Skip to main content
Log in

Abstract

The paper outlines a model-theoretic framework for investigating and comparing a variety of mereotopological theories. In the first part we consider different ways of characterizing a mereotopology with respect to (i) the intended interpretation of the connection primitive, and (ii) the composition of the admissible domains of quantification (e.g., whether or not they include boundary elements). The second part extends this study by considering two further dimensions along which different patterns of topological connection can be classified – the strength of the connection and its multiplicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

REFERENCES

  1. Asher, N. and Vieu, L.: Toward a geometry of common sense: A semantics and a complete axiomatization of mereotopology, in Proceedings of the 14th International Joint Conference on Artificial Intelligence, Morgan Kaufmann, San Mateo, CA, 1995, pp. 846–852.

    Google Scholar 

  2. Aurnague, M. and Vieu, L.: A three-level approach to the semantics of space, in C. Z. Wibbelt (ed.), The Semantics of Prepositions: From Mental Processing to Natural Language Processing, Mouton de Gruyter, Berlin, 1993, pp. 393–439.

    Google Scholar 

  3. Bennett, B.: Carving up space: Steps towards the construction of an absolutely complete theory of spatial regions, in J. J. Alfres, L. M. Pereira and E. Orlowska (eds), Proceedings of the Fifth European Workshop on Logics in Artificial Intelligence (JELIA'96), Springer, Berlin, 1996, pp. 337–353.

    Google Scholar 

  4. Biacino, L. and Gerla, G.: Connection structures, Notre Dame J. Formal Logic 32 (1991), 242–247.

    Google Scholar 

  5. Biacino, L. and Gerla, G.: Connection structures: Grzegorczyk's and Whitehead's definitions of point, Notre Dame J. Formal Logic 37 (1996), 431–439.

    Google Scholar 

  6. Bolzano, B.: Paradoxien des Unendlichen, Reclam, Leipzig, 1851 (Engl. transl. by D. A. Steele, Paradoxes of the Infinite, Routledge & Kegan Paul, London, (1950).

    Google Scholar 

  7. Borgo, S., Guarino, N. and Masolo, C.: A pointless theory of space based on strong connection and congruence, in L. Aiello, J. Doyle and S. Shapiro (eds), Principles of Knowledge Representation and Reasoning: Proceedings of the Fifth International Conference, Morgan Kaufmann, San Francisco, CA, 1996, pp. 220–229.

    Google Scholar 

  8. Brentano, F.: Philosophische Untersuchungen zu Raum, Zeit und Kontinuum, eds. S. Körner and R. M. Chisholm, Meiner, Hamburg, 1976 (Engl. transl. by B. Smith, Philosophical Investigations on Space, Time and the Continuum, Croom Helm, London, 1988).

    Google Scholar 

  9. Cartwright, R.: Scattered objects, in K. Lehrer (ed.), Analysis and Metaphysics, Reidel, Dordrecht, 1975, pp. 153–171.

    Google Scholar 

  10. Casati, R. and Varzi, A. C.: Holes and Other Superficialities, MIT Press/Bradford Books, Cambridge, MA, and London, 1994.

    Google Scholar 

  11. Casati, R. and Varzi, A. C.: The structure of spatial localization, Philos. Stud. 82 (1996), 205–239.

    Google Scholar 

  12. Casati, R. and Varzi, A. C.: Parts and Places. The Structures of Spatial Representation, MIT Press/Bradford Books, Cambridge, MA, and London, 1999.

    Google Scholar 

  13. Chisholm, R. M.: Boundaries as dependent particulars, Grazer philosophische Studien 10 (1984), 87–95.

    Google Scholar 

  14. Chisholm, R. M.: Scattered objects, in J. J. Thomson (ed.), On Being and Saying: Essays for Richard Cartwright, MIT Press, Cambridge, MA, 1987, pp. 167–173.

    Google Scholar 

  15. Chisholm, R. M.: Spatial continuity and the theory of part and whole. A Brentano study, Brentano Studien 4 (1992/3), 11–23.

    Google Scholar 

  16. Clarke, B. L.: A calculus of individuals based on “Connection”, Notre Dame J. Formal Logic 22 (1981), 204–218.

    Google Scholar 

  17. Clarke, B. L.: Individuals and points, Notre Dame J. Formal Logic 26 (1985), 61–75.

    Google Scholar 

  18. Clementini, E. and Di Felice, P.: Topological invariants for lines, IEEE Trans. on Knowledge and Data Engineering 10 (1998), 38–54.

    Google Scholar 

  19. Clementini, E., Di Felice, P. and Oosterom, P.: A small set of formal topological relationships suitable for end user interaction, in D. Abel and B. C. Ooi (eds), Advances in Spatial Databases, Proceedings of the Third International Symposium (SSD'93), Springer, Berlin, 1993, pp. 277–295.

    Google Scholar 

  20. Cohn, A. G., Bennett, B., Gooday, J. and Gotts, N.: RCC: A calculus for region based qualitative spatial reasoning, GeoInformatica 1 (1997), 275–316.

    Google Scholar 

  21. Cohn A. G. and Hazarika, S.M.: Qualitative spatial representation and reasoning: An overview, Fund. Inform. 45 (2001), 1–29.

    Google Scholar 

  22. Cohn, A. G., Randell, D. A. and Cui, Z.: A taxonomy of logically defined qualitative spatial regions, Internat. J. Human-Computer Studies 43 (1995), 831–846.

    Google Scholar 

  23. Cohn, A. G. and Varzi, A. C.: Connection relations in mereotopology, in H. Prade (ed.), Proceedings of the 13th European Conference on Artificial Intelligence (ECAI 98), Wiley, Chichester, 1998, pp. 150–154.

    Google Scholar 

  24. Cohn, A. G. and Varzi, A. C.: Modes of connection, in C. Freksa and D. M. Mark (eds), Spatial Information Theory. Cognitive and Computational Foundations of Geographic Information Science (Proceedings of COSIT'99), Springer, Berlin, 1999, pp. 299–314.

    Google Scholar 

  25. De Laguna, T.: Point, line, and surface, as sets of solids, J. Philos. 19 (1922), 449–461.

    Google Scholar 

  26. Düntsch, I. and Orlowska, E.: A proof system for contact relation algebras, J. Philos. Logic 29 (2000), 241–262.

    Google Scholar 

  27. Egenhofer, M. J., Clementini, E. and Di Felice, P.: Toplogical relations between regions with holes, Internat. J. Geogr. Inform. Systems 8 (1994), 129–144.

    Google Scholar 

  28. Egenhofer, M. J. and Franzosa, R. D.: Point-set topological spatial relations, Internat. J. Geogr. Inform. Systems 5 (1991), 161–174.

    Google Scholar 

  29. Egenhofer, M. J. and Franzosa, R. D.: On the equivalence of topological relations, Internat. J. Geogr. Inform. Systems bd9 (1995), 133–152.

    Google Scholar 

  30. Egenhofer, M. and Herring, J.: Categorizing topological spatial relationships between point, line and area objects, in The 9-Intersection: Formalism and Its Use for Natural Language Spatial Predicates, Technical Report 94-1, National Center for Geographic Information and Analysis, Santa Barbara, CA, 1994.

    Google Scholar 

  31. Eschenbach, C.: A mereotopological definition of “Point”, in C. Eschenbach, C. Habel and B. Smith (eds), Topological Foundations of Cognitive Science. Papers from the Workshop at the First International Summer Institute in Cognitive Science (Buffalo 1994), University of Hamburg, Reports of the Doctoral Program in Cognitive Science, No. 37, 1994, pp. 63–80.

  32. Fine, K.: Part-whole, in B. Smith and D. W. Smith (eds), The Cambridge Companion to Husserl, Cambridge University Press, New York, 1995, pp. 463–485.

    Google Scholar 

  33. Fleck, M. M.: The topology of boundaries, Artificial Intelligence 80 (1996), 1–27.

    Google Scholar 

  34. Freksa, C.: Temporal reasoning based on semi-intervals, Artificial Intelligence 54 (1992), 199–227.

    Google Scholar 

  35. Galton, A. P.: Taking dimension seriously in qualitative spatial reasoning, in W. Wahlster (ed.), Proceedings of the 12th European Conference on Artificial Intelligence (ECAI 96), Wiley, Chichester, 1996, pp. 501–505.

    Google Scholar 

  36. Galton, A.: Modes of overlap, J. Visual Languages and Computing 9 (1998), 61–79.

    Google Scholar 

  37. Galton, A. P.: Qualitative Spatial Change, Oxford University Press, Oxford, 2000.

    Google Scholar 

  38. Gerla, G.: Pointless geometries, in F. Buekenhout (ed.), Handbook of Incidence Geometry, Elsevier, Amsterdam, 1995, Chapter 18, pp. 1015–1031.

    Google Scholar 

  39. Gotts, N. M.: Defining a ‘Doughnut’ made difficult, in C. Eschenbach, C. Habel and B. Smith (eds), Topological Foundations of Cognitive Science. Papers from the Workshop at the First International Summer Institute in Cognitive Science (Buffalo 1994), University of Hamburg, Reports of the Doctoral Program in Cognitive Science, No. 37, 1994, 105–129.

  40. Gotts, N. M.: Formalising commonsense topology: The INCH calculus, in H. Kautz and B. Selman (eds), Proceedings of the Fourth International Symposium on Artificial Intelligence and Mathematics (AI/Math-96), Fort Lauderdale, FL, 1996, pp. 72–75.

  41. Gotts, N. M., Gooday, J. M. and Cohn, A. G.: A connection based approach to common-sense topological description and reasoning, The Monist 79 (1996), 51–75.

    Google Scholar 

  42. Grzegorczyk, A.: Axiomatizability of geometry without points, Synthese 12 (1960), 109–127.

    Google Scholar 

  43. Guarino, N. (ed.): Formal Ontology in Information Systems. Proceedings of FOIS-98, IOS Press, Amsterdam, 1998.

    Google Scholar 

  44. Hazarika, S. M. and Cohn, A. G.: Qualitative spatio-temporal continuity, in D. R. Montello (ed.), Spatial Information Theory: Foundations of Geographic Information Science (Proceedings of COSIT'01), Springer, Berlin, 2001, pp. 92–107.

    Google Scholar 

  45. Husserl, E.: Logische Untersuchungen. Zweiter Band. Untersuchungen zur Phänomenologie und Theorie der Erkenntnis, Niemeyer, Halle, 1901 (2nd edn 1913; Engl. transl. by J. N. Findlay, Logical Investigations, Routledge & Kegan Paul, London, 1970).

    Google Scholar 

  46. Kuratowski, C.: Sur l'opération A? de l'analysis situs, Fund. Math. 3 (1922), 182–199.

    Google Scholar 

  47. Leśniewski, S.: Podstawy ogólnej teoryi mnogości. I, Prace Polskiego Kola Naukowego w Moskwie, Moskow, 1916 (Engl. transl. by D. I. Barnett, Foundations of the general theory of sets. I, in S. Leśniewski, Collected Works, eds S. J. Surma, J. Srzednicki, D. I. Barnett and F. V. Rickey, Nijhoff, Dordrecht, 1992, Vol. 1, pp. 129-173).

    Google Scholar 

  48. Leonard, H. S. and Goodman, N.: The calculus of individuals and its uses, J. Symbolic Logic 5 (1940), 45–55.

    Google Scholar 

  49. Pianesi, F. and Varzi, A. C.: Refining temporal reference in event structures, Notre Dame J. Formal Logic 37 (1996), 71–83.

    Google Scholar 

  50. Pianesi, F. and Varzi, A. C.: Events, topology, and temporal relations, The Monist 78 (1996), 89–116.

    Google Scholar 

  51. Pratt, I. and Schoop, D.: A complete axiom system for polygonal mereotopology of the real plane, J. Philos. Logic 27 (1998), 621–658.

    Google Scholar 

  52. Randell, D. A. and Cohn, A. G.: Modelling topological and metrical properties in physical processes, in R. J. Brachman, H. J. Levesque and R. Reiter (eds), Principles of Knowledge Representation and Reasoning. Proceedings of the First International Conference, Morgan Kaufmann, Los Altos, CA, 1989, pp. 357–368.

    Google Scholar 

  53. Randell, D. A., Cui, Z. and Cohn, A. G.: A spatial logic based on regions and connection, in B. Nebel, C. Rich and W. Swartout (eds), Principles of Knowledge Representation and Reasoning. Proceedings of the Third International Conference, Morgan Kaufmann, Los Altos, CA, 1992, pp. 165–176.

    Google Scholar 

  54. Simons, P. M.: Parts. A Study in Ontology, Clarendon Press, Oxford, 1987.

    Google Scholar 

  55. Simons, P. M.: Free part-whole theory, in K. Lambert (ed.), Philosophical Applications of Free Logic, Oxford University Press, Oxford, 1991, pp. 285–306.

    Google Scholar 

  56. Smith, B.: Boundaries, in L. Hahn (ed.), The Philosophy of Roderick Chisholm, Open Court, LaSalle, IL, 1997, pp. 534–561.

    Google Scholar 

  57. Smith, B.: Mereotopology: A theory of parts and boundaries, Data and Knowledge Engineering 20 (1996), 287–304.

    Google Scholar 

  58. Smith, B. and Varzi, A. C.: The niche, Noûs 33 (1999), 214–238.

    Google Scholar 

  59. Smith, B. and Varzi, A. C.: Fiat and bona fide boundaries, Philos. Phenomen. Res. 60 (2000), 401–420.

    Google Scholar 

  60. Stock, O. (ed.): Spatial and Temporal Reasoning, Kluwer, Dordrecht, 1997.

    Google Scholar 

  61. Tarski, A.: Les fondements de la géométrie des corps, Ksiie390-01ga Pamiétkowa Pierwszkego Polskiego Zjazdu Matematycznego, suppl. to Annales de la Société Polonaise de Mathématique 7 (1929), 29–33.

    Google Scholar 

  62. Tarski, A.: Zur Grundlegung der Booleschen Algebra. I, Fund. Math. 24 (1935), 177–198.

    Google Scholar 

  63. Tiles, J. E.: Things That Happen, Aberdeen University Press, Aberdeen, 1981.

    Google Scholar 

  64. Varzi, A. C.: Parts, wholes, and part-whole relations: The prospects of mereotopology, Data and Knowledge Engineering bd20 (1996), 259–286.

    Google Scholar 

  65. Varzi, A. C.: Reasoning about space: The hole story, Logic and Logical Philosophy 4 (1996), 3–39.

    Google Scholar 

  66. Varzi, A. C.: Boundaries, continuity, and contact, Noûs 31 (1997), 26–58.

    Google Scholar 

  67. Whitehead, A. N.: Process and Reality. An Essay in Cosmology, Macmillan, New York, 1929.

    Google Scholar 

  68. Zimmerman, D. W.: Indivisible parts and extended objects: Some philosophical episodes from topology's prehistory', The Monist 79 (1996), 148–180.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohn, A.G., Varzi, A.C. Mereotopological Connection. Journal of Philosophical Logic 32, 357–390 (2003). https://doi.org/10.1023/A:1024895012224

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024895012224

Navigation