Abstract
David Kaplan famously argued that mainstream semantics for modal logic, which identifies propositions with sets of possible worlds, is affected by a cardinality paradox. Takashi Yagisawa showed that a variant of the same paradox arises when standard possible worlds semantics is extended with impossible worlds to deliver a hyperintensional account of propositions. After introducing the problem, we discuss two general approaches to a possible solution: giving up on sets and giving up on worlds, either in the background semantic framework or in the corresponding conception of propositions. As a result, we conclude that abandoning worlds by embracing a truthmaker-based approach offers a promising way to account for hyperintensional propositions without facing the paradoxical outcome.