What is so special and mysterious about the Continuum, this ancient, always topical, and alongside the concept of integers, most intuitively transparent and omnipresent conceptual and formal medium for mathematical constructions and the battle field of mathematical inquiries ? And why it resists the century long siege by best mathematical minds of all times committed to penetrate once and for all its set-theoretical enigma ? -/- The double-edged purpose of the present study is to save from (...) the transfinite deadlock of higher set theory the jewel of mathematicalContinuum -- this genuine, even if mostly forgotten today raison d'etre of all set-theoretical enterprises to Infinity and beyond, from Georg Cantor to W. Hugh Woodin to Buzz Lightyear, by simultaneously exhibiting the limits and pitfalls of all old and new reductionist foundational approaches to mathematical truth: be it Cantor's or post-Cantorian Idealism, Brouwer's or post-Brouwerian Constructivism, Hilbert's or post-Hilbertian Formalism, Goedel's or post-Goedelian Platonism. -/- In the spirit of Zeno's paradoxes, but with the enormous historical advantage of hindsight, we claim that Cantor's set-theoretical methodology, powerful and reach in proof-theoretic and similar applications as it might be, is inherently limited by its epistemological framework of transfinite local causality, and neither can be held accountable for the properties of the Continuum already acquired through geometrical, analytical, and arithmetical studies, nor can it be used for an adequate, conceptually sensible, operationally workable, and axiomatically sustainable re-creation of the Continuum. -/- From a strictly mathematical point of view, this intrinsic limitation of the constative and explicative power of higher set theory finds its explanation in the identified in this study ultimate phenomenological obstacle to Cantor's transfinite construction, similar to topological obstacles in homotopy theory and theoretical physics: the entanglement capacity of the mathematicalContinuum. (shrink)
This paper is on Aristotle's conception of the continuum. It is argued that although Aristotle did not have the modern conception of real numbers, his account of the continuum does mirror the topology of the real number continuum in modern mathematics especially as seen in the work of Georg Cantor. Some differences are noted, particularly as regards Aristotle's conception of number and the modern conception of real numbers. The issue of whether Aristotle had the notion of open (...) versus closed intervals is discussed. Finally, it is suggested that one reason there is a common structure between Aristotle's account of the continuum and that found in Cantor's definition of the real number continuum is that our intuitions about the continuum have their source in the experience of the real spatiotemporal world. A plea is made to consider Aristotle's abstractionist philosophy of mathematics anew. (shrink)
In this article we provide a mathematical model of Kant?s temporal continuum that satisfies the (not obviously consistent) synthetic a priori principles for time that Kant lists in the Critique of pure Reason (CPR), the Metaphysical Foundations of Natural Science (MFNS), the Opus Postumum and the notes and frag- ments published after his death. The continuum so obtained has some affinities with the Brouwerian continuum, but it also has ‘infinitesimal intervals’ consisting of nilpotent infinitesimals, which capture (...) Kant’s theory of rest and motion in MFNS. While constructing the model, we establish a concordance between the informal notions of Kant?s theory of the temporal continuum, and formal correlates to these notions in the mathematical theory. Our mathematical reconstruction of Kant?s theory of time allows us to understand what ?faculties and functions? must be in place for time to satisfy all the synthetic a priori principles for time mentioned. We have presented here a mathematically precise account of Kant?s transcendental argument for time in the CPR and of the rela- tion between the categories, the synthetic a priori principles for time, and the unity of apperception; the most precise account of this relation to date. We focus our exposition on a mathematical analysis of Kant’s informal terminology, but for reasons of space, most theorems are explained but not formally proven; formal proofs are available in (Pinosio, 2017). The analysis presented in this paper is related to the more general project of developing a formalization of Kant’s critical philosophy (Achourioti & van Lambalgen, 2011). A formal approach can shed light on the most controversial concepts of Kant’s theoretical philosophy, and is a valuable exegetical tool in its own right. However, we wish to make clear that mathematical formalization cannot displace traditional exegetical methods, but that it is rather an exegetical tool in its own right, which works best when it is coupled with a keen awareness of the subtleties involved in understanding the philosophical issues at hand. In this case, a virtuous ?hermeneutic circle? between mathematical formalization and philosophical discourse arises. (shrink)
This paper discusses an argument for the reality of the classical mathematicalcontinuum. An inference to the best explanation type of argument is used to defend the idea that real numbers exist even when they cannot be constructively specified as with the "indefinable numbers".
In a recent article, Christopher Ormell argues against the traditional mathematical view that the real numbers form an uncountably inﬁnite set. He rejects the conclusion of Cantor’s diagonal argument for the higher, non-denumerable inﬁnity of the real numbers. He does so on the basis that the classical conception of a real number is mys- terious, ineffable, and epistemically suspect. Instead, he urges that mathematics should admit only ‘well-deﬁned’ real numbers as proper objects of study. In practice, this means excluding (...) as inadmissible all those real numbers whose decimal expansions cannot be calculated in as much detail as one would like by some rule. We argue against Ormell that the classical realist account of the continuum has explanatory power in mathematics and should be accepted, much in the same way that "dark matter" is posited by physicists to explain observations in cosmology. In effect, the indefinable real numbers are like the "dark matter" of real analysis. (shrink)
Georg Cantor was the genuine discoverer of the Mathematical Infinity, and whatever he claimed, suggested, or even surmised should be taken seriously -- albeit not necessary at its face value. Because alongside his exquisite in beauty ordinal construction and his fundamental powerset description of the continuum, Cantor has also left to us his obsessive presumption that the universe of sets should be subjected to laws similar to those governing the set of natural numbers, including the universal principles of (...) cardinal comparability and well-ordering -- and implying an ordinal re-creation of the continuum. During the last hundred years, the mainstream set-theoretical research -- all insights and adjustments due to Kurt G\"odel's revolutionary insights and discoveries notwithstanding -- has compliantly centered its efforts on ad hoc axiomatizations of Cantor's intuitive transfinite design. We demonstrate here that the ontological and epistemic sustainability} of this design has been irremediably compromised by the underlying peremptory, Reductionist mindset of the XIXth century's ideology of science. (shrink)
In this paper, I propose a logical-cognitive approach to argumentation and advocate an idea that argumentation presupposes that intelligent agents engaged in it are cognitively diverse. My approach to argumentation allows drawing distinctions between justification, conviction and persuasion as its different kinds. In justification agents seek to verify weak or strong coherency of an agent’s position in a dialogue. In conviction they argue to modify their partner’s position by means of demonstrating weak or strong cogency of their positions before a (...) ‘rational judge’. My approach to argumentation employs a ‘light’ version of Dung’s abstract argumentative frameworks. It is based on Stich’s idea of agents’ cognitive diversity the epistemic aspect of which is argued to be close to Pavilionis’s conception of meaning continuum. To illustrate my contributions I use an example based on the Kitchen Debate (1959) between Khrushchev and Nixon. (shrink)
The aim of this paper is to describe and analyze the epistemological justification of a proposal initially made by the biomathematician Robert Rosen in 1958. In this theoretical proposal, Rosen suggests using the mathematical concept of “category” and the correlative concept of “natural equivalence” in mathematical modeling applied to living beings. Our questions are the following: According to Rosen, to what extent does the mathematical notion of category give access to more “natural” formalisms in the modeling of (...) living beings? Is the so -called “naturalness” of some kinds of equivalences (which the mathematical notion of category makes it possible to generalize and to put at the forefront) analogous to the naturalness of living systems? Rosen appears to answer “yes” and to ground this transfer of the concept of “natural equivalence” in biology on such an analogy. But this hypothesis, although fertile, remains debatable. Finally, this paper makes a brief account of the later evolution of Rosen’s arguments about this topic. In particular, it sheds light on the new role played by the notion of “category” in his more recent objections to the computational models that have pervaded almost every domain of biology since the 1990s. (shrink)
Kant argues in the Critique of Judgment (CJ) that there are two distinct modes of the sublime. This essay will concentrate on the mathematical mode. It is helpful to begin an examination of the mathematical sublime by elucidating the difference between logical estimation and aesthetic estimation; it is aesthetic estimation under strain, so Kant argues, that instigates the moment of the sublime. Logical estimation forms the cognitive basis of scientific calculations. He argues that scientific enquiry only requires an (...) understanding of the logical relationship of numbers and so does not require an aesthetic experience of those numbers. (shrink)
K. Marx’s 200th jubilee coincides with the celebration of the 85 years from the first publication of his “Mathematical Manuscripts” in 1933. Its editor, Sofia Alexandrovna Yanovskaya (1896–1966), was a renowned Soviet mathematician, whose significant studies on the foundations of mathematics and mathematical logic, as well as on the history and philosophy of mathematics are unduly neglected nowadays. Yanovskaya, as a militant Marxist, was actively engaged in the ideological confrontation with idealism and its influence on modern mathematics and (...) their interpretation. Concomitantly, she was one of the pioneers of mathematical logic in the Soviet Union, in an era of fierce disputes on its compatibility with Marxist philosophy. Yanovskaya managed to embrace in an originally Marxist spirit the contemporary level of logico-philosophical research of her time. Due to her highly esteemed status within Soviet academia, she became one of the most significant pillars for the culmination of modern mathematics in the Soviet Union. In this paper, I attempt to trace the influence of the complex socio-cultural context of the first decades of the Soviet Union on Yanovskaya’s work. Among the several issues I discuss, her encounter with L. Wittgenstein is striking. (shrink)
Thaler and Sunstein advocate 'libertarian paternalism'. A libertarian paternalist changes the conditions under which people act so that their cognitive biases lead them to choose what is best for themselves. Although libertarian paternalism manipulates people, Thaler and Sunstein say that it respects their autonomy by preserving the possibility of choice. Conly argues that libertarian paternalism does not go far enough, since there is no compelling reason why we should allow people the opportunity to choose to bring disaster upon themselves if (...) sometimes they will make the wrong decision. She defends 'coercive paternalism'. The present paper argues that errors in reasoning are not due only to cognitive biases. People also make errors because they have an insufficient level of general intelligence. Intelligence is distributed on a continuum. Those who fall on higher levels of the continuum have greater abilities, in certain contexts, to reason about both their own and others' interests. Coercive paternalism may sometimes be appropriate to prevent less intelligent people from engaging in self-destructive behavior due to errors of reasoning. (shrink)
On the question of whether gambling behavior can be changed as result of teaching gamblers the mathematics of gambling, past studies have yielded contradictory results, and a clear conclusion has not yet been drawn. In this paper, I bring some criticisms to the empirical studies that tended to answer no to this hypothesis, regarding the sampling and laboratory testing, and I argue that an optimal mathematical scholastic intervention with the objective of preventing problem gambling is possible, by providing the (...) principles that would optimize the structure and content of the teaching module. Given the ethical aspects of the exposure of mathematical facts behind games of chance, and starting from the slots case – where the parametric design is missing, we have to draw a line between ethical and optional information with respect to the mathematical content provided by a scholastic intervention. Arguing for the role of mathematics in problem-gambling prevention and treatment, interdisciplinary research directions are drawn toward implementing an optimal mathematical module in cognitive therapies. (shrink)
In “What Makes a Scientific Explanation Distinctively Mathematical?” (2013b), Lange uses several compelling examples to argue that certain explanations for natural phenomena appeal primarily to mathematical, rather than natural, facts. In such explanations, the core explanatory facts are modally stronger than facts about causation, regularity, and other natural relations. We show that Lange's account of distinctively mathematical explanation is flawed in that it fails to account for the implicit directionality in each of his examples. This inadequacy is (...) remediable in each case by appeal to ontic facts that account for why the explanation is acceptable in one direction and unacceptable in the other direction. The mathematics involved in these examples cannot play this crucial normative role. While Lange's examples fail to demonstrate the existence of distinctively mathematical explanations, they help to emphasize that many superficially natural scientific explanations rely for their explanatory force on relations of stronger-than-natural necessity. These are not opposing kinds of scientific explanations; they are different aspects of scientific explanation. (shrink)
This paper discusses an apparent contrast between Kant’s accounts of the mathematical antinomies in the first Critique and in the Prolegomena. The Critique claims that the antitheses are infinite judgements. The Prolegomena seem to claim that they are negative judgements. For the Critique, theses and antitheses are false because they presuppose that the world has a determinate magnitude, and this is not the case. For the Prolegomena, theses and antitheses are false because they presuppose an inconsistent notion of world. (...) The paper argues that the contrast between the two works is only apparent, and provides an interpretation which removes it. (shrink)
The existence of fundamental moral disagreements is a central problem for moral realism and has often been contrasted with an alleged absence of disagreement in mathematics. However, mathematicians do in fact disagree on fundamental questions, for example on which set-theoretic axioms are true, and some philosophers have argued that this increases the plausibility of moral vis-à-vis mathematical realism. I argue that the analogy between mathemat- ical and moral disagreement is not as straightforward as those arguments present it. In particular, (...) I argue that pluralist accounts of mathematics render fundamental mathematical disagreements compatible with mathematical realism in a way in which moral disagreements and moral realism are not. (shrink)
This chapter tries to answer the following question: How should we conceive of the method of mathematics, if we take a naturalist stance? The problem arises since mathematical knowledge is regarded as the paradigm of certain knowledge, because mathematics is based on the axiomatic method. Moreover, natural science is deeply mathematized, and science is crucial for any naturalist perspective. But mathematics seems to provide a counterexample both to methodological and ontological naturalism. To face this problem, some authors tried to (...) naturalize mathematics by relying on evolutionism. But several difficulties arise when we try to do this. This chapter suggests that, in order to naturalize mathematics, it is better to take the method of mathematics to be the analytic method, rather than the axiomatic method, and thus conceive of mathematical knowledge as plausible knowledge. (shrink)
Slot machines gained a high popularity despite a specific element that could limit their appeal: non-transparency with respect to mathematical parameters. The PAR sheets, exposing the parameters of the design of slot machines and probabilities associated with the winning combinations are kept secret by game producers, and the lack of data regarding the configuration of a machine prevents people from computing probabilities and other mathematical indicators. In this article, I argue that there is no rational justification for this (...) secrecy by giving two reasons, one psychological and the other mathematical. For the latter, I show that mathematics provides us with some statistical methods of retrieving the missing data, which are essential for the numerical probability computations in slots. The slots case raises the problem of the exposure of the parametric configuration and mathematical facts of any game of chance as an ethical obligation. (shrink)
An account of distinctively mathematical explanation (DME) should satisfy three desiderata: it should account for the modal import of some DMEs; it should distinguish uses of mathematics in explanation that are distinctively mathematical from those that are not (Baron [2016]); and it should also account for the directionality of DMEs (Craver and Povich [2017]). Baron’s (forthcoming) deductive-mathematical account, because it is modelled on the deductive-nomological account, is unlikely to satisfy these desiderata. I provide a counterfactual account of (...) DME, the Narrow Ontic Counterfactual Account (NOCA), that can satisfy all three desiderata. NOCA appeals to ontic considerations to account for explanatory asymmetry and ground the relevant counterfactuals. NOCA provides a unification of the causal and the non-causal, the ontic and the modal, by identifying a common core that all explanations share and in virtue of which they are explanatory. (shrink)
Double-entry bookkeeping (DEB) implicitly uses a specific mathematical construction, the group of differences using pairs of unsigned numbers ("T-accounts"). That construction was only formulated abstractly in mathematics in the 19th century—even though DEB had been used in the business world for over five centuries. Yet the connection between DEB and the group of differences (here called the "Pacioli group") is still largely unknown both in mathematics and accounting. The precise mathematical treatment of DEB allows clarity on certain conceptual (...) questions and it immediately yields the generalization of the double-entry method to multi-dimensional vectors typically representing the different types of property involved in an enterprise or household. (shrink)
This essay is a contribution to the historical phenomenology of science, taking as its point of departure Husserl’s later philosophy of science and Jacob Klein’s seminal work on the emergence of the symbolic conception of number in European mathematics during the late sixteenth and seventeenth centuries. Sinceneither Husserl nor Klein applied their ideas to actual theories of modern mathematical physics, this essay attempts to do so through a case study of the conceptof “spacetime.” In §1, I sketch Klein’s account (...) of the emergence of the symbolic conception of number, beginning with Vieta in the late sixteenth century. In §2,through a series of historical illustrations, I show how the principal impediment to assimilating the new symbolic algebra to mathematical physics, namely, thedimensionless character of symbolic number, is overcome via the translation of the traditional language of ratio and proportion into the symbolic language of equations. In §§3–4, I critically examine the concept of “Minkowski spacetime,” specifically, the purported analogy between the Pythagorean distance formula and the Minkowski “spacetime interval.” Finally, in §5, I address the question of whether the concept of Minkowski spacetime is, as generally assumed, indispensable to Einstein’s general theory of relativity. (shrink)
The classical (set-theoretic) concept of structure has become essential for every contemporary account of a scientific theory, but also for the metatheoretical accounts dealing with the adequacy of such theories and their methods. In the latter category of accounts, and in particular, the structural metamodels designed for the applicability of mathematics have struggled over the last decade to justify the use of mathematical models in sciences beyond their 'indispensability' in terms of either method or concepts/entities. In this paper, I (...) argue that these metamodels employ structures of different natures and epistemologies, and this diversity does pose a serious problem to the intended justification. (shrink)
Do multi-level selection explanations of the evolution of social traits deepen the understanding provided by single-level explanations? Central to the former is a mathematical theorem, the multi-level Price decomposition. I build a framework through which to understand the explanatory role of such non-empirical decompositions in scientific practice. Applying this general framework to the present case places two tasks on the agenda. The first task is to distinguish the various ways of suppressing within-collective variation in fitness, and moreover to evaluate (...) their biological interest. I distinguish four such ways: increasing retaliatory capacity, homogenising assortment, and collapsing either fitness structure or character distribution to a mean value. The second task is to discover whether the third term of the Price decomposition measures the effect of any of these hypothetical interventions. On this basis I argue that the multi-level Price decomposition has explanatory value primarily when the sharing-out of collective resources is `subtractable'. Thus its value is more circumscribed than its champions Sober and Wilson (1998) suppose. (shrink)
In their recent paper on “Challenges in mathematical cognition”, Alcock and colleagues (Alcock et al. [2016]. Challenges in mathematical cognition: A collaboratively-derived research agenda. Journal of Numerical Cognition, 2, 20-41) defined a research agenda through 26 specific research questions. An important dimension of mathematical cognition almost completely absent from their discussion is the cultural constitution of mathematical cognition. Spanning work from a broad range of disciplines – including anthropology, archaeology, cognitive science, history of science, linguistics, philosophy, (...) and psychology – we argue that for any research agenda on mathematical cognition the cultural dimension is indispensable, and we propose a set of exemplary research questions related to it. (shrink)
A new trend in the philosophical literature on scientific explanation is that of starting from a case that has been somehow identified as an explanation and then proceed to bringing to light its characteristic features and to constructing an account for the type of explanation it exemplifies. A type of this approach to thinking about explanation – the piecemeal approach, as I will call it – is used, among others, by Lange (2013) and Pincock (2015) in the context of their (...) treatment of the problem of mathematical explanations of physical phenomena. This problem is of central importance in two different recent philosophical disputes: the dispute about the existence on non-causal scientific explanations and the dispute between realists and antirealists in the philosophy of mathematics. My aim in this paper is twofold. I will first argue that Lange (2013) and Pincock (2015) fail to make a significant contribution to these disputes. They fail to contribute to the dispute in the philosophy of mathematics because, in this context, their approach can be seen as question begging. They also fail to contribute to the dispute in the general philosophy of science because, as I will argue, there are important problems with the cases discussed by Lange and Pincock. I will then argue that the source of the problems with these two papers has to do with the fact that the piecemeal approach used to account for mathematical explanation is problematic. (shrink)
Two families of mathematical methods lie at the heart of investigating the hierarchical structure of genetic variation in Homo sapiens: /diversity partitioning/, which assesses genetic variation within and among pre-determined groups, and /clustering analysis/, which simultaneously produces clusters and assigns individuals to these “unsupervised” cluster classifications. While mathematically consistent, these two methodologies are understood by many to ground diametrically opposed claims about the reality of human races. Moreover, modeling results are sensitive to assumptions such as preexisting theoretical commitments to (...) certain linguistic, anthropological, and geographic human groups. Thus, models can be perniciously reified. That is, they can be conflated and confused with the world. This fact belies standard realist and antirealist interpretations of “race,” and supports a pluralist conventionalist interpretation. (shrink)
An analysis of the counter-intuitive properties of infinity as understood differently in mathematics, classical physics and quantum physics allows the consideration of various paradoxes under a new light (e.g. Zeno’s dichotomy, Torricelli’s trumpet, and the weirdness of quantum physics). It provides strong support for the reality of abstractness and mathematical Platonism, and a plausible reason why there is something rather than nothing in the concrete universe. The conclusions are far reaching for science and philosophy.
We often speak of 'Eastern' and 'Western' philosophy, yet it is not always easy to distinguish the key factors that justify this distinction. This essay explores the very different conceptions of the continuum that underlie these two traditions of thought and knowledge. The views of Hermann Weyl are given and it is proposed that they are correct. Attention is drawn to the mutually-exclusive visions of the continuum that separate the philosophies of East and West, and that give us (...) a way of pinning down a definition of these vague geographical terms so as to give them, in at least one respect, a clear philosophical and scientific meaning. (shrink)
The demonstration of a loophole-free violation of Bell's inequality by Hensen et al. (2015) leads to the inescapable conclusion that timelessness and abstractness exist alongside space-time. This finding is in full agreement with the triple-aspect monism of reality, with mathematical Platonism, free will and the eventual emergence of a scientific morality.
Descartes' philosophy contains an intriguing notion of the infinite, a concept labeled by the philosopher as indefinite. Even though Descartes clearly defined this term on several occasions in the correspondence with his contemporaries, as well as in his Principles of Philosophy, numerous problems about its meaning have arisen over the years. Most commentators reject the view that the indefinite could mean a real thing and, instead, identify it with an Aristotelian potential infinite. In the first part of this article, I (...) show why there is no numerical infinity in Cartesian mathematics, as such a concept would be inconsistent with the main fundamental attribute of numbers: to be comparable with each other. In the second part, I analyze the indefinite in the context of Descartes' mathematical physics. It is my contention that, even with no trace of infinite in his mathematics, Descartes does refer to an actual indefinite because of its application to the material world within the system of his physics. This fact underlines a discrepancy between his mathematics and physics of the infinite, but does not lead a difficulty in his mathematical physics. Thus, in Descartes' physics, the indefinite refers to an actual dimension of the world rather than to an Aristotelian mathematical potential infinity. In fact, Descartes establishes the reality and limitlessness of the extension of the cosmos and, by extension, the actual nature of his indefinite world. This indefinite has a physical dimension, even if it is not measurable. La filosofía de Descartes contiene una noción intrigante de lo infinito, un concepto nombrado por el filósofo como indefinido. Aunque en varias ocasiones Descartes definió claramente este término en su correspondencia con sus contemporáneos y en sus Principios de filosofía, han surgido muchos problemas acerca de su significado a lo largo de los años. La mayoría de comentaristas rechaza la idea de que indefinido podría significar una cosa real y, en cambio, la identifica con un infinito potencial aristotélico. En la primera parte de este artículo muestro por qué no hay infinito numérico en las matemáticas cartesianas, en la medida en que tal concepto sería inconsistente con el principal atributo fundamental de los números: ser comparables entre sí. En la segunda parte analizo lo indefinido en el contexto de la física matemática de Descartes. Mi argumento es que, aunque no hay rastro de infinito en sus matemáticas, Descartes se refiere a un indefinido real a causa de sus aplicaciones al mundo material dentro del sistema de su física. Este hecho subraya una discrepancia entre sus matemáticas y su física de lo infinito, pero no implica ninguna dificultad en su física matemática. Así pues, en la física de Descartes, lo indefinido se refiere a una dimensión real del mundo más que a una infinitud potencial matemática aristotélica. De hecho, Descartes establece la realidad e infinitud de la extensión del cosmos y, por extensión, la naturaleza real de su mundo indefinido. Esta indefinición tiene una dimensión física aunque no sea medible. (shrink)
Mathematical thinking skills are very important in mathematics, both to learn math or as learning goals. Thinking skills can be seen from the description given answers in solving mathematical problems faced. Mathematical thinking skills can be seen from the types, levels, and process. Proportionally questions given to students at universities in Indonesia (semester I, III, V, and VII). These questions are a matter of description that belong to the higher-level thinking. Students choose 5 of 8 given problem. (...) Qualitatively, the answers were analyzed by descriptive to see the tendency to think mathematically used in completing the test. The results show that students tend to choose the issues relating to the calculation. They are more use cases, examples and not an example, to evaluate the conjecture and prove to belong to the numeric argumentation. Used mathematical thinking students are very personal (intelligence, interest, and experience), and the situation (problems encountered). Thus, the level of half of the students are not guaranteed and shows the level of mathematical thinking. (shrink)
Arguing for mathematical realism on the basis of Field’s explanationist version of the Quine–Putnam Indispensability argument, Alan Baker has recently claimed to have found an instance of a genuine mathematical explanation of a physical phenomenon. While I agree that Baker presents a very interesting example in which mathematics plays an essential explanatory role, I show that this example, and the argument built upon it, begs the question against the mathematical nominalist.
CORCORAN RECOMMENDS COCCHIARELLA ON TYPE THEORY. The 1983 review in Mathematical Reviews 83e:03005 of: Cocchiarella, Nino “The development of the theory of logical types and the notion of a logical subject in Russell's early philosophy: Bertrand Russell's early philosophy, Part I”. Synthese 45 (1980), no. 1, 71-115 .
Mathematical objects are divided into (1) those which are autonomous, i.e., not dependent for their existence upon mathematicians’ conscious acts, and (2) intentional objects, which are so dependent. Platonist philosophy of mathematics argues that all objects belong to group (1), Brouwer’s intuitionism argues that all belong to group (2). Here we attempt to develop a dualist ontology of mathematics (implicit in the work of, e.g., Hilbert), exploiting the theories of Meinong, Husserl and Ingarden on the relations between autonomous and (...) intentional objects. In particular we develop a phenomenology of mathematical works, which has the stratified intentional structure discovered by Ingarden in his study of the literary work. (shrink)
It seems possible to know that a mathematical claim is necessarily true by inspecting a diagrammatic proof. Yet how does this work, given that human perception seems to just (as Hume assumed) ‘show us particular objects in front of us’? I draw on Peirce’s account of perception to answer this question. Peirce considered mathematics as experimental a science as physics. Drawing on an example, I highlight the existence of a primitive constraint or blocking function in our thinking which we (...) might call ‘the hardness of the mathematical must’. (shrink)
This paper distinguishes between 3 meanings of reversal, all of which are mathematically equivalent in classical mechanics: velocity reversal, retrodiction, and time reversal. It then concludes that in order to have well defined velocities a primitive arrow of time must be included in every time slice. The paper briefly mentions that this arrow cannot come from the Second Law of thermodynamics, but this point is developed in more details elsewhere.
An influential position in the philosophy of biology claims that there are no biological laws, since any apparently biological generalization is either too accidental, fact-like or contingent to be named a law, or is simply reducible to physical laws that regulate electrical and chemical interactions taking place between merely physical systems. In the following I will stress a neglected aspect of the debate that emerges directly from the growing importance of mathematical models of biological phenomena. My main aim is (...) to defend, as well as reinforce, the view that there are indeed laws also in biology, and that their difference in stability, contingency or resilience with respect to physical laws is one of degrees, and not of kind . (shrink)
Speaking from our experience as department chairs in fields in which women are traditionally underrepresented, we offer reflections and advice on how one might move beyond the chilly climate and create a warmer environment for women students and faculty members.
When so much is being written on conscious experience, it is past time to face the question whether experience happens that is not conscious of itself. The recognition that we and most other living things experience non-consciously has recently been firmly supported by experimental science, clinical studies, and theoretic investigations; the related if not identical philosophic notion of experience without a subject has a rich pedigree. Leaving aside the question of how experience could become conscious of itself, I aim here (...) to demonstrate that the terms experience and consciousness are not interchangeable. Experience is a notoriously difficult concept to pin down, but I see non-conscious experience as based mainly in momentary sensations, relational between bodies or systems, and probably common throughout the natural world. If this continuum of experience — from non-conscious, to conscious, to self-transcending awareness — can be understood and accepted, radical constructivism (the “outside” world as a construct of experience) will gain a firmer foundation, panexperientialism (a living universe) may gain credibility, and psi will find its medium. (shrink)
The vicissitudes of mathematical reason in the 20th century Content Type Journal Article Pages 1-6 DOI 10.1007/s11016-011-9556-y Authors Thomas Mormann, Department of Logic and Philosophy of Science, University of the Basque Country UPV/EPU, Donostia-San Sebastian, Spain, Journal Metascience Online ISSN 1467-9981 Print ISSN 0815-0796.
Al final de su libro “La conciencia inexplicada”, Juan Arana señala que la nomología, explicación según las leyes de la naturaleza, requiere de una nomogonía, una consideración del origen de las leyes. Es decir, que el orden que observamos en el mundo natural requiere una instancia previa que ponga ese orden específico. Sabemos que desde la revolución científica la mejor manera de explicar dicha nomología ha sido mediante las matemáticas. Sin embargo, en las últimas décadas se han presentado algunas propuestas (...) basadas en modelos matemáticos que fundamentarían muchos aspectos de la realidad. Dos claros ejemplos provienen de Roger Penrose y Max Tegmark. Esto lleva a pensar en una posición no solo nomológica sino además nomogónica de la matemática. ¿Puede la Naturaleza estar fundada por las matemáticas como señalan algunos físico-matemáticos? Y en ese caso, ¿sería pertinente buscar una nomo-génesis de esta índole en la constitución de la conciencia? -/- At the end of his book “La conciencia inexplicada”, Juan Arana points out that nomology, explanation according to the laws of nature requires a nomogony, an account of the origin of the laws. This means that the order that we can observe in the natural World demands something prior to posit that specific order. Since the scientific revolution we know that the best way to explain that nomology has been through mathematics. Anyway, in recent decades a number of proposals based on mathematical models that found many aspects of reality has been offered. Two clear examples come from Roger Penrose and Max Tegmark. This drives us to think of a position of mathematics as not only nomological but also nomogonical. Can Nature be founded by mathematics as some physicists and mathematicians point out? And, in this case, would be relevant this kind of approach to search a nomo-genesis in the constitution of consciousness? (shrink)
1971. Discourse Grammars and the Structure of Mathematical Reasoning II: The Nature of a Correct Theory of Proof and Its Value, Journal of Structural Learning 3, #2, 1–16. REPRINTED 1976. Structural Learning II Issues and Approaches, ed. J. Scandura, Gordon & Breach Science Publishers, New York, MR56#15263. -/- This is the second of a series of three articles dealing with application of linguistics and logic to the study of mathematical reasoning, especially in the setting of a concern for (...) improvement of mathematical education. The present article presupposes the previous one. Herein we develop our ideas of the purposes of a theory of proof and the criterion of success to be applied to such theories. In addition we speculate at length concerning the specific kinds of uses to which a successful theory of proof may be put vis-a-vis improvement of various aspects of mathematical education. The final article will deal with the construction of such a theory. The 1st is the 1971. Discourse Grammars and the Structure of Mathematical Reasoning I: Mathematical Reasoning and Stratification of Language, Journal of Structural Learning 3, #1, 55–74. https://www.academia.edu/s/fb081b1886?source=link . (shrink)
Albert Lautman. Mathematics, Ideas and the Physical Real. Simon B. Duffy, trans. London and New York: Continuum, 2011. 978-1-4411-2344-2 (pbk); 978-1-44114656-4 (hbk); 978-1-44114433-1 (pdf e-bk); 978-1-44114654-0 (epub e-bk). Pp. xlii + 310.
Reuben Hersh confided to us that, about forty years ago, the late Paul Cohen predicted to him that at some unspecified point in the future, mathematicians would be replaced by computers. Rather than focus on computers replacing mathematicians, however, our aim is to consider the (im)possibility of human mathematicians being joined by “artificial mathematicians” in the proving practice—not just as a method of inquiry but as a fellow inquirer.
We aim to show that Kant’s theory of time is consistent by providing axioms whose models validate all synthetic a priori principles for time proposed in the Critique of Pure Reason. In this paper we focus on the distinction between time as form of intuition and time as formal intuition, for which Kant’s own explanations are all too brief. We provide axioms that allow us to construct ‘time as formal intuition’ as a pair of continua, corresponding to time as ‘inner (...) sense’ and the external representation of time as a line Both continua are replete with infinitesimals, which we use to elucidate an enigmatic discussion of ‘rest’ in the Metaphysical foundations of natural science. Our main formal tools are Alexandroff topologies, inverse systems and the ring of dual numbers. (shrink)
The mathematical constructions, physical structure and manifestations of physical time are reviewed. The nature of insight and mathematics used to understand and deal with physical time associated with classical, quantum and cosmic processes is contemplated together with a comprehensive understanding of classical time. Scalar time (explicit time or quantitative time), vector time (implicit time or qualitative time), biological time, time of and in conscious awareness are discussed. The mathematical understanding of time in special and general theories of relativity (...) is critically analyzed. The independent nature of classical, quantum and cosmic physical times from one another, and the manifestations of respective physical happenings, distinct from universal time, are highlighted. The role of a universal time related or unrelated to origin, being etc., of universe or cosmos as common thread in all happenings is reviewed. The missing of time is identified and concept of absence of time is put forward. The complex nature of time and the real and imaginary dimensions of physical time are also elaborately discussed together with human time- consciousness as past, present and future. (shrink)
In Bertrand Russell's 1903 Principles of Mathematics, he offers an apparently devastating criticism of the neo-Kantian Hermann Cohen's Principle of the Infinitesimal Method and its History (PIM). Russell's criticism is motivated by his concern that Cohen's account of the foundations of calculus saddles mathematics with the paradoxes of the infinitesimal and continuum, and thus threatens the very idea of mathematical truth. This paper defends Cohen against that objection of Russell's, and argues that properly understood, Cohen's views of limits (...) and infinitesimals do not entail the paradoxes of the infinitesimal and continuum. Essential to that defense is an interpretation, developed in the paper, of Cohen's positions in the PIM as deeply rationalist. The interest in developing this interpretation is not just that it reveals how Cohen's views in the PIM avoid the paradoxes of the infinitesimal and continuum. It also reveals some of what is at stake, both historically and philosophically, in Russell's criticism of Cohen. (shrink)
The principle of energy conservation is widely taken to be a se- rious difficulty for interactionist dualism (whether property or sub- stance). Interactionists often have therefore tried to make it satisfy energy conservation. This paper examines several such attempts, especially including E. J. Lowe’s varying constants proposal, show- ing how they all miss their goal due to lack of engagement with the physico-mathematical roots of energy conservation physics: the first Noether theorem (that symmetries imply conservation laws), its converse (that (...) conservation laws imply symmetries), and the locality of continuum/field physics. Thus the “conditionality re- sponse”, which sees conservation as (bi)conditional upon symme- tries and simply accepts energy non-conservation as an aspect of interactionist dualism, is seen to be, perhaps surprisingly, the one most in accord with contemporary physics (apart from quantum mechanics) by not conflicting with mathematical theorems basic to physics. A decent objection to interactionism should be a posteri- ori, based on empirically studying the brain. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.