. Inspired by Quine’s 1969 paper on Natural Kinds, Peter Gärdenfors proposes a cognitive criterion based on his theory of Conceptual Spaces (CS). He argues the good predicates are those referring to natural concepts, and that we can capture naturalness in terms (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Differential Calculus Based on the Double Contradiction.Kazuhiko Kotani - 2016 - Open Journal of Philosophy 6 (4):420-427.
    The derivative is a basic concept of differential calculus. However, if we calculate the derivative as change in distance over change in time, the result at any instant is 0/0, which seems meaningless. Hence, Newton and Leibniz used the limit to determine the derivative. Their method is valid in practice, but it is not easy to intuitively accept. Thus, this article describes the novel method of differential calculus based on the double contradiction, which is easier to accept intuitively. Next, the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18.  44
    Abitudini estetiche barocche: la Cappella della Sacra Sindone di Guarino Guarini.Ivan Quartesan & Gregorio Tenti - 2024 - In Alessandro Bertinetto, Paolo Furia & Davico Luca (eds.), AbiTo. Abitudini estetiche, spazio pubblico e arte, tra storia e contemporaneità: il caso Torino. Milano: Franco Angeli. pp. 139-148.
    This chapter examinates the concept of Baroque habits in its various declensions, dwelling in particular on aesthetic habits through the case study of Guarino Guarini’s Chapel of the Holy Shroud in Turin. In the first part three declensions of Baroque habits, linked together by profound implications, are identified: habits of knowledge, referred to the ideal of Baroque encyclopedism; moral habits, framed in the Baroque practices of government of affects; and aesthetic habits, consisting in regimes of or- dering of sensible experience (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19.  64
    Proceedings of the International Conference “NeutroGeometry, NeutroAlgebra, and Their Applications,” Havana, Cuba, 12-14 August 2024.Florentin Smarandache, Mohamed Abdel-Basset, Maikel Yelandi Leyva Vázquez & Said Broumi (eds.) - 2024
    A special issue of the International Journal in Information Science and Engineering “Neutrosophic Sets and Systems” (vol. 71/2024) is dedicated to the Conference on NeutroGeometry, NeutroAlgebra, and Their Applications, organized by the Latin American Association of Neutrosophic Sciences. This event, which took place on August 12-14, 2024, in Havana, Cuba, was made possible by the valuable collaboration of the University of Havana, the University of Physical Culture and Sports Sciences "Manuel Fajardo," the José Antonio Echeverría University of Technology, University of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Downloaded Worksheets: A Learning Activity to Enhance Mathematical Level.Elmer C. Zarate, Beverly B. Fernandez & Lorelie E. Dorias - 2022 - Universal Journal of Educational Research 1 (1).
    The researcher was prompted to conduct this study to give intervention of the alarming situation which there is a low performance in solving problems related to geometry in Grade IV Mathematics. This study was about on how to enhance the mathematical competencies of the grade IV pupils using a downloaded worksheets as a learning activity. This study focused in giving remediation applying the intervention materials. These resources give several approaches to attain mastery using distinct drill cards. The investigation was (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  21. Quantum Resonance & Consciousness.Contzen Pereira - 2015 - Journal of Metaphysics and Connected Consciousness 2.
    Resonance can trigger of a series of quantum events and therefore induce several changes related to consciousness at micro as well as macro level within a living system. Therapeutic effects have been observed in several religious meditative and healing practices, which use resonance in the form of chanting and prayers. A living system may have many resonant frequencies due to their degrees of freedom, where each can vibrate as a harmonic oscillator supporting the progression of vibrations as waves that moves (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Marriages of Mathematics and Physics: A Challenge for Biology.Arezoo Islami & Giuseppe Longo - 2017 - Progress in Biophysics and Molecular Biology 131:179-192.
    The human attempts to access, measure and organize physical phenomena have led to a manifold construction of mathematical and physical spaces. We will survey the evolution of geometries from Euclid to the Algebraic Geometry of the 20th century. The role of Persian/Arabic Algebra in this transition and its Western symbolic development is emphasized. In this relation, we will also discuss changes in the ontological attitudes toward mathematics and its applications. Historically, the encounter of geometric and algebraic perspectives enriched the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  23. Reconstructing the Unity of Mathematics circa 1900.David J. Stump - 1997 - Perspectives on Science 5 (3):383-417.
    Standard histories of mathematics and of analytic philosophy contend that work on the foundations of mathematics was motivated by a crisis such as the discovery of paradoxes in set theory or the discovery of non-Euclidean geometries. Recent scholarship, however, casts doubt on the standard histories, opening the way for consideration of an alternative motive for the study of the foundations of mathematics—unification. Work on foundations has shown that diverse mathematical practices could be integrated into a single framework of axiomatic systems (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  24. On the alleged simplicity of impure proof.Andrew Arana - 2017 - In Roman Kossak & Philip Ording (eds.), Simplicity: Ideals of Practice in Mathematics and the Arts. Springer. pp. 207-226.
    Roughly, a proof of a theorem, is “pure” if it draws only on what is “close” or “intrinsic” to that theorem. Mathematicians employ a variety of terms to identify pure proofs, saying that a pure proof is one that avoids what is “extrinsic,” “extraneous,” “distant,” “remote,” “alien,” or “foreign” to the problem or theorem under investigation. In the background of these attributions is the view that there is a distance measure (or a variety of such measures) between mathematical statements and (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  25. Kant’s Categories and Jung’s Types as Perspectival Maps To Stimulate Insight in a Counseling Session.Stephen R. Palmquist - 2005 - International Journal of Philosophical Practice 3 (1):1-27.
    After coining the term “philopsychy” to describe a “soul-loving” approach to philosophical practice, especially when it welcomes a creative synthesis of philosophy and psychology, this article identifies a system of geometrical figures (or “maps”) that can be used to stimulate reflection on various types of perspectival differences. The maps are part of the author’s previously established mapping methodology, known as the Geometry of Logic. As an illustration of how philosophy can influence the development of psychology, Immanuel Kant’s table of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  26. Hobbes, Definitions, and Simplest Conceptions.Marcus P. Adams - 2014 - Hobbes Studies 27 (1):35-60.
    Several recent commentators argue that Thomas Hobbes’s account of the nature of science is conventionalist. Engaging in scientific practice on a conventionalist account is more a matter of making sure one connects one term to another properly rather than checking one’s claims, e.g., by experiment. In this paper, I argue that the conventionalist interpretation of Hobbesian science accords neither with Hobbes’s theoretical account in De corpore and Leviathan nor with Hobbes’s scientific practice in De homine and elsewhere. Closely tied to (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  27. ONE AND THE MULTIPLE ON THE PHILOSOPHY OF MATHEMATICS - ALEXIS KARPOUZOS.Alexis Karpouzos - 2025 - Comsic Spirit 1:6.
    The relationship between the One and the Multiple in mystic philosophy is a profound and central theme that explores the nature of existence, the cosmos, and the divine. This theme is present in various mystical traditions, including those of the East and West, and it addresses the paradoxical coexistence of the unity and multiplicity of all things. -/- In mystic philosophy, the **One** often represents the ultimate reality, the source from which all things emanate and to which all things return. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  28.  32
    The Cone of Perception.Parker Emmerson - 2010
    I write this introduction with much work already completed in this 4th Edition of The Cone of Perception, primarily to frame the work and touch on what might be missing from it. Namely → though it is hardly lacking these, I’d like to add a few insights about the content of the work and its relevance to the subject and future technology. Why is this work still relevant? How can you use it in your work/subject/area/field, and how am I supposed (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Transformation and Individuation in Giordano Bruno's Monadology.Edward P. Butler - 2015 - SOCRATES 3 (2):57-70.
    The essay explores the systematic relationship in the work of Giordano Bruno (1548-1600) between his monadology, his metaphysics as presented in works such as De la causa, principio et uno, the mythopoeic cosmology of Lo spaccio de la bestia trionfante, and practical works like De vinculis in genere. Bruno subverts the conceptual regime of the Aristotelian substantial forms and its accompanying cosmology with a metaphysics of individuality that privileges individual unity (singularity) over formal unity and particulars over substantial forms (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. The Euclidean Mousetrap.Jason M. Costanzo - 2008 - Idealistic Studies 38 (3):209-220.
    In his doctoral dissertation On the Principle of Sufficient Reason, Arthur Schopenhauer there outlines a critique of Euclidean geometry on the basis of the changing nature of mathematics, and hence of demonstration, as a result of Kantian idealism. According to Schopenhauer, Euclid treats geometry synthetically, proceeding from the simple to the complex, from the known to the unknown, “synthesizing” later proofs on the basis of earlier ones. Such a method, although proving the case logically, nevertheless fails to attain (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  31. Epistemic values and their phenomenological critique.Mirja Helena Hartimo - 2022 - In Sara Heinämaa, Mirja Hartimo & Ilpo Hirvonen (eds.), Contemporary Phenomenologies of Normativity: Norms, Goals, and Values. New York, NY: Routledge. pp. 234-251.
    Husserl holds that the theoretical sciences should be value-free, i.e., free from the values of extra-scientific practices and guided only by epistemic values such as coherence and truth. This view does not imply that to Husserl the sciences would be immune to all criticism of interests, goals, and values. On the contrary, the paper argues that Husserlian phenomenology necessarily embodies reflection on the epistemic values guiding the sciences. The argument clarifies Husserl’s position by comparing it with the pluralistic position developed (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. On geometric nature of numbers and the non-empirical scientific method.Elias Smith - manuscript
    We give a brief overview of the evolution of mathematics, starting from antiquity, through Renaissance, to the 19th century, and the culmination of the train of thought of history’s greatest thinkers that lead to the grand unification of geometry and algebra. The goal of this paper is not a complete formal description of any particular theoretical framework, but to show how extremisation of mathematical rigor in requiring everything be drivable directly from first principles without any arbitrary assumptions actually leads (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33.  46
    Motivic Operators and M-Posit Transforms on Spinors.Parker Emmerson - 2024 - Journal of Liberated Mathematics 1:34.
    Spinor theory and its applications are indispensable in many areas of theoretical physics, especially in quantum mechanics, general relativity, and string theory. Spinors are complex objects that transform under specific representations of the Lorentz or rotation groups, capturing the intrinsic spin properties of particles. Recent developments in mathematical abstraction have provided new insights and tools for exploring spinor dynamics, particularly through the lens of motivic operators and M-Posit transforms. This paper delves into the intricate dynamics of spinors subjected to motivic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Copernicus and Axiomatics.Alberto Bardi - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer. pp. 1789-1805.
    The debate about the foundations of mathematical sciences traces back to Greek antiquity, with Euclid and the foundations of geometry. Through the flux of history, the debate has appeared in several shapes, places, and cultural contexts. Remarkably, it is a locus where logic, philosophy, and mathematics meet. In mathematical astronomy, Nicolaus Copernicus’s axiomatic approach toward a heliocentric theory of the universe has prompted questions about foundations among historians who have studied Copernican axioms in their terminological and logical aspects but (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Kant's empirical moral philosophy.Sergio Volodia Marcello Cremaschi - 2003 - In Boran Bercić & Nenad Smokrovic (eds.), Proceedings of Rijeka Conference "Knowledge, Existence and Action". Hrvatsko drustvo za analiticku filozofiju - Filozofski fakultet Rijeka. pp. 21-24.
    I argue that Kant took from Moses Mendelssohn the idea of a distinction between geometry of morals and a practical ethic. He was drastically misunderstood by his followers precisely on this point. He had learned from the sceptics and the Jansenists the lesson that men are prompted to act by deceptive ends, and he was aware that human actions are also empirical phenomena, where laws like the laws of Nature may be detected. His practical ethics made room (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  36. Chasing Individuation: Mathematical Description of Physical Systems.Zalamea Federico - 2016 - Dissertation, Paris Diderot University
    This work is a conceptual analysis of certain recent developments in the mathematical foundations of Classical and Quantum Mechanics which have allowed to formulate both theories in a common language. From the algebraic point of view, the set of observables of a physical system, be it classical or quantum, is described by a Jordan-Lie algebra. From the geometric point of view, the space of states of any system is described by a uniform Poisson space with transition probability. Both these structures (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Plato's Natural Philosophy and Metaphysics.Luc Brisson - 2018 - In Sean D. Kirkland & Eric Sanday (eds.), A Companion to Ancient Philosophy. Evanston, Illinois: Northwestern University Press. pp. 212–231.
    This chapter contains sections titled: Going Beyond Nature in Order to Explain it Technē, epistēmē and alēthēs doxa Mathematics, pure and applied Observation and Experimental Verification Bibliography.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  38. Husserl’s Early Genealogy of the Number System.Thomas Byrne - 2019 - Meta: Research in Hermeneutics, Phenomenology, and Practical Philosophy 2 (11):408-428.
    This article accomplishes two goals. First, the paper clarifies Edmund Husserl’s investigation of the historical inception of the number system from his early works, Philosophy of Arithmetic and, “On the Logic of Signs (Semiotic)”. The article explores Husserl’s analysis of five historical developmental stages, which culminated in our ancestor’s ability to employ and enumerate with number signs. Second, the article reveals how Husserl’s conclusions about the history of the number system from his early works opens up a fusion point with (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  39. Geometry as a Universal mental Construction.Véronique Izard, Pierre Pica, Danièle Hinchey, Stanislas Dehane & Elizabeth Spelke - 2011 - In Stanislas Dehaene & Elizabeth Brannon (eds.), Space, Time and Number in the Brain: Searching for the Foundations of Mathematical Thought. Oxford University Press.
    Geometry, etymologically the “science of measuring the Earth”, is a mathematical formalization of space. Just as formal concepts of number may be rooted in an evolutionary ancient system for perceiving numerical quantity, the fathers of geometry may have been inspired by their perception of space. Is the spatial content of formal Euclidean geometry universally present in the way humans perceive space, or is Euclidean geometry a mental construction, specific to those who have received appropriate instruction? The (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  40. Core Knowledge of Geometry in an Amazonian Indigene Group.Stanislas Dehaene, Véronique Izard, Pierre Pica & Elizabeth Spelke - 2006 - Science 311 (5759)::381-4.
    Does geometry constitues a core set of intuitions present in all humans, regarless of their language or schooling ? We used two non verbal tests to probe the conceptual primitives of geometry in the Munduruku, an isolated Amazonian indigene group. Our results provide evidence for geometrical intuitions in the absence of schooling, experience with graphic symbols or maps, or a rich language of geometrical terms.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  41. Spinoza’s Geometry of Power.Valtteri Viljanen - 2011 - Cambridge: Cambridge University Press.
    This work examines the unique way in which Benedict de Spinoza combines two significant philosophical principles: that real existence requires causal power and that geometrical objects display exceptionally clearly how things have properties in virtue of their essences. Valtteri Viljanen argues that underlying Spinoza's psychology and ethics is a compelling metaphysical theory according to which each and every genuine thing is an entity of power endowed with an internal structure akin to that of geometrical objects. This allows Spinoza to offer (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  42. Linguistic Geometry and its Applications.W. B. Vasantha Kandasamy, K. Ilanthenral & Florentin Smarandache - 2022 - Miami, FL, USA: Global Knowledge.
    The notion of linguistic geometry is defined in this book. It is pertinent to keep in the record that linguistic geometry differs from classical geometry. Many basic or fundamental concepts and notions of classical geometry are not true or extendable in the case of linguistic geometry. Hence, for simple illustration, facts like two distinct points in classical geometry always define a line passing through them; this is generally not true in linguistic geometry. Suppose (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Flexible intuitions of Euclidean geometry in an Amazonian indigene group.Pierre Pica, Véronique Izard, Elizabeth Spelke & Stanislas Dehaene - 2011 - Pnas 23.
    Kant argued that Euclidean geometry is synthesized on the basis of an a priori intuition of space. This proposal inspired much behavioral research probing whether spatial navigation in humans and animals conforms to the predictions of Euclidean geometry. However, Euclidean geometry also includes concepts that transcend the perceptible, such as objects that are infinitely small or infinitely large, or statements of necessity and impossibility. We tested the hypothesis that certain aspects of nonperceptible Euclidian geometry map onto (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  44.  65
    Geometry of Time.Ivo Valkov - manuscript
    This paper aims to explore the nature of time. It begins by adopting a model of a unified world, coherent through the fundamental structure of unified space and time. Subsequently, this concept will be challenged due to significant contradictions with empirical data from observations of the world on an extremely small scale. It proposes that organisms, acts to locally reduce informational entropy, creating an illusion of time with a direction distinct from the universal flow. Thus, the possibility of time and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Euclidean Geometry is a Priori.Boris Culina - manuscript
    An argument is given that Euclidean geometry is a priori in the same way that numbers are a priori, the result of modeling, not the world, but our activities in the world.
    Download  
     
    Export citation  
     
    Bookmark  
  46. Fundamental and Emergent Geometry in Newtonian Physics.David Wallace - 2020 - British Journal for the Philosophy of Science 71 (1):1-32.
    Using as a starting point recent and apparently incompatible conclusions by Saunders and Knox, I revisit the question of the correct spacetime setting for Newtonian physics. I argue that understood correctly, these two versions of Newtonian physics make the same claims both about the background geometry required to define the theory, and about the inertial structure of the theory. In doing so I illustrate and explore in detail the view—espoused by Knox, and also by Brown —that inertial structure is (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  47. La géométrie cognitive de la guerre.Barry Smith - 2002 - In Smith Barry (ed.), Les Nationalismes. Puf. pp. 199--226.
    Why does ‘ethnic cleansing’ occur? Why does the rise of nationalist feeling in Europe and of Black separatist movements in the United States often go hand in hand with an upsurge of anti-Semitism? Why do some mixings of distinct religious and ethnic groups succeed, where others (for example in Northern Ireland, or in Bosnia) fail so catastrophically? Why do phrases like ‘balkanisation’, ‘dismemberment’, ‘mutilation’, ‘violation of the motherland’ occur so often in warmongering rhetoric? All of these questions are, it will (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Geometry of motion: some elements of its historical development.Mario Bacelar Valente - 2019 - ArtefaCToS. Revista de Estudios de la Ciencia y la Tecnología 8 (2):4-26.
    in this paper we return to Marshall Clagett’s view about the existence of an ancient Greek geometry of motion. It can be read in two ways. As a basic presentation of ancient Greek geometry of motion, followed by some aspects of its further development in landmark works by Galileo and Newton. Conversely, it can be read as a basic presentation of aspects of Galileo’s and Newton’s mathematics that can be considered as developments of a geometry of motion (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. (1 other version)On Explanations from Geometry of Motion.Juha Saatsi - 2018 - British Journal for the Philosophy of Science 69 (1):253–273.
    This paper examines explanations that turn on non-local geometrical facts about the space of possible configurations a system can occupy. I argue that it makes sense to contrast such explanations from "geometry of motion" with causal explanations. I also explore how my analysis of these explanations cuts across the distinction between kinematics and dynamics.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  50. Geometry for a Brain. Optimal Control in a Network of Adaptive Memristors.Ignazio Licata & Germano Resconi - 2013 - Adv. Studies Theor. Phys., (no.10):479-513.
    In the brain the relations between free neurons and the conditioned ones establish the constraints for the informational neural processes. These constraints reflect the systemenvironment state, i.e. the dynamics of homeocognitive activities. The constraints allow us to define the cost function in the phase space of free neurons so as to trace the trajectories of the possible configurations at minimal cost while respecting the constraints imposed. Since the space of the free states is a manifold or a non orthogonal space, (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 960