Results for 'schrodinger wave equation'

1000+ found
Order:
  1.  82
    A Numerical Solution of Ermakov Equation Corresponding to Diffusion Interpretation of Wave Mechanics.Victor Christianto & Florentin Smarandache - manuscript
    It has been long known that a year after Schrödinger published his equation, Madelung also published a hydrodynamics version of Schrödinger equation. Quantum diffusion is studied via dissipative Madelung hydrodynamics. Initially the wave packet spreads ballistically, than passes for an instant through normal diffusion and later tends asymptotically to a sub‐diffusive law. In this paper we will review two different approaches, including Madelung hydrodynamics and also Bohm potential. Madelung formulation leads to diffusion interpretation, which after a generalization (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. The Wave Function and Its Evolution.Shan Gao - 2011
    The meaning of the wave function and its evolution are investigated. First, we argue that the wave function in quantum mechanics is a description of random discontinuous motion of particles, and the modulus square of the wave function gives the probability density of the particles being in certain locations in space. Next, we show that the linear non-relativistic evolution of the wave function of an isolated system obeys the free Schrödinger equation due to the requirements (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. The de Broglie Wave as Evidence of a Deeper Wave Structure.Daniel Shanahan - manuscript
    It is argued that the de Broglie wave is not the independent wave usually supposed, but the relativistically induced modulation of an underlying carrier wave that moves with the velocity of the particle. In the rest frame of the particle this underlying structure has the form of a standing wave. De Broglie also assumed the existence of this standing wave, but it would appear that he failed to notice its survival as a carrier wave (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Yijing and Energy Fields.David Leong - manuscript
    The sequential patterns of the sixty-four hexagrams in the Yijing, variously known as I Ching (the Book of Changes) are structured to embrace the universe of possibilities, scenarios and probabilities. Each hexagram equates to each moment in space-time. With the arrow of time, a string of hexagrams represent a string of moments. A probability curve can be formed from the string of hexagrams. Physicists call this mathematical entity a wave function which is constantly changing and proliferating. A wave (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Reassessing Time, Energy and Nonlocality in Quantum Mechanics with Observations on Schrödinger’s Cat.Paul Klevgard - manuscript
    Radiation was a big challenge for the quantum pioneers since the photon was massless, probabilistic and appeared to be both wave and particle. Einstein’s special relativity equated mass with energy and space with time. But the equality of mass with energy, then and now, is regarded as quantitative and the equality of space with time is anything but equal; space hosts material entities; time hosts nothing. Exploring these equality issues raises some questions as to how measurable entities – particles (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. On Cellular Automata Representation of Submicroscopic Physics: From Static Space to Zuse’s Calculating Space Hypothesis.Victor Christianto, Volodymyr Krasnoholovets & Florentin Smarandache - manuscript
    In some recent papers (G. ‘t Hooft and others), it has been argued that quantum mechanics can arise from classical cellular automata. Nonetheless, G. Shpenkov has proved that the classical wave equation makes it possible to derive a periodic table of elements, which is very close to Mendeleyev’s one, and describe also other phenomena related to the structure of molecules. Hence the classical wave equation complements Schrödinger’s equation, which implies the appearance of a cellular automaton (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. The Spaces in the Looking Glass: Stilling the frame/ framing the still.Marvin E. Kirsh - 2015 - Philosophy and Cosmology Http://En.Bazaluk.Com/Journals 15:62-83.
    The purpose of this writing is to propose a frame of view, a form as the eternal world element, that is compatible with paradox within the history of ideas, modern discovery as they confront one another. Under special consideration are problems of representation of phenomena, life, the cosmos as the rational facility of mind confronts the physical/perceptual, and itself. Current topics in pursuit are near as diverse and numbered as are the possibilities for a world composed strictly of uniqueness able (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. A COMPLEX NUMBER NOTATION OF NATURE OF TIME: AN ANCIENT INDIAN INSIGHT.Varanasi Ramabrahmam - 2013 - In Veda Vijnaana Sudha, Proceedings of 5th International Conference on Vedic Sciences on “Applications and Challenges in Vedic / Ancient Indian Mathematics" on 20, 21 and 22nd of Dec 2013 at Maharani Arts, commerce and Management College for Women, Bang. pp. 386-399.
    The nature of time is perceived by intellectuals variedly. An attempt is made in this paper to reconcile such varied views in the light of the Upanishads and related Indian spiritual and philosophical texts. The complex analysis of modern mathematics is used to represent the nature and presentation physical and psychological times so differentiated. Also the relation between time and energy is probed using uncertainty relations, forms of energy and phases of matter. Implications to time-dependent Schrodinger wave (...) and uncertainty principle are hinted. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Derivation of the Schrödinger equation.Shan Gao - manuscript
    It is shown that the heuristic "derivation" of the Schrödinger equation in quantum mechanics textbooks can be turned into a real derivation by resorting to spacetime translation invariance and relativistic invariance.
    Download  
     
    Export citation  
     
    Bookmark  
  10. If Quantum Mechanics Is the Solution, What Should the Problem Be?Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (32):1-10.
    The paper addresses the problem, which quantum mechanics resolves in fact. Its viewpoint suggests that the crucial link of time and its course is omitted in understanding the problem. The common interpretation underlain by the history of quantum mechanics sees discreteness only on the Plank scale, which is transformed into continuity and even smoothness on the macroscopic scale. That approach is fraught with a series of seeming paradoxes. It suggests that the present mathematical formalism of quantum mechanics is only partly (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  11. A Case for Lorentzian Relativity.Daniel Shanahan - 2014 - Foundations of Physics 44 (4):349-367.
    The Lorentz transformation (LT) is explained by changes occurring in the wave characteristics of matter as it changes inertial frame. This explanation is akin to that favoured by Lorentz, but informed by later insights, due primarily to de Broglie, regarding the underlying unity of matter and radiation. To show the nature of these changes, a massive particle is modelled as a standing wave in three dimensions. As the particle moves, the standing wave becomes a travelling wave (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  12. McTaggart’s Time, the Schrodinger equation, Minkowski space, and Qualia 3 30 2023.Paul Merriam - manuscript
    1. Schrodinger Equation, fragmentalism, total time T, Euclidean space 2. Does the A-series have the properties of qualia?
    Download  
     
    Export citation  
     
    Bookmark  
  13.  65
    Numerical solution of master equation corresponding to Schumann waves.Florentin Smarandache - manuscript
    Following a hypothesis by Marciak-Kozlowska, 2011, we consider one-dimensional Schumann wave transfer phenomena. Numerical solution of that equation was obtained by the help of Mathematica.
    Download  
     
    Export citation  
     
    Bookmark  
  14. Dirac-Type Equations in a Gravitational Field, with Vector Wave Function.Mayeul Arminjon - 2008 - Foundations of Physics 38 (11):1020-1045.
    An analysis of the classical-quantum correspondence shows that it needs to identify a preferred class of coordinate systems, which defines a torsionless connection. One such class is that of the locally-geodesic systems, corresponding to the Levi-Civita connection. Another class, thus another connection, emerges if a preferred reference frame is available. From the classical Hamiltonian that rules geodesic motion, the correspondence yields two distinct Klein-Gordon equations and two distinct Dirac-type equations in a general metric, depending on the connection used. Each of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  15. “Fuzzy time”, from paradox to paradox (Does it solve the contradiction between Quantum Mechanics & General Relativity?).Farzad Didehvar - manuscript
    Although Fuzzy logic and Fuzzy Mathematics is a widespread subject and there is a vast literature about it, yet the use of Fuzzy issues like Fuzzy sets and Fuzzy numbers was relatively rare in time concept. This could be seen in the Fuzzy time series. In addition, some attempts are done in fuzzing Turing Machines but seemingly there is no need to fuzzy time. Throughout this article, we try to change this picture and show why it is helpful to consider (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. A Refined Propensity Account for GRW Theory.Lorenzo Lorenzetti - 2021 - Foundations of Physics 51 (2):1-20.
    Spontaneous collapse theories of quantum mechanics turn the usual Schrödinger equation into a stochastic dynamical law. In particular, in this paper, I will focus on the GRW theory. Two philosophical issues that can be raised about GRW concern (i) the ontology of the theory, in particular the nature of the wave function and its role within the theory, and (ii) the interpretation of the objective probabilities involved in the dynamics of the theory. During the last years, it has (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  17. Towards Soliton Computer Based on Solitary Wave Solution of Maxwell Dirac equation: A Plausible Alternative to Manakov System.Victor Christianto & Florentin Smarandache - 2023 - Bulletin of Pure and Applied Sciences 42.
    In recent years, there are a number of proposals to consider collision-based soliton computer based on certain chemical reactions, namely Belousov-Zhabotinsky reaction, which leads to soliton solutions of coupled Nonlinear Schroedinger equations. They are called Manakov System. But it seems to us that such a soliton computer model can also be based on solitary wave solution of Maxwell-Dirac equation, which reduces to Choquard equation. And soliton solution of Choquard equation has been investigated by many researchers, therefore (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Zeno Goes to Copenhagen: A Dilemma for Measurement-Collapse Interpretations of Quantum Mechanics.David J. Chalmers & Kelvin J. McQueen - 2023 - In M. C. Kafatos, D. Banerji & D. C. Struppa (eds.), Quantum and Consciousness Revisited. DK Publisher.
    A familiar interpretation of quantum mechanics (one of a number of views sometimes labeled the "Copenhagen interpretation'"), takes its empirical apparatus at face value, holding that the quantum wave function evolves by the Schrödinger equation except on certain occasions of measurement, when it collapses into a new state according to the Born rule. This interpretation is widely rejected, primarily because it faces the measurement problem: "measurement" is too imprecise for use in a fundamental physical theory. We argue that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Schrödinger's cat in a realist quantum mechanics.Arthur Jabs - 2016 - arXiv.Org.
    There is no paradox with Schrödinger’s cat in a realist interpretation. In particular, a closer look at the temporal aspect shows that the two macroscopic wave functions (alive and dead) of Schrödinger’s cat are not to be compared with two superposed parts of a microscopic quantum wave function.
    Download  
     
    Export citation  
     
    Bookmark  
  20. On Some Considerations of Mathematical Physics: May we Identify Clifford Algebra as a Common Algebraic Structure for Classical Diffusion and Schrödinger Equations?Elio Conte - 2012 - Advanced Studies in Theoretical Physics 6 (26):1289-1307.
    We start from previous studies of G.N. Ord and A.S. Deakin showing that both the classical diffusion equation and Schrödinger equation of quantum mechanics have a common stump. Such result is obtained in rigorous terms since it is demonstrated that both diffusion and Schrödinger equations are manifestation of the same mathematical axiomatic set of the Clifford algebra. By using both such ( ) i A S and the i,±1 N algebra, it is evidenced, however, that possibly the two (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. A model for the solution of the quantum measurement problem.Biswaranjan Dikshit - 2019 - Science and Philosophy 7 (2):59-70.
    The basic idea of quantum mechanics is that the property of any system can be in a state of superposition of various possibilities. This state of superposition is also known as wave function and it evolves linearly with time in a deterministic way in accordance with the Schrodinger equation. However, when a measurement is carried out on the system to determine the value of that property, the system instantaneously transforms to one of the eigen states and thus (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Indeterminism in Quantum Mechanics: Beyond and/or Within.Vasil Penchev - 2020 - Development of Innovation eJournal (Elsevier: SSRN) 8 (68):1-5.
    The problem of indeterminism in quantum mechanics usually being considered as a generalization determinism of classical mechanics and physics for the case of discrete (quantum) changes is interpreted as an only mathematical problem referring to the relation of a set of independent choices to a well-ordered series therefore regulated by the equivalence of the axiom of choice and the well-ordering “theorem”. The former corresponds to quantum indeterminism, and the latter, to classical determinism. No other premises (besides the above only mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. The Ontic Probability Interpretation of Quantum Theory - Part III: Schrödinger’s Cat and the ‘Basis’ and ‘Measurement’ Pseudo-Problems (2nd edition).Felix Alba-Juez - manuscript
    Most of us are either philosophically naïve scientists or scientifically naïve philosophers, so we misjudged Schrödinger’s “very burlesque” portrait of Quantum Theory (QT) as a profound conundrum. The clear signs of a strawman argument were ignored. The Ontic Probability Interpretation (TOPI) is a metatheory: a theory about the meaning of QT. Ironically, equating Reality with Actuality cannot explain actual data, justifying the century-long philosophical struggle. The actual is real but not everything real is actual. The ontic character of the Probable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Are the waves detected by LIGO the waves according to Einstein, Pirani, Bondi, Trautmann, Kopeikin or what are they?Alfonso Guillen Gomez - manuscript
    From the geometric formulation of gravity, according to the Einstein-Grosmann-Hilbert equations, of November 1915, as the geodesic movement in the semirimennian manifold of positive curvature, spacetime, where due to absence of symmetries, the conservation of energy-impulse is not possible taking together the material processes and that of the gravitational geometric field, however, given those symmetries in the flat Minkowski spacetime, using the De Sitter model, Einstein linearizing gravitation, of course, really in the absence of gravity, in 1916, purged of some (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Quantum propensiton theory: A testable resolution of the wave/particle dilemma.Nicholas Maxwell - 1988 - British Journal for the Philosophy of Science 39 (1):1-50.
    In this paper I put forward a new micro realistic, fundamentally probabilistic, propensiton version of quantum theory. According to this theory, the entities of the quantum domain - electrons, photons, atoms - are neither particles nor fields, but a new kind of fundamentally probabilistic entity, the propensiton - entities which interact with one another probabilistically. This version of quantum theory leaves the Schroedinger equation unchanged, but reinterprets it to specify how propensitons evolve when no probabilistic transitions occur. Probabilisitic transitions (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  26. Reality and the Probability Wave.Daniel Shanahan - 2019 - International Journal of Quantum Foundations 5:51-68.
    Effects associated in quantum mechanics with a divisible probability wave are explained as physically real consequences of the equal but opposite reaction of the apparatus as a particle is measured. Taking as illustration a Mach-Zehnder interferometer operating by refraction, it is shown that this reaction must comprise a fluctuation in the reradiation field of complementary effect to the changes occurring in the photon as it is projected into one or other path. The evolution of this fluctuation through the experiment (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. My mind is not the universe: the map is not the territory.Xiaoyang Yu - manuscript
    In order to describe my findings/conclusions systematically, a new semantic system (i.e., a new language) has to be intentionally defined by the present article. Humans are limited in what they know by the technical limitation of their cortical language network. A reality is a situation model (SM). For example, the conventionally-called “physical reality” around my conventionally-called “physical body” is actually a “geometric” SM of my brain. The universe is an autonomous objective parallel computing automaton which evolves by itself automatically/unintentionally – (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Are the waves detected by LIGO the waves according to Einstein, Pirani, Bondi, Trautmann, Kopeikin or what are they?Alfonso Guillen Gomez - manuscript
    From the geometric formulation of gravity, according to the Einstein-Grosmann-Hilbert equations, of November 1915, as the geodesic movement in the semirimennian manifold of positive curvature, spacetime, where due to absence of symmetries, the conservation of energy-impulse is not possible taking together the material processes and that of the gravitational geometric field, however, given those symmetries in the flat Minkowski spacetime, using the De Sitter model, Einstein linearizing gravitation, of course, really in the absence of gravity, in 1916, purged of some (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Cosmos is a (fatalistic) state machine: Objective theory (cosmos, objective reality, scientific image) vs. Subjective theory (consciousness, subjective reality, manifest image).Xiaoyang Yu - manuscript
    As soon as you believe an imagination to be nonfictional, this imagination becomes your ontological theory of the reality. Your ontological theory (of the reality) can describe a system as the reality. However, actually this system is only a theory/conceptual-space/imagination/visual-imagery of yours, not the actual reality (i.e., the thing-in-itself). An ontological theory (of the reality) actually only describes your (subjective/mental) imagination/visual-imagery/conceptual-space. An ontological theory of the reality, is being described as a situation model (SM). There is no way to prove/disprove (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. The Meaning of the Wave Function: In Search of the Ontology of Quantum Mechanics. [REVIEW]Mario Hubert - 2017 - Notre Dame Philosophical Reviews (00):00-00.
    What is the meaning of the wave-function? After almost 100 years since the inception of quantum mechanics, is it still possible to say something new on what the wave-function is supposed to be? Yes, it is. And Shan Gao managed to do so with his newest book. Here we learn what contemporary physicists and philosophers think about the wave-function; we learn about the de Broglie-Bohm theory, the GRW collapse theory, the gravity-induced collapse theory by Roger Penrose, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Plasma Brain Dynamics (PBD): A Mechanism for EEG Waves Under Human Consciousness.Z. G. ma - 2017 - Cosmos and History 13 (2):185-203.
    EEG signals are records of nonlinear solitary waves in human brains. The waves have several types (e.g., α, β, γ, θ, δ) in response to different levels of consciousness. They are classified into two groups: Group-1 consists of complex storm-like waves (α, β, and γ); Group-2 is composed of simple quasilinear waves (θ and δ). In order to elucidate the mechanism of EEG wave formation and propagation, this paper extends the Vlasov-Maxwell equations of Plasma Brain Dynamics (PBD) to a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. The Quantum Measurement Problem - Collapse of the Wave Function explained.Rochelle Marianne Forrester - unknown
    Quantum physicists have made many attempts to solve the quantum measurement problem, but no solution seems to have received widespread acceptance. The time has come for a new approach. In Sense Perception and Reality: A Theory of Perceptual Relativity, Quantum Mechanics and the Observer Dependent Universe I suggest the quantum measurement problem is caused by a failure to understand that each species has its own sensory world and that when we say the wave function collapses and brings a particle (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. An Analogy for the Relativistic Quantum Mechanics through a Model of De Broglie Wave-covariant Ether.Mohammed Sanduk - 2018 - International Journal of Quantum Foundations 4 (2):173 - 198.
    Based on de Broglie’s wave hypothesis and the covariant ether, the Three Wave Hypothesis (TWH) has been proposed and developed in the last century. In 2007, the author found that the TWH may be attributed to a kinematical classical system of two perpendicular rolling circles. In 2012, the author showed that the position vector of a point in a model of two rolling circles in plane can be transformed to a complex vector under a proposed effect of partial (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. What is an elementary particle?Erwin Schrödinger - 1950 - Annual Report of the Board of Regents of The Smithsonian Institution:183-196.
    Schrödinger discusses what an elementary particle is. This essay originally appeared in the journal Endeavour.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  35.  52
    An Outline of Cellular Automaton Universe via Cosmological KdV equation.Victor Christianto, Florentin Smarandache & Yunita Umniyati - manuscript
    It has been known for long time that the cosmic sound wave was there since the early epoch of the Universe. Signatures of its existence are abound. However, such a sound wave model of cosmology is rarely developed fully into a complete framework. This paper can be considered as our second attempt towards such a complete description of the Universe based on soliton wave solution of cosmological KdV equation. Then we advance further this KdV equation (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. More Notes on Time, After “9 Temporal Knowledge Arguments...”.Paul Merriam - manuscript
    I give more notes about time and quantum mechanics, including notes about entropic time, superdeterminism, retro-causality, Spotlight Presentism, QFT, empirical outcomes of experiments in the present only, and Schrodinger's equation.
    Download  
     
    Export citation  
     
    Bookmark  
  37. The Pauli Objection.Juan Leon & Lorenzo Maccone - 2017 - Foundations of Physics 47 (12):1597-1608.
    Schrödinger’s equation says that the Hamiltonian is the generator of time translations. This seems to imply that any reasonable definition of time operator must be conjugate to the Hamiltonian. Then both time and energy must have the same spectrum since conjugate operators are unitarily equivalent. Clearly this is not always true: normal Hamiltonians have lower bounded spectrum and often only have discrete eigenvalues, whereas we typically desire that time can take any real value. Pauli concluded that constructing a general (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. A new paradox and the reconciliation of Lorentz and Galilean transformations.Hongyu Guo - 2021 - Synthese 199 (3-4):8113-8142.
    One of the most debated problems in the foundations of the special relativity theory is the role of conventionality. A common belief is that the Lorentz transformation is correct but the Galilean transformation is wrong. It is another common belief that the Galilean transformation is incompatible with Maxwell equations. However, the “principle of general covariance” in general relativity makes any spacetime coordinate transformation equally valid. This includes the Galilean transformation as well. This renders a new paradox. This new paradox is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Information, physics, quantum: the search for links.John Archibald Wheeler - 1989 - In Proceedings III International Symposium on Foundations of Quantum Mechanics. Tokyo: pp. 354-358.
    This report reviews what quantum physics and information theory have to tell us about the age-old question, How come existence? No escape is evident from four conclusions: (1) The world cannot be a giant machine, ruled by any preestablished continuum physical law. (2) There is no such thing at the microscopic level as space or time or spacetime continuum. (3) The familiar probability function or functional, and wave equation or functional wave equation, of standard quantum theory (...)
    Download  
     
    Export citation  
     
    Bookmark   126 citations  
  40. Against 3N-Dimensional Space.Bradley Monton - 2013 - In David Albert Alyssa Ney (ed.), The Wave Function: Essays in the Metaphysics of Quantum Mechanics.
    I argue that space has three dimensions, and quantum mechanics does not show otherwise. Specifically, I argue that the mathematical wave function of quantum mechanics corresponds to a property that an N-particle system has in three-dimensional space.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  41. “Fuzzy time”, a Solution of Unexpected Hanging Paradox (a Fuzzy interpretation of Quantum Mechanics).Farzad Didehvar - manuscript
    Although Fuzzy logic and Fuzzy Mathematics is a widespread subject and there is a vast literature about it, yet the use of Fuzzy issues like Fuzzy sets and Fuzzy numbers was relatively rare in time concept. This could be seen in the Fuzzy time series. In addition, some attempts are done in fuzzing Turing Machines but seemingly there is no need to fuzzy time. Throughout this article, we try to change this picture and show why it is helpful to consider (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  42. Why the Many-Worlds Interpretation of quantum mechanics needs more than Hilbert space structure.Meir Hemmo & Orly Shenker - 2020 - In Rik Peels, Jeroen de Ridder & René van Woudenberg (eds.), Scientific Challenges to Common Sense Philosophy. New York: Routledge. pp. 61-70.
    McQueen and Vaidman argue that the Many Worlds Interpretation (MWI) of quantum mechanics provides local causal explanations of the outcomes of experiments in our experience that is due to the total effect of all the worlds together. We show that although the explanation is local in one world, it requires a causal influence that travels across different worlds. We further argue that in the MWI the local nature of our experience is not derivable from the Hilbert space structure, but has (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  43.  56
    A review on possible physical meaning of elastic-electromagnetic mathematical equivalences.Florentin Smarandache - manuscript
    It is known, despite special theory of relativity has been widely accepted, in our recent draft submitted to this journal it is shown that some experiments have been carried out suggesting superluminal wave propagation, which make Minkowski lightcone not valid anymore. Therefore, it seems worth to reconsider the connection between elastic wave and electromagnetic wave equations, as in their early development. In this paper we will start with Maxwell-Dirac isomorphism, then we will find its connection with elastic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44.  62
    From Acoustic Analog of Space, Cancer Therapy, to Acoustic Sachs-Wolfe Theorem: A Model of the Universe as a Guitar.Victor Christianto, Florentin Smarandache & Yunita Umniyati - manuscript
    It has been known for long time that the cosmic sound wave was there since the early epoch of the Universe. Signatures of its existence are abound. However, such an acoustic model of cosmology is rarely developed fully into a complete framework from the notion of space, cancer therapy up to the sky. This paper may be the first attempt towards such a complete description of the Universe based on classical wave equation of sound. It is argued (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. A kinematic model for a partially resolved dynamical system in a Euclidean.Mohammed Sanduk - 2012 - Journal of Mathematical Modelling and Application 1 (6):40-51.
    The work is an attempt to transfer a structure from Euclidean plane (pure geometrical) under the physical observation limit (resolving power) to a physical space (observable space). The transformation from the mathematical space to physical space passes through the observation condition. The mathematical modelling is adopted. The project is based on two stapes: (1) Looking for a simple mathematical model satisfies the definition of Euclidian plane; (2)That model is examined against three observation resolution conditions (resolved, unresolved and partially resolved). The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. On the Compatibility Between Quantum Theory and General Relativity.Cristinel Stoica - manuscript
    I propose a gentle reconciliation of Quantum Theory and General Relativity. It is possible to add small, but unshackling constraints to the quantum fields, making them compatible with General Relativity. Not all solutions of the Schrodinger's equation are needed. I show that the continuous and spatially separable solutions are sufficient for the nonlocal manifestations associated with entanglement and wavefunction collapse. After extending this idea to quantum fields, I show that Quantum Field Theory can be defined in terms of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. A new approach in classical electrodynamics to protect principle of causality.Biswaranjan Dikshit - 2014 - Journal of Theoretical Physics and Cryptography 5:1-4.
    In classical electrodynamics, electromagnetic effects are calculated from solution of wave equation formed by combination of four Maxwell’s equations. However, along with retarded solution, this wave equation admits advanced solution in which case the effect happens before the cause. So, to preserve causality in natural events, the retarded solution is intentionally chosen and the advance part is just ignored. But, an equation or method cannot be called fundamental if it admits a wrong result (that violates (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Time's Arrow in a Quantum Universe: On the Status of Statistical Mechanical Probabilities.Eddy Keming Chen - 2020 - In Valia Allori (ed.), Statistical Mechanics and Scientific Explanation: Determinism, Indeterminism and Laws of Nature. World Scientific. pp. 479–515.
    In a quantum universe with a strong arrow of time, it is standard to postulate that the initial wave function started in a particular macrostate---the special low-entropy macrostate selected by the Past Hypothesis. Moreover, there is an additional postulate about statistical mechanical probabilities according to which the initial wave function is a ''typical'' choice in the macrostate. Together, they support a probabilistic version of the Second Law of Thermodynamics: typical initial wave functions will increase in entropy. Hence, (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  49. Is the quantum world composed of propensitons?Nicholas Maxwell - 2010 - In Mauricio Suárez (ed.), Probabilities, Causes and Propensities in Physics. New York: Springer. pp. 221-243.
    In this paper I outline my propensiton version of quantum theory (PQT). PQT is a fully micro-realistic version of quantum theory that provides us with a very natural possible solution to the fundamental wave/particle problem, and is free of the severe defects of orthodox quantum theory (OQT) as a result. PQT makes sense of the quantum world. PQT recovers all the empirical success of OQT and is, furthermore, empirically testable (although not as yet tested). I argue that Einstein almost (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  50. The Mach-Zehnder Interferometer and Photon Dualism: with an Analysis of Nonlocality (2021).Paul A. Klevgard - 2020 - SPIE 11481, Light in Nature VIII, 114810B (21 August 2020).
    The Mach-Zehnder Interferometer (MZI) is chosen to illustrate the long-standing wave-particle duality problem. Why is which-way (welcher weg) information incompatible with wave interference? How do we explain Wheeler’s delayed choice experiment? Most crucially, how can the photon divide at the first beam splitter and yet terminate on either arm with its undiminished energy? The position advanced is that the photon has two identities, one supporting particle features and the other wave features. There is photon kinetic energy that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 1000