Results for 'quantum nonlocality '

1000+ found
Order:
  1. Biological utilization of quantum nonlocality.Brian D. Josephson & Fotini Pallikari-Viras - 1991 - Foundations of Physics 21 (2):197-207.
    The perception of reality by biosystems is based on different, and in certain respects more effective, principles than those utilized by the more formal procedures of science. As a result, what appears as random pattern to the scientific method can be meaningful pattern to a living organism. The existence of this complementary perception of reality makes possible in principle effective use by organisms of the direct interconnections between spatially separated objects shown to exist in the work of J. S. Bell.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  2. Closing the door on quantum nonlocality.Marian Kupczynski - 2018 - Entropy 363347 (363347):17.
    Bell-type inequalities are proven using oversimplified probabilistic models and/or counterfactual definiteness (CFD). If setting-dependent variables describing measuring instruments are correctly introduced, none of these inequalities may be proven. In spite of this, a belief in a mysterious quantum nonlocality is not fading. Computer simulations of Bell tests allow people to study the different ways in which the experimental data might have been created. They also allow for the generation of various counterfactual experiments’ outcomes, such as repeated or simultaneous (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  3. Mathematical undecidability, quantum nonlocality, and the question of the existence of God.Alfred Driessen & Antoine Suarez (eds.) - 1997 - Springer.
    The title of the present book suggests that scientific results obtained in mathematics and quantum physics can be in some way related to the question of the existence of God. This seems possible to us, because it is our conviction that reality in all its dimensions is intelligible. The really impressive progress in science and technology demonstrates that we can trust our intellect, and that nature is not offering us a collection of meaningless absurdities. We first of all intend (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. Making Sense of Bell’s Theorem and Quantum Nonlocality.Stephen Boughn - 2017 - Foundations of Physics 47 (5):640-657.
    Bell’s theorem has fascinated physicists and philosophers since his 1964 paper, which was written in response to the 1935 paper of Einstein, Podolsky, and Rosen. Bell’s theorem and its many extensions have led to the claim that quantum mechanics and by inference nature herself are nonlocal in the sense that a measurement on a system by an observer at one location has an immediate effect on a distant entangled system. Einstein was repulsed by such “spooky action at a distance” (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  5. Reassessing Time, Energy and Nonlocality in Quantum Mechanics with Observations on Schrödinger’s Cat.Paul Klevgard - manuscript
    Radiation was a big challenge for the quantum pioneers since the photon was massless, probabilistic and appeared to be both wave and particle. Einstein’s special relativity equated mass with energy and space with time. But the equality of mass with energy, then and now, is regarded as quantitative and the equality of space with time is anything but equal; space hosts material entities; time hosts nothing. Exploring these equality issues raises some questions as to how measurable entities – particles (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. The Ontic Probability Interpretation of Quantum Theory - Part II: Einstein's Incompleteness/Nonlocality Dilemma (2nd edition).Felix Alba-Juez - manuscript
    After identifying in Part I [1] a conceptual confusion (TCC), a Reality preconception (TRP1), and a fallacious dichotomy (TFD), the famous EPR/EPRB [2] [3] [4] [5] [6] argument for correlated ‘particles’ is now studied in the light of the Ontic Probability Interpretation of Quantum Theory (QT/TOPI). Another Reality preconception (TRP2) is found, showing that EPR used and ignored QT predictions in a single paralogism. Employing TFD and TRP2, EPR unveiled a contradiction veiled in its premises. By removing nonlocality (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Nonlocality in the expanding infinite well.Craig Callender - manuscript
    According to D. Bohm’s interpretation of quantum mechanics, a particle always has a well-defined spatial trajectory. A change in boundary conditions can nonlocally change that trajectory. In this note we point out a striking instance of this phenomenon that is easy to understand qualitatively.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  8. Quantum mechanics in terms of realism.Arthur Jabs - 2017 - arXiv.Org.
    We expound an alternative to the Copenhagen interpretation of the formalism of nonrelativistic quantum mechanics. The basic difference is that the new interpretation is formulated in the language of epistemological realism. It involves a change in some basic physical concepts. The ψ function is no longer interpreted as a probability amplitude of the observed behaviour of elementary particles but as an objective physical field representing the particles themselves. The particles are thus extended objects whose extension varies in time according (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  9. A Quantum-Theoretic Argument Against Naturalism.Bruce L. Gordon - 2011 - In Bruce L. Gordon & William A. Dembski (eds.), The Nature of Nature: Examining the Role of Naturalism in Science. Wilmington, DE: ISI Books. pp. 179-214.
    Quantum theory offers mathematical descriptions of measurable phenomena with great facility and accuracy, but it provides absolutely no understanding of why any particular quantum outcome is observed. It is the province of genuine explanations to tell us how things actually work—that is, why such descriptions hold and why such predictions are true. Quantum theory is long on the what, both mathematically and observationally, but almost completely silent on the how and the why. What is even more interesting (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  10. How Quantum Mechanics Can Consistently Describe the Use of Itself.Dustin Lazarovici & Mario Hubert - 2019 - Scientific Reports 470 (9):1-8.
    We discuss the no-go theorem of Frauchiger and Renner based on an "extended Wigner's friend" thought experiment which is supposed to show that any single-world interpretation of quantum mechanics leads to inconsistent predictions if it is applicable on all scales. We show that no such inconsistency occurs if one considers a complete description of the physical situation. We then discuss implications of the thought experiment that have not been clearly addressed in the original paper, including a tension between relativity (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  11. Fakeons, quantum gravity and the correspondence principle.Damiano Anselmi - manuscript
    The correspondence principle made of unitarity, locality and renormalizability has been very successful in quantum field theory. Among the other things, it helped us build the standard model. However, it also showed important limitations. For example, it failed to restrict the gauge group and the matter sector in a powerful way. After discussing its effectiveness, we upgrade it to make room for quantum gravity. The unitarity assumption is better understood, since it allows for the presence of physical particles (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Reasonable Inferences From Quantum Mechanics: A Response to “Quantum Misuse in Psychic Literature”.Bernardo Kastrup - 2019 - Journal of Near-Death Studies 37 (3):185-200.
    This invited article is a response to the paper “Quantum Misuse in Psychic Literature,” by Jack A. Mroczkowski and Alexis P. Malozemoff, published in this issue of the Journal of Near-Death Studies. Whereas I sympathize with Mroczkowski’s and Malozemoff’s cause and goals, and I recognize the problem they attempted to tackle, I argue that their criticisms often overshot the mark and end up adding to the confusion. I address nine specific technical points that Mroczkowski and Malozemoff accused popular writers (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  13. The Elementary Particles of Quantum Fields.Gregg Jaeger - 2021 - Entropy 11 (23):1416.
    The elementary particles of relativistic quantum field theory are not simple field quanta, as has long been assumed. Rather, they supplement quantum fields, on which they depend but to which they are not reducible, as shown here with particles defined instead as a unified collection of properties that appear in both physical symmetry group representations and field propagators. This notion of particle provides consistency between the practice of particle physics and its basis in quantum field theory.
    Download  
     
    Export citation  
     
    Bookmark  
  14. The Mach-Zehnder Interferometer and Photon Dualism: with an Analysis of Nonlocality (2021).Paul A. Klevgard - 2020 - SPIE 11481, Light in Nature VIII, 114810B (21 August 2020).
    The Mach-Zehnder Interferometer (MZI) is chosen to illustrate the long-standing wave-particle duality problem. Why is which-way (welcher weg) information incompatible with wave interference? How do we explain Wheeler’s delayed choice experiment? Most crucially, how can the photon divide at the first beam splitter and yet terminate on either arm with its undiminished energy? The position advanced is that the photon has two identities, one supporting particle features and the other wave features. There is photon kinetic energy that never splits (on (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  15. Can we close the Bohr-Einstein quantum debate.Marian Kupczynski - 2017 - Philosophical Transactions of the Royal Society A 375:20160392..
    Recent experiments allowed concluding that Bell-type inequalities are indeed violated thus it is important to understand what it means and how can we explain the existence of strong correlations between outcomes of distant measurements. Do we have to announce that: Einstein was wrong, Nature is nonlocal and nonlocal correlations are produced due to the quantum magic and emerge, somehow, from outside space-time? Fortunately such conclusions are unfounded because if supplementary parameters describing measuring instruments are correctly incorporated in a theoretical (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  16. This Year's Nobel Prize (2022) in Physics for Entanglement and Quantum Information: the New Revolution in Quantum Mechanics and Science.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 18 (33):1-68.
    The paper discusses this year’s Nobel Prize in physics for experiments of entanglement “establishing the violation of Bell inequalities and pioneering quantum information science” in a much wider, including philosophical context legitimizing by the authority of the Nobel Prize a new scientific area out of “classical” quantum mechanics relevant to Pauli’s “particle” paradigm of energy conservation and thus to the Standard model obeying it. One justifies the eventual future theory of quantum gravitation as belonging to the newly (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. How the Many Worlds Interpretation brings Common Sense to Paradoxical Quantum Experiments.Kelvin J. McQueen & Lev Vaidman - 2020 - In Rik Peels, Jeroen de Ridder & René van Woudenberg (eds.), Scientific Challenges to Common Sense Philosophy. New York: Routledge. pp. 40-60.
    The many worlds interpretation of quantum mechanics (MWI) states that the world we live in is just one among many parallel worlds. It is widely believed that because of this commitment to parallel worlds, the MWI violates common sense. Some go so far as to reject the MWI on this basis. This is despite its myriad of advantages to physics (e.g. consistency with relativity theory, mathematical simplicity, realism, determinism, etc.). Here, we make the case that common sense in fact (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  18. Does chance hide necessity ? A reevaluation of the debate ‘determinism - indeterminism’ in the light of quantum mechanics and probability theory.Louis Vervoort - 2013 - Dissertation, University of Montreal
    In this text the ancient philosophical question of determinism (“Does every event have a cause ?”) will be re-examined. In the philosophy of science and physics communities the orthodox position states that the physical world is indeterministic: quantum events would have no causes but happen by irreducible chance. Arguably the clearest theorem that leads to this conclusion is Bell’s theorem. The commonly accepted ‘solution’ to the theorem is ‘indeterminism’, in agreement with the Copenhagen interpretation. Here it is recalled that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. A conjecture concerning determinism, reduction, and measurement in quantum mechanics.Arthur Jabs - 2016 - Quantum Studies: Mathematics and Foundations 3 (4):279-292.
    Determinism is established in quantum mechanics by tracing the probabilities in the Born rules back to the absolute (overall) phase constants of the wave functions and recognizing these phase constants as pseudorandom numbers. The reduction process (collapse) is independent of measurement. It occurs when two wavepackets overlap in ordinary space and satisfy a certain criterion, which depends on the phase constants of both wavepackets. Reduction means contraction of the wavepackets to the place of overlap. The measurement apparatus fans out (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  20. The photon exhibits dualism, constant velocity and nonlocality: What do they have in common?Paul Klevgard - 2021 - Optik 248 (168).
    The photon is typically regarded as a unitary object that is both particle-discrete and wave-continuous. This is a paradoxical position and we live with it by making dualism a fundamental feature of radiation. It is argued here that the photon is not unitary; rather it has two identities, one supporting discrete behavior and the other supporting continuous (wave) behavior. There is photon kinetic energy that is always discrete/localized on arrival; it never splits (on half-silvered mirrors) or diffracts (in pinholes or (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. On the Compatibility Between Quantum Theory and General Relativity.Cristinel Stoica - manuscript
    I propose a gentle reconciliation of Quantum Theory and General Relativity. It is possible to add small, but unshackling constraints to the quantum fields, making them compatible with General Relativity. Not all solutions of the Schrodinger's equation are needed. I show that the continuous and spatially separable solutions are sufficient for the nonlocal manifestations associated with entanglement and wavefunction collapse. After extending this idea to quantum fields, I show that Quantum Field Theory can be defined in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. What is It Like to be a Relativistic GRW Theory? Or: Quantum Mechanics and Relativity, Still in Conflict After All These Years.Valia Allori - 2022 - Foundations of Physics 52 (4):1-28.
    The violation of Bell’s inequality has shown that quantum theory and relativity are in tension: reality is nonlocal. Nonetheless, many have argued that GRW-type theories are to be preferred to pilot-wave theories as they are more compatible with relativity: while relativistic pilot-wave theories require a preferred slicing of space-time, foliation-free relativistic GRW-type theories have been proposed. In this paper I discuss various meanings of ‘relativistic invariance,’ and I show how GRW-type theories, while being more relativistic in one sense, are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. An interpretation of the formalism of quantum mechanics in terms of realism.Arthur Jabs - 1992 - British Journal for the Philosophy of Science 43 (3):405-421.
    We present an alternative to the Copenhagen interpretation of the formalism of nonrelativistic quantum mechanics. The basic difference is that the new inter- pretation is formulated in the language of epistemological realism. It involves a change in some basic physical concepts. Elementary particles are considered as extended objects and nonlocal effects are included. The role of the new concepts in the problems of measurement and of the Einstein-Podolsky-Rosen correlations is described. Experiments to distinguish the proposed interpretation from the Copenhagen (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  24. The Kochen - Specker theorem in quantum mechanics: a philosophical comment (part 1).Vasil Penchev - 2013 - Philosophical Alternatives 22 (1):67-77.
    Non-commuting quantities and hidden parameters – Wave-corpuscular dualism and hidden parameters – Local or nonlocal hidden parameters – Phase space in quantum mechanics – Weyl, Wigner, and Moyal – Von Neumann’s theorem about the absence of hidden parameters in quantum mechanics and Hermann – Bell’s objection – Quantum-mechanical and mathematical incommeasurability – Kochen – Specker’s idea about their equivalence – The notion of partial algebra – Embeddability of a qubit into a bit – Quantum computer is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25.  32
    Hilbert mathematics versus (or rather “without”) Gödel mathematics: V. Ontomathematics!Vasil Penchev - forthcoming - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN).
    The paper is the final, fifth part of a series of studies introducing the new conceptions of “Hilbert mathematics” and “ontomathematics”. The specific subject of the present investigation is the proper philosophical sense of both, including philosophy of mathematics and philosophy of physics not less than the traditional “first philosophy” (as far as ontomathematics is a conservative generalization of ontology as well as of Heidegger’s “fundamental ontology” though in a sense) and history of philosophy (deepening Heidegger’s destruction of it from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Common causes and the direction of causation.Brad Weslake - 2005 - Minds and Machines 16 (3):239-257.
    Is the common cause principle merely one of a set of useful heuristics for discovering causal relations, or is it rather a piece of heavy duty metaphysics, capable of grounding the direction of causation itself? Since the principle was introduced in Reichenbach’s groundbreaking work The Direction of Time (1956), there have been a series of attempts to pursue the latter program—to take the probabilistic relationships constitutive of the principle of the common cause and use them to ground the direction of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  27. Hilbert Mathematics versus Gödel Mathematics. III. Hilbert Mathematics by Itself, and Gödel Mathematics versus the Physical World within It: both as Its Particular Cases.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 16 (47):1-46.
    The paper discusses Hilbert mathematics, a kind of Pythagorean mathematics, to which the physical world is a particular case. The parameter of the “distance between finiteness and infinity” is crucial. Any nonzero finite value of it features the particular case in the frameworks of Hilbert mathematics where the physical world appears “ex nihilo” by virtue of an only mathematical necessity or quantum information conservation physically. One does not need the mythical Big Bang which serves to concentrate all the violations (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Is Bit It?Jennifer Nielsen - 2013 - Fqxi Award Winners - 2013.
    In his famous “It from Bit” essay, John Wheeler contends that the stuff of the physical universe (“it”) arises from information (“bits” – encoded yes or no answers). Wheeler’s question and assumptions are re-examined from a post Aspect experiment perspective. Information is examined and discussed in terms of classical information and “quanglement” (nonlocal state sharing). An argument is made that the universe may arise from (or together with) quanglement but not via classical yes/no information coding.
    Download  
     
    Export citation  
     
    Bookmark  
  29. Bell Inequalities: Many Questions, a Few Answers.Nicolas Gisin - 2009 - In Wayne C. Myrvold & Joy Christian (eds.), Quantum Reality, Relativistic Causality, and Closing the Epistemic Circle. Springer. pp. 125--138.
    What can be more fascinating than experimental metaphysics, to quote one of Abner Shimony’s enlightening expressions? Bell inequalities are at the heart of the study of nonlocality. I present a list of open questions, organised in three categories: fundamental; linked to experiments; and exploring nonlocality as a resource. New families of inequalities for binary outcomes are presented.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  30. God is Random: A Novel Argument for the Existence of God.Serkan Zorba - 2016 - European Journal of Science and Theology 12 (1):51-67.
    Applying the concepts of Kolmogorov-Chaitin complexity and Turing’s uncomputability from the computability and algorithmic information theories to the irreducible and incomputable randomness of quantum mechanics, a novel argument for the existence of God is presented. Concepts of ‘transintelligence’ and ‘transcausality’ are introduced, and from them, it is posited that our universe must be epistemologically and ontologically an open universe. The proposed idea also proffers a new perspective on the nonlocal nature and the infamous wave-function-collapse problem of quantum mechanics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  31. Anomalous Mind-Matter Interaction, Free Will, and the Nature of Causality.George Williams - 2023 - Journal of Anomalous Experience and Cognition 3 (1):140-173.
    In this paper, I propose a framework that supports both free will and anomalous mind-matter interaction (psychokinesis). I begin by considering the argument by the physicist Sean Carroll that the laws of physics as we understand them rule out psychokinesis (and other modes of psi). I find Carroll’s claims problematic, in part due to what I believe are misunderstandings of arguments borrowed from David Hume. I proceed to consider a more dispositional notion of causality (in contrast to one characterized by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Taking Heisenberg's Potentia Seriously.Ruth Kastner, Stuart Kauffman & Michael Epperson - 2018 - International Journal of Quantum Foundations 4 (2):158-172.
    It is argued that quantum theory is best understood as requiring an ontological duality of res extensa and res potentia, where the latter is understood per Heisenberg’s original proposal, and the former is roughly equivalent to Descartes’ ‘extended substance.’ However, this is not a dualism of mutually exclusive substances in the classical Cartesian sense, and therefore does not inherit the infamous ‘mind-body’ problem. Rather, res potentia and res extensa are proposed as mutually implicative ontological extants that serve to explain (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  33. Einstein’s 1927 gedanken experiment revisited.Jaykov Foukzon - 2018 - Journal of Global Research in Mathematical Archives(JGRMA) 5 (7).
    In 1935, Einstein, Podolsky and Rosen (EPR) originated the famous “EPR paradox” [1]. This argument concerns two spatially separated particles which have both perfectly correlated positions and momenta, as is predicted possible by quantum mechanics. The EPR paper spurred investigations into the nonlocality of quantum mechanics, leading to a direct challenge of the philosophies taken for granted by most physicists.The EPR conclusion was based on the assumption of local realism, and thus the EPR argument pinpoints a contradiction (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Strong Constraints on Models that Explain the Violation of Bell Inequalities with Hidden Superluminal Influences.Valerio Scarani, Jean-Daniel Bancal, Antoine Suarez & Nicolas Gisin - 2014 - Foundations of Physics 44 (5):523-531.
    We discuss models that attempt to provide an explanation for the violation of Bell inequalities at a distance in terms of hidden influences. These models reproduce the quantum correlations in most situations, but are restricted to produce local correlations in some configurations. The argument presented in (Bancal et al. Nat Phys 8:867, 2012) applies to all of these models, which can thus be proved to allow for faster-than-light communication. In other words, the signalling character of these models cannot remain (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  35. Encountering Complexity: In Need For A Self-Reflecting (Pre)Epistemology.Vasileios Basios - 2007 - In Avshalom C. Elitzur, Metod Saniga & Rosolino Buccheri (eds.), Endophysics, Time, Quantum and the Subjective. Singapore: World Scientific Publishing. pp. 547-566.
    We have recently started to understand that fundamental aspects of complex systems such as emergence, the measurement problem, inherent uncertainty, complex causality in connection with unpredictable determinism, time­irreversibility and non­locality all highlight the observer's participatory role in determining their workings. In addition, the principle of 'limited universality' in complex systems, which prompts us to search for the appropriate 'level of description in which unification and universality can be expected', looks like a version of Bohr's 'complementarity principle'. It is more or (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  36. Онтология на квантовата информация.Vasil Penchev - 2005 - Philosophical Alternatives 14 (2):110-116.
    The article is devoted to quantum information (including its subdomains, namely: quantum communication, quantum computer, quantum cryptography), and its philosophical meaning. Paradox EPR, Bell’s inequality, phenomena of teleportation are discussed of a philosophical point of view. Quantum mechanical nonlocal correlations are interpreted as topological inseparabilities. Information is considered both as a fundamental physical quantity and as a philosophical category.
    Download  
     
    Export citation  
     
    Bookmark  
  37. The EPR-B Paradox Resolution. Bell inequalities revisited.Jaykov Foukzon - 2019 - Journal of Physics: Conference Series, 1391 (1).
    One of the Bell's assumptions in the original derivation of his inequalities was the hypothesis of locality, i.e., the absence of the in uence of two remote measuring instruments on one another. That is why violations of these inequalities observed in experiments are often interpreted as a manifestation of the nonlocal nature of quantum mechanics, or a refutation of a local realism. It is well known that the Bell's inequality was derived in its traditional form, without resorting to the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Pro-Generative Adversarial Network and V-stack Perceptron, Diamond Holographic Principle, and Pro-Temporal Emergence.Shanna Dobson - manuscript
    We recently presented our Efimov K-theory of Diamonds, proposing a pro-diamond, a large stable (∞,1)-category of diamonds (D^{diamond}), and a localization sequence for diamond spectra. Commensurate with the localization sequence, we now detail four potential applications of the Efimov K-theory of D^{diamond}: emergent time as a pro-emergence (v-stack time) in a diamond holographic principle using Scholze’s six operations in the ’etale cohomology of diamonds; a pro-Generative Adversarial Network and v-stack perceptron; D^{diamond}cryptography; and diamond nonlocality in perfectoid quantum physics.
    Download  
     
    Export citation  
     
    Bookmark  
  39. EPRB Paradox Resolution.Bell inequalities revisited.Jaykov Foukzon (ed.) - 2019 - Amazon.
    This book is devoted to the presentation of the new quantum mechanical formalism based on the probability representation of quantum states. In the 20s and 30s it became evident that some properties in quantum mechanics can be assigned only to the quantum mechanical system, but not necessarily to its constituents. This led Einstein, Podolsky and Rosen (EPR) to their remarkable 1935 paper where they concluded that quantum mechanics is not a complete theory of nature (EPR (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. The action of consciousness and the uncertainty principle.Jean E. Burns - 2012 - Journal of Nonlocality 1 (1).
    The term action of consciousness is used to refer to an influence, such as psychokinesis or free will, that produces an effect on matter that is correlated to mental intention, but not completely determined by physical conditions. Such an action could not conserve energy. But in that case, one wonders why, when highly accurate measurements are done, occasions of non-conserved energy (generated perhaps by unconscious PK) are not detected. A possible explanation is that actions of consciousness take place within the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  41. Quantum Gravity and Mereology: Not So Simple.Sam Baron & Baptiste Le Bihan - 2022 - Philosophical Quarterly 72 (1):19-40.
    A number of philosophers have argued in favour of extended simples on the grounds that they are needed by fundamental physics. The arguments typically appeal to theories of quantum gravity. To date, the argument in favour of extended simples has ignored the fact that the very existence of spacetime is put under pressure by quantum gravity. We thus consider the case for extended simples in the context of different views on the existence of spacetime. We show that the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  42. Spacetime Emergence in Quantum Gravity: Functionalism and the Hard Problem.Baptiste Le Bihan - 2021 - Synthese 199 (2):371–393.
    Spacetime functionalism is the view that spacetime is a functional structure implemented by a more fundamental ontology. Lam and Wüthrich have recently argued that spacetime functionalism helps to solve the epistemological problem of empirical coherence in quantum gravity and suggested that it also (dis)solves the hard problem of spacetime, namely the problem of offering a picture consistent with the emergence of spacetime from a non-spatio-temporal structure. First, I will deny that spacetime functionalism solves the hard problem by showing that (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  43. Quantum of Wisdom.Colin Allen & Brett Karlan - 2022 - In Greg Viggiano (ed.), Quantum Computing and AI: Social, Ethical, and Geo-Political Implications. pp. 157-166.
    Practical quantum computing devices and their applications to AI in particular are presently mostly speculative. Nevertheless, questions about whether this future technology, if achieved, presents any special ethical issues are beginning to take shape. As with any novel technology, one can be reasonably confident that the challenges presented by "quantum AI" will be a mixture of something new and something old. Other commentators (Sevilla & Moreno 2019), have emphasized continuity, arguing that quantum computing does not substantially affect (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Quantum Mechanics in a Time-Asymmetric Universe: On the Nature of the Initial Quantum State.Eddy Keming Chen - 2021 - British Journal for the Philosophy of Science 72 (4):1155–1183.
    In a quantum universe with a strong arrow of time, we postulate a low-entropy boundary condition to account for the temporal asymmetry. In this paper, I show that the Past Hypothesis also contains enough information to simplify the quantum ontology and define a unique initial condition in such a world. First, I introduce Density Matrix Realism, the thesis that the quantum universe is described by a fundamental density matrix that represents something objective. This stands in sharp contrast (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  45. Quantum Entanglement, Bohmian Mechanics, and Humean Supervenience.Elizabeth Miller - 2014 - Australasian Journal of Philosophy 92 (3):567-583.
    David Lewis is a natural target for those who believe that findings in quantum physics threaten the tenability of traditional metaphysical reductionism. Such philosophers point to allegedly holistic entities they take both to be the subjects of some claims of quantum mechanics and to be incompatible with Lewisian metaphysics. According to one popular argument, the non-separability argument from quantum entanglement, any realist interpretation of quantum theory is straightforwardly inconsistent with the reductive conviction that the complete physical (...)
    Download  
     
    Export citation  
     
    Bookmark   92 citations  
  46.  71
    Quantum Theory, Objectification and Some Memories of Giovanni Morchio.Luca Sciortino - 2023 - In Alessandro Michelangeli & Andrea Cintio (eds.), Trails in Modern Theoretical and Mathematical Physics. Springer. pp. 301-310.
    In this contribution I will retrace the main stages of my research on the objectification problem in quantum mechanics by highlighting some personal memories of my supervisor, the theoretical physicist Giovanni Morchio. The central aim of my MSc thesis was to ask whether the hypothesis of objectification, which is currently added to the formalism, is not, at least in one case, deducible from it and in particular from the dynamics of the temporal evolution. The case study we were looking (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47.  19
    Interpreting Quantum Entanglement: Steps towards Coherentist Quantum Mechanics.Matteo Morganti & Claudio Calosi - 2021 - British Journal for the Philosophy of Science 72 (3):865-891.
    We put forward a new, ‘coherentist’ account of quantum entanglement, according to which entangled systems are characterized by symmetric relations of ontological dependence among the component particles. We compare this coherentist viewpoint with the two most popular alternatives currently on offer—structuralism and holism—and argue that it is essentially different from, and preferable to, both. In the course of this article, we point out how coherentism might be extended beyond the case of entanglement and further articulated.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  48. Quantum propensiton theory: A testable resolution of the wave/particle dilemma.Nicholas Maxwell - 1988 - British Journal for the Philosophy of Science 39 (1):1-50.
    In this paper I put forward a new micro realistic, fundamentally probabilistic, propensiton version of quantum theory. According to this theory, the entities of the quantum domain - electrons, photons, atoms - are neither particles nor fields, but a new kind of fundamentally probabilistic entity, the propensiton - entities which interact with one another probabilistically. This version of quantum theory leaves the Schroedinger equation unchanged, but reinterprets it to specify how propensitons evolve when no probabilistic transitions occur. (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  49. Quantum Mechanics as the Solution to a Maximization Problem on the Entropy of All Quantum Measurements.Harvey-Tremblay Alexandre - manuscript
    This work presents a novel formulation of quantum mechanics as the solution to an entropy maximization problem constrained by empirical measurement outcomes. By treating the complete set of possible measurement outcomes as an optimization constraint, our entropy maximization problem derives the axioms of quantum mechanics as theorems, demonstrating that the theory's mathematical structure is the least biased probability measure consistent with the observed data. This approach reduces the foundation of quantum mechanics to a single axiom, the measurement (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  50.  63
    Concatenated quantum gravity papers 1.Paul Merriam & M. A. Z. Habeeb - manuscript
    The first purpose of this series of articles is to introduce case studies on how current AI models can be used in the development of a possible theory of quantum gravity, their limitations, and the role the researcher has in steering the development in the right direction, even highlighting the errors, weaknesses and strengths of the whole process. The second is to introduce the new Presentist Fragmentalist ontology as a framework and use it for developing theories of quantum (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 1000